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Chapter 21
Dynamics, Adaptation, and Control
for Mental Models Analysed
from a Self-modeling Network Viewpoint

Laila van Ments, Raj Bhalwankar, and Jan Treur

Abstract This chapter contributes an analysis of how inmental and social processes,
humans often apply specific mental models and learn and adapt them in a controlled
manner. It is discussed how controlled adaptation relates to the Plasticity Versus
Stability Conundrum in neuroscience. From the analysis an informal three-level
cognitive architecture for controlled adaptation was obtained. It is discussed here
from a self-modeling network viewpoint how this cognitive architecture can be
modeled as a self-modeling network. Making use of the specific network charac-
teristics offered by the self-modeling network structure format, a large number of
options for different types of adaptation of mental models and different types of
control over adaptation of mental models were obtained. Many of these options were
illustrated by a several realistic examples that were formalized by self-modeling
networks. Other options that were distinguished from the analysis here, are offered
as interesting options for future research.

Keywords Dynamics · Adaptation · Control ·Mental models

21.1 Introduction

The area of mental models within psychology, educational science and other related
disciplines addresses how in their mental and social processes, humans often learn,
adapt and apply specific mental models as a kind of blueprints, schemas or maps.
Most of the many publications on mental models in multiple disciplines are informal
and not computational. This may partly be due to the challenging complexity of the
different types of processes involved in handling mental models. The main processes
that came out of a more detailed analysis of this literature are (Van Ments and Treur
2021c):
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(1) Applying a mental model
This can be considered a form of internal (mental) simulation. Outcomes of
this, affect a person’s decisions and actions; e.g., (Craik 1943)

(2) Developing and maintaining a mental model
Adaptation of mental models often takes place. This usually involves learning,
extinction or forgetting, and revision; e.g., (Piaget 1936;Hebb 1949; Seel 2006)

(3) Exerting control over a mental model
In a context-sensitive manner, usually control is exerted over adaptation of a
mental model; e.g., (Du Plooy 2016; Darling-Hammond et al. 2008; Hurley
2008; Mahdavi 2014; Pintrich 2000).

To obtain a formalized and computational model of mental processes involving
a mental model, these three different types of interacting processes all have to be
addressed, which indeed may be a bit challenging.

Some inspiration can be obtained from the wider neuroscientific context. In that
context, (2) corresponds to what often is called plasticity and (3) relates to the notion
of metaplasticity. In (Sjöström et al. 2008), the latter topic is discussed in rela-
tion to what is called the Plasticity Versus Stability Conundrum. More specifically,
concerning (2) and (3), within neuroscience it has been found more in general that:

• In the brain plasticity can occur in different forms; for example:

– synaptic neural plasticity; e.g., Hebbian learning (Hebb 1949)
– nonsynaptic neural plasticity (sometimes called intrinsic plasticity) such as

plasticity of excitability thresholds within neurons; e.g., (Chandra and Barkai
2018; Debanne et al. 2019; Sjöström et al. 2008)

• Plasticity turns out not to be constant but can be depend on circumstances; various
neural mechanisms have been discovered by which the extent of plasticity varies
over different circumstances by being controlled in a context-sensitive manner.
This is called metaplasticity; e.g., (Abraham and Bear 1996; Magerl et al. 2018;
Robinson et al. 2016; Sjöström et al. 2008)

These concepts and the way in which they have been modeled by formalized
and computational models in (Treur 2020) provided useful inspiration to obtain
formalised computational models for mental processes based on mental models as
well.

