28 research outputs found

    Single-Cell Transcriptomic Profiling of Pluripotent Stem Cell-Derived SCGB3A2+ Airway Epithelium.

    Get PDF
    Lung epithelial lineages have been difficult to maintain in pure form in vitro, and lineage-specific reporters have proven invaluable for monitoring their emergence from cultured pluripotent stem cells (PSCs). However, reporter constructs for tracking proximal airway lineages generated from PSCs have not been previously available, limiting the characterization of these cells. Here, we engineer mouse and human PSC lines carrying airway secretory lineage reporters that facilitate the tracking, purification, and profiling of this lung subtype. Through bulk and single-cell-based global transcriptomic profiling, we find PSC-derived airway secretory cells are susceptible to phenotypic plasticity exemplified by the tendency to co-express both a proximal airway secretory program as well as an alveolar type 2 cell program, which can be minimized by inhibiting endogenous Wnt signaling. Our results provide global profiles of engineered lung cell fates, a guide for improving their directed differentiation, and a human model of the developing airway

    Modeling Context-Sensitive Metacognitive Control of Focusing on a Mental Model During a Mental Process

    Get PDF

    Are portrait artists superior face recognizers? Limited impact of adult experience on face recognition ability.

    Get PDF
    Across two studies, we asked whether extensive experience in portrait art is associated with face recognition ability. In Study 1, 64 students completed a standardized face recognition test before and after completing a year-long art course that included substantial portraiture training. We found no evidence of an improvement in face recognition after training over and above what would be expected by practice alone. In Study 2, we investigated the possibility that more extensive experience might be needed for such advantages to emerge, by testing a cohort of expert portrait artists (N = 28), all of whom had many years of experience. In addition to memory for faces, we also explored memory for abstract art and for words in a paired-associate recognition test. The expert portrait artists performed similarly to a large, normative comparison sample on memory for faces and words, but showed a small advantage for abstract art. Taken together, our results converge with existing literature to suggest that there is relatively little plasticity in face recognition in adulthood, at which point our substantial everyday experience with faces may have pushed us to the limits of our capabilities

    How Virtual Agents Can Learn to Synchronize: an Adaptive Joint Decision-Making Model of Psychotherapy

    Get PDF
    Joint decision-making can be seen as the synchronization of actions and emotions, usually via nonverbal interaction between people while they show empathy. The aim of the current paper was (1) to develop an adaptive computational model for the type of synchrony that can occur in joint decision-making for two persons modeled as agents, and (2) to visualize the two persons by avatars as virtual agents during their decision-making. How to model joint decision-making computationally while taking into account adaptivity is rarely addressed, although such models based on psychological literature have a lot of future applications like online coaching and therapeutics. We used an adaptive network-oriented modelling approach to build an adaptive joint decision-making model in an agent-based manner and simulated multiple scenarios of such joint decision-making processes using a dedicated software environment that was implemented in MATLAB. Programming in the Unity 3D engine was done to virtualize this process as nonverbal interaction between virtual agents, their internal and external states, and the scenario. Although our adaptive joint decision model has general application areas, we have selected a therapeutic session as example scenario to visualize and interpret the example simulations

    Flexibility and Adaptivity of Emotion Regulation: From Contextual Dynamics to Learning and Control

    Get PDF

    Predictive masking of an artificial scotoma is associated with a system-wide reconfiguration of neural populations in the human visual cortex

    Get PDF
    The visual brain has the remarkable capacity to complete our percept of the world even when the information extracted from the visual scene is incomplete. This ability to predict missing information based on information from spatially adjacent regions is an intriguing attribute of healthy vision. Yet, it gains particular significance when it masks the perceptual consequences of a retinal lesion, leaving patients unaware of their partial loss of vision and ultimately delaying diagnosis and treatment. At present, our understanding of the neural basis of this masking process is limited which hinders both quantitative modelling as well as translational application. To overcome this, we asked the participants to view visual stimuli with and without superimposed artificial scotoma (AS). We used fMRI to record the associated cortical activity and applied model-based analyses to track changes in cortical population receptive fields and connectivity in response to the introduction of the AS. We found that throughout the visual field and cortical hierarchy, pRFs shifted their preferred position towards the AS border. Moreover, extrastriate areas biased their sampling of V1 towards sections outside the AS projection zone, thereby effectively masking the AS with signals from spared portions of the visual field. We speculate that the signals that drive these system-wide population modifications originate in extrastriate visual areas and, through feedback, also reconfigure the neural populations in the earlier visual areas

    Data-Driven Classification of Spectral Profiles Reveals Brain Region-Specific Plasticity in Blindness

    Get PDF
    Congenital blindness has been shown to result in behavioral adaptation and neuronal reorganization, but the underlying neuronal mechanisms are largely unknown. Brain rhythms are characteristic for anatomically defined brain regions and provide a putative mechanistic link to cognitive processes. In a novel approach, using magnetoencephalography resting state data of congenitally blind and sighted humans, deprivation-related changes in spectral profiles were mapped to the cortex using clustering and classification procedures. Altered spectral profiles in visual areas suggest changes in visual alpha-gamma band inhibitory-excitatory circuits. Remarkably, spectral profiles were also altered in auditory and right frontal areas showing increased power in theta-to-beta frequency bands in blind compared with sighted individuals, possibly related to adaptive auditory and higher cognitive processing. Moreover, occipital alpha correlated with microstructural white matter properties extending bilaterally across posterior parts of the brain. We provide evidence that visual deprivation selectively modulates spectral profiles, possibly reflecting structural and functional adaptation
    corecore