741 research outputs found

    Transfer-free graphene passivation of sub 100 nm thin Pt and Ptโ€“Cu electrodes for memristive devices

    Get PDF
    Memristive switches are among the most promising building blocks for future neuromorphic computing. These devices are based on a complex interplay of redox reactions on the nanoscale. Nanoionic phenomena enable non-linear and low-power resistance transition in ultra-short programming times. However, when not controlled, the same electrochemical reactions can result in device degradation and instability over time. Two-dimensional barriers have been suggested to precisely manipulate the nanoionic processes. But fabrication-friendly integration of these materials in memristive devices is challenging.Here we report on a novel process for graphene passivation of thin platinum and platinum/copper electrodes. We also studied the level of defects of graphene after deposition of selected oxides that are relevant for memristive switching

    Hybrid 2Dโ€“CMOS microchips for memristive applications

    Get PDF
    Ministry of Science and Technology of China (grant nos. 2019YFE0124200 and 2018YFE0100800)National Natural Science Foundation of China (grant no. 61874075)Baseline funding scheme of the King Abdullah University of Science and Technolog

    Investigation of Bipolar Resistive Switching Characteristics with Silicon Nitride device and bi-layer application by introducing the Al2O3 barrier layer

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€(ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์žฌ๋ฃŒ), 2020. 8. ํ™ฉ์ฒ ์„ฑ.The resistance switching random access memory (ReRAM), which changes the resistance state of the device by the external electrical stimulation, is one of the promising candidates for a next-generation nonvolatile