As a first step, based on the analysis of the different types of interacting processes
(1), (2) and (3) involved in mental model handling, an informal global cognitive
architecture for mental model handling has been developed taking these processes
into account in three different but related levels; see Van Ments and Treur (2021c).
Moreover, using the viewpoint of self-modeling networks, it has been shown how
this (informal) cognitive architecture can be formalized in a computational manner
in a self-modeling network format. In this self-modeling network, for the abovemen-
tioned informal three-level cognitive architecture, by the base level network internal
simulation based on a mental model as subnetwork takes place, by a first-order
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self-model network at the next level, adaptation of this subnetwork representing the
mental model and by a second-order self-model network at the second-next level
context-sensitive control over this adaptation takes place. This will be discussed in
some more detail in Sect. 21.3. After that, in Sects. 21.4–21.6 each of the three
levels will be discussed in more detail and illustrated by many examples of realistic
cases of mental processes involving mental models. First, in Sect. 21.2 the notion of
self-modeling network model is briefly introduced.

21.2 Self-modeling Network Models

A specific modeling approach addressing dynamics and adaptivity is the network-
oriented modeling approach described in (Treur 2020). The current section briefly
describes this modeling approach.

21.2.1 Network Models

According to the network-oriented modeling approach described in (Treur 2020) a
network model is characterised by:

• connectivity characteristics
Connections from a node (or state) X to a node Y and their weights ωX,Y

• aggregation characteristics
For any node Y, some combination function cY (..) defines aggregation that is

applied to the single impacts ωX,YX(t) on Y through its incoming connections
from states X

• timing characteristics
Each node Y has a speed factor ηY defining how fast it changes for given

(aggregated) impact

The difference (or differential) equations that are useful for simulation purposes
and also for analysis of network dynamics incorporate these network characteristics
ωX,Y , cY (..), ηY : it holds

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)]�t (21.1)

for any state Y and where X1, . . . , Xk are the states from which it gets its incoming
connections. An example of a useful combination functions is:

• the advanced logistic sum function alogisticσ,τ(. . .) defined by:
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alogisticσ,τ(V1, . . . , Vk) =
[

1

1+ e−σ(V1+···+Vk−τ)
− 1

1+ eστ

]
(1+ e−στ)

(21.2)

The above concepts enable to design network models and their dynamics in a
declarative manner, based on mathematically defined functions and relations.

21.2.2 Modeling Adaptive Networks as Self-Modeling
Networks

Realistic networkmodels are usually adaptive: their network characteristics often are
adapted over time. Therefore, their dynamics is usually an interaction (sometimes
called co-evolution) of these two sorts of dynamics: dynamics of the nodes (or states)
in the network (dynamics within the network) versus dynamics of the characteris-
tics of the network (dynamics of the network). Dynamics of the network’s nodes
are modeled declaratively by declarative mathematical functions and relations. In
contrast, the dynamics of the network characteristics traditionally are described in a
procedural, algorithmic nondeclarative manner, which then leads to a hybrid type of
model. But by using self-models within the network, a network-oriented conceptu-
alisation can also be applied to adaptive networks to obtain a declarative description
using mathematically defined functions and relations; see Treur (2020). This works
through the addition of new nodes to the network (called self-model states or reifi-
cation states) which represent (adaptive) network characteristics. Such nodes are
depicted at a next level (self-model level), where the original network is at a base
level. These types of characteristics with their self-model states and their roles are
shown in Table 21.1.

This provides an extended network, also called self-modeling network. Like for all
network models, a self-modeling network model is specified in a (network-oriented)

Table 21.1 Different network characteristics and self-model states for them

Types of
characteristics

Concepts Notations Self-model
states

Role played by the
self-model state

Connectivity
characteristics

Connections weights ωX,Y WX,Y Connection weight
W

Aggregation
characteristics

Combination functions
and their parameters

cY (..)
πi,j,Y

Ci,Y
Pi,j,Y

Combination
function weight C
Combination
function parameter P

Timing
characteristics

Speed factors ηY HY Speed factor H
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declarative mathematical manner based on nodes and connections. These include
interlevel connections relating nodes at one level to nodes on the other.

The outcome is also a networkmodel (Treur 2020,Chap. 10). Thiswhole construc-
tion can be applied iteratively to obtain multiple self-model levels that can provide
higher-order adaptive networks, and is quite useful to model, for example, plasticity
and metaplasticity in the form of a second-order adaptive network with three levels,
one base level and a first- and a second-order self-model level; e.g., (Treur 2020),
Chap. 4.

To support the design of network models and simulation of them, for any appli-
cation from a library predefined basic combination functions bcfi(..), i = 1,.., m are
selected by assigning weights γi,Y , where the combination function then becomes
the weighted average

cY (. . .) = (γ1,Ybcf1(. . .) + · · · + γm,Ybcfm(. . .))/(γ1,Y + · · · + γm,Y ) (21.19)

Furthermore, parameters of combination functions are specified, so that bcfi(..) =
bcfi(p,v) where p is a list of parameters and v is a list of values.

21.3 Modeling the Cognitive Architecture for Mental
Models as a Self-Modeling Network

Based on the different processes inwhichmental models are used as briefly discussed
above, a cognitive architecture for handling mental models has been designed
covering the three types of processes in an integratedmanner as depicted in Fig. 21.1,
left hand side. For more details of this architecture, see VanMents and Treur (2021a).

The mapping from the three levels of the cognitive architecture to a self-modeling
network is as follows (see also Fig. 21.1):

Fig. 21.1 Modeling the three-level cognitive architecture for mental model handling by a self-
modeling network
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• Lower level: a mental model as a subnetwork
The mental model as a relational structure at the base level within the cognitive
architecture is modeled as a (sub)network structure of states (nodes) and connec-
tions between them at the base level of the self-modeling network; the dynamics
of the states of this subnetwork model internal simulation of the mental model

• Middle level: a first-order self-model of a mental model representing
adaptation of its network structure
The level for adaptation of a mental model within the cognitive architecture is
modeled as a first-order self-model of the mental model structure as represented
at the base level; the dynamics of the states of this first-order self-model model
adaptation by making changes in the structure of the mental model

• Upper level: a second-order self-model of a mental model representing
control of adaptation of its network structure
The level for control of adaptation of a mental model is modeled as a second-
order self-model of the mental model, which is a self-model for the self-model
for adaptation of the mental model; the dynamics of the states of this second-order
self-model model control of adaptation by making changes in the structure of the
first-order self-model that describes the adaptation of the mental model.

So, mental models and the way they are handled can be considered as being
described through multiple representations: they can be viewed from three levels of
representation according to the three planes depicted in Fig. 21.1, right hand side.
At the lower, base level depicted by the lower (pink) plane, a mental model, which
in general essentially is considered to be a relational structure, is represented by
nodes and connections between these nodes. For internal simulation, the nodes have
activation levels that vary over time; based on the relations these activation levels
affect each other over time. Next, at the adaptation level depicted in Fig. 21.1 right-
hand side by themiddle (blue) plane, it is represented how themental model relations
change over time by some adaptation specification. Finally, at the top level depicted
by the upper (purple) plane in Fig. 21.1 it is indicated how the adaptation at the
middle level is controlled. In this way, to model mental processes in which mental
models play a role, within the self-modeling network these mental models do not get
a single but a three-fold representation by which the different uses and operations
on the mental model are distinguished like they are distinguished by the levels in the
cognitive architecture.

In the next three sections each of the levels is discussed in some more detail and
illustrated by many examples of realistic cases involving mental models in mental
processes.

21.4 How Mental Models Can Be Used

From the viewpoint of the self-modeling network format, mental models are repre-
sented as subnetworks at the base level, which have their own internal connections
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(between their own mental model states), but also connections from and to other
mental states that do not belong to the mental model. It is through the latter types of
connections that a mental model can affect a person’s mental processes in a wider
sense and, more specifically, their decisions and actions. It was pointed out, among
others already by Craik (1943) that having mental models enables organisms to
make better decisions on how to act, as future developments can be predicted by
these mental models:

If the organism carries a “small-scale model” of external reality and of its own possible
actions within its head, it is able to try out various alternatives, conclude which is the best
of them, react to future situations before they arise, utilise the knowledge of past events in
dealing with the present and future, and in every way to react in a much fuller, safer, and
more competent manner to the emergencies which face it. (Craik 1943, p. 61)

From an analysis of many cases, it was found that mental models can affect a wide
variety of types of other mental states and behavioural actions. Mental states relating
to goals and actions, preparation and ownership for actions, and action execution
are among the mental states and behaviour that can be affected by mental models.
However, also other types of mental states can be affected by mental models, such
as emotional responses, awareness states, belief states, and states in other mental
models. In Table 21.1, an overview can be found of several realistic examples of how
mental models affect other (base level) mental states which are not part of the mental
model; this indicates the way in which the mental models are used in the overall
mental processes and behaviour. All of them have been formalized in computational
self-modeling network format based on the cognitive architecture shown in Fig. 21.1;
see the references in the table to papers where they are described inmuchmore detail.
In particular, the following cases are addressed in Table 21.2.

Case 1 Multiple mental models
At the first row a reference is made to a visualization case study where
states of a geometric mental model affect states of an arithmetical mental
model to reveal arithmetical relations.

Case 2 Flashbacks in PTSD
The second row refers to how for PTSD amentalmodelmade of a traumatic
event is sometimes triggered (flashback) and then in turn triggers stressful
emotions and awareness of the traumatic event.

Case 3 Counterfactual thinking
In the third row a counterfactual thinking case is addressed, where based
on mental models of different alternative scenarios, beliefs are revised.

Case 4 Self-interpretation in therapy
The fourth row refers to a realistic therapy case in which self-interpretation
based on a mental model of a person’s own functioning leads to stronger
awareness and revised beliefs.

Case 5 Metaphors for joint decision making
In the fifth row mental models for competitive and cooperative metaphors
for joint decision making are considered that affect action ownership states
that form the basis of a decision.
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Case 6 Mental God-model and empathy
The sixth row refers to a case study of mental God-models, where these
mental models affect a number of other mental states concerning the
person’s own actions, goals and also emotions; for example empathic or
disempathic actions are influenced by a mental model of an empathic or
disempathic God.

Case 7 Mental attachment model
The seventh row addresses a case for Attachment Theory, where mental
models of self and other developed based on a primary caregiver during
childhood, affect preparation for actions with respect to significant others
later in life.

Case 8 Shared mental model
Finally, in the last row a case study for shared mental models for hospital
teamwork is addressed, where, like in row 5, these mental models affect
action decisions via their ownership states.

All in all, the influences of mental models on a person’s mental processes at the
base level can be diverse.

To illustrate this in somemore detail, for Case 2 and 3 the conceptual connectivity
view on the network model design is provided in Fig. 21.2 and 21.3. Notice the three
levels as introduced in Fig. 21.1: the base level in pink, the first-order self-model
level to allow for adaptation in blue and the second-order self-model level to control

Fig. 21.2 Connectivity of the second-order adaptive network model of Case 2 described above
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Fig. 21.3 Conceptual model of case 3 described above including the controlled adaptive network
model for counterfactual thinking

adaptation in purple. Again, more depth on the models can be found in the references
indicated in Table 21.2.

In Fig. 21.2 sensing of a traumatic event te consisting of a sequence of phases
or steps is modeled by sensor states sste1, sste2, sste3. For example, te1 or traumatic
event step 1, is a potentially dangerous situation for a child you observe, the second
step te2 is an action from your side with the intention to save the child from that
situation and te3 is an unfortunate failure of your action such that the child actually
gets hurt. During this traumatic event sequence, sensory representations srste1, srste2,
srste3 are activated, and by sensory preconditioning (Brogden 1947; Hall 1996) the
connections between these sensory representations are learned through a Hebbian
learning mechanism (Hebb 1949). By this learning process, the mental model of
the traumatic event sequence is formed and represented by base states srste1, srste2,
srste3 and their connections (see the small pink parallelogram within the base plane
in Fig. 21.1) with first-order self-model statesWsrste1,srste2andWsrste2,srste3 . What can be
seen in Fig. 21.2 is that the mental model states have outgoing base level connections
to two other mental states that are not part of the mental model: to the awareness
state aste of the trauma and to the emotional response preparation state psb. This is
indeed what is shown in the second row of Table 21.1.

In the example for Case 3 shown in Fig. 21.3 the mental models are depicted
within the small outlined areas within the (pink) base level plane. In this case, there
is no direct connection within the base plane frommental model states to belief states
but a causal pathway through the first-order self-model level (the middle blue plane);
in this case (by a liberal interpretation) this is also considered as a causal effect on
the belief, which at the same time is part of another mental model. Therefore, in row
3 of Table 21.1 there are two + indications.



21 Dynamics, Adaptation, and Control for Mental Models Analysed … 595

21.5 How Mental Models Can Be Adapted

Different forms of adaptation or learning can be applied to mental models. Examples
of individual types of learning are

• Learning of connections of mental models by observation of a process in the real
world; for example, based on Hebbian learning (Hebb 1949)

• Learning of excitability ofmental model nodes; for example, (Chandra andBarkai
2018; Debanne et al. 2019; Sjöström et al. 2008)

• Learning of connections of mental models by instruction or by being told; for
example by instructional learning, e.g., (Hogan and Pressley 1997; Seel 2006)

• Learning of connections of mental models from other, related mental models; for
example, learning arithmetical or algebraic relations based on visualization like
in Case 1 in Sect. 21.3; e.g., (Du Plooy 2016; Koedinger and Terao 2002)

• Learning of mental models based on counterfactual thinking like in Case 3 in
Sect. 21.3; e.g., (Van Hoeck et al. 2015)

• Learning of mental models based on Theory of Mind self-interpretation, like in
Case 4 in Sect. 21.3; for example (Treur and Glas 2021)

Also at the non-individual, social level, adaptation of mental models can play an
important role. Three examples are

• Bonding based on homophily (or similarity), where the mental models describing
the internal representations of connections between persons are adapted over time;
e.g., (McPherson et al. 2001; Treur 2021b)

• Development of attachment relations as described by Attachment Theory, like
in Case 7 in Sect. 21.3; e.g., (Bartholomew and Horowitz 1991; Hermans et al.
2021)

• Forgetting connections in a shared mental model during teamwork, like in Case
8 in Sect. 21.3; e.g., (Burtscher and Manser 2012; Van Ments et al. 2021)

From the viewpoint of the self-modeling network format as formalization, adap-
tation is described by (first-order) self-models of parts of the (base) network. This
automatically offers a number of specific available network characteristics that are
suitable for adaptation and that can be used in particular for adaptation of mental
models represented as subnetworks. Examples of such networks characteristics that
can be made adaptive are as follows:

Connectivity for mental model relations

• For example, mental model connections and their weights
• These can be modeled by self-model statesWX,Y representing the weight ωX,Y of

the connection from mental model state X to mental model state Y

Aggregation for mental model states

• For example, excitability thresholds of mental model states
• These can be modeled by self-model states TY representing the excitability

threshold τY of mental model state Y
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Timing for mental model states

• For example, speed factors of mental model states
• These can be modeled by self-model states HY representing the speed factor ηY

of mental model state Y

In Table 21.3, an overview can be found of such examples of adaptation of mental
models that enabled tomodel a variety of realistic scenarios involvingmentalmodels.
The first 8 rows correspond to the eight cases discussed in Sect. 21.3. In this table
four new cases are shown:

Case 9 Car driving mental model
This case addresses the learning of a mental model of how a car works
and how you can drive it; this takes place through a combination of
instructional (by being told) and observational learning (by Hebbian
learning).

Case 10 Self-controlled learning
In this case of a car driving mental model, the learner first learns by
observation and then takes initiative to ask for (confirmative) instruction.

Case 11 Analysis and support
This case describes in the context of providing support, an adaptivemental
model for analysis of possible problems and an adaptive mental model of
suitable support actions for such problems.

Case 12 Bonding by homophily
This case addresses how the mental models of the (adaptive) connections
between two persons are affected by how similar the (adaptive) mental
models of characteristics or states of the two persons are.

For Case 2 depicted in Fig. 21.2 in row 2 of Table 21.2 it is indicated that the
flashback movie is learned by Hebbian learning; for Case 3 depicted in Fig. 21.3, it is
indicated in row 3 of Table 21.3 that it addresses learning by counterfactual thinking.

21.6 How Mental Model Adaptation Can Be Controlled

In this section, different ways are discussed in which control over mental models
and their adaptation can be exerted. Again this is done from the viewpoint of the
network format provided by self-modeling networks. In (Sjöström et al. 2008), the
topic of control of adaptation is discussed in relation to what is called the Plas-
ticity Versus Stability Conundrum. Also within an AI-context, in machine learning
examples of this conundrum and controlled adaptation to address it are known, such
as the (decreasing) temperature parameter in simulated annealing and the sensitive
balancing between exploration and exploitation in reinforcement learning, also called
the explore-exploit dilemma (Holland 1975; March 1991; Wilson et al. 2014). This
is explained in (Wilson et al. 2014) as follows:
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When you go to your favorite restaurant, do you always order the same thing, or do you try
something new? Sticking with an old favorite ensures a good meal, but if you are willing
to explore you might discover something better. This simple conundrum, deciding between
something you know and something you do not, is commonly referred to as the exploration–
exploitation dilemma.

Applied to mental models in particular, this quote illustrates that on the one hand
decision making based on known mental models can be very efficient (navigating
based on a well-known map), but on the other hand this may prevent someone from
learning even better decisions (exploring still unknown territory).

In a controlled adaptive network model for mental models based on the self-
modeling network format, adaptation is modelled by a first-order self-model, as
discussed in Sect. 21.4. There are a number of network characteristics involved in the
structure of a first-order self-model used for the adaptation. By systematically going
through these possible network characteristics, the following examples of network
characteristics for adaptation to be controlled can be distinguished and are illustrated
by various examples. Recall from Sect. 21.4 how exactly at the middle level self-
model states can be introduced to represent adaptive network characteristics from the
lower level. For example, self-model state WX,Y represents an adaptive connection
weight ωX,Y from the base level, and HY represents speed factor ηY from the lower
level, and so on. This can be iterated for the middle and upper level to obtain a
second-order self-model. For example:

• second-order self-model state HWX,Y can be used to represent the adaptive
adaptation speed of first-order self-model stateWX,Y .

• second-order self-model state MWX,Y can be used to represent the adaptive
persistence parameter μWX,Y

of first-order self-model state WX,Y .
• second-order self-model state WZ ,WX,Y can be used to represent the adaptive

weight ωZ ,WX,Y of the connection from some state Z to stateWX,Y .

For shortness, such second-order self-model states are sometimes called HW-
states,MW-states, orWW-states, whereas first-order self-model states can be called,
for example, W-states or T-states. Following the different types of network charac-
teristics used in the self-modeling network format, the following types of control can
be distinguished.

• Control by adaptive connectivity characteristics of first-order self-model
states
– Adaptive connections of the causal pathways to the self-model states and their

weights ω; for example:

Choosing a mental model to be applied. For example, a decision to use a
specific metaphor-based mental model as in the model in (Van Ments and
Treur 2021b) or a decision to use a geometric mental model to support
learning of an arithmetic mental model, as described in (Treur 2021a)

Opening a communication channel from an information source to enable
instructional learning of a mental model (decision to ask), as in the model in
(Bhalwankar and Treur 2021b) and in the model described in (Treur 2021b)
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Opening an observation channel to enable observational learning of amental
model (decision to observe), as in the model described in (Treur 2021b)

– Adaptive connections of the causal pathways from the self-model states to
other states and their weights ω; for example:

Modelling the effects of a chosen metaphor as in the model in (Van Ments
and Treur 2021b)

• Control by adaptive aggregation characteristics of first-order self-model
states
– Adaptive choice of combination function; for example:

For Hebbian learning of mental model connections a weighted average of
hebbμ(V 1, V 2, W ) and sminλ(V 1, V 2), with adaptive weights γ1 and γ2.

– Adaptive parameters of chosen combination functions; for example:

Adaptive values for the persistence factor μ of hebbμ(..) as in the self-
modeling networkmodel for sharedmental models described in (VanMents
et al. 2021) or for the scaling factor λ of sminλ(V 1, V 2).

• Control by adaptive timing characteristics of first-order self-model states
– Adaptive adaptation speed (learning rate) η; for example:

Addressing the Plasticity Versus Stability conundrum (Sjöström et al. 2008)
based on some context factors indicating when plasticity is needed fully and
when plasticity should be limited or frozen.

Accelerating adaptation speed upon increased stimulus exposure (Robinson
et al. 2016), for example as applied in the example model in (Van Ments
and Treur 2021b)/

As discussed above, in a self-modeling network format, control of any of such
network characteristics (for first-order self-models for adaptation of a mental model)
ismodeled by a second-order self-model. To illustrate this, based on the above distinc-
tions, in Table 21.3 a summarized overview is given of several cases of applications
of second-order self-models to control adaptation of mental models as also collected
in (Treur and Van Ments 2022).

For case 2 depicted in Fig. 21.2 in row 2 of Table 21.4 it is indicated that for
the learning of the flashback movie by Hebbian learning the adaptation speed is
controlled; for case 3 depicted in Fig. 21.3, it is indicated in row 3 of Table 21.4
that for the learning by counterfactual thinking the exchange between the different
mental models is controlled.

Moreover, in Table 21.5, a more complete overview is obtained of different types
of control against different types of learning. Note that in most cells in Table 21.5
further references are included, but for those cellswhere no references are included, in
general this means that these options are yet to be explored in detail. This contributes
to a future research agenda.
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21.7 Discussion

This chapter addressed an analysis of how in mental and social processes, humans
often apply specific mental models and learn and adapt them in a controlled manner.
Part of it is based on (Bhalwankar et al. 2021). Itwas discussed howcontrolled adapta-
tion relates to the Plasticity Versus Stability Conundrum in neuroscience (Sjöström
et al. 2008). From the analysis, an informal three-level cognitive architecture for
controlled adaptation was obtained. It was discussed from a self-modeling network
viewpoint how this cognitive architecture can bemodeled as a self-modeling network
(Treur 2020). Making use of the specific network characteristics offered by the self-
modeling network structure format, a large number of options for different types of
adaptation of mental models and different types of control over adaptation of mental
models were obtained and structured. Many but not all of these options were illus-
trated by several realistic examples that were already formalized by self-modeling
networks. The options that were not illustrated here in a formalized computational
sense provide interesting options for a future research agenda. As an example of such
next steps, while the current chapter and book were already in press it was discov-
ered by Gülay Canbaloğlu and Jan Treur that the introduced modeling approach for
mental models is very useful to obtain computational models of (multilevel) organi-
sational learning processes. The literature for the area of organisational learning has
practically no contributions addressing formalisation and computational models for
it. The modeling approach introduced in the current book turns out to open a system-
atic approach to address this now. A next book addressing this specific application
area (Canbaloğlu et al. 2023) is planned to come out by the end of 2022.
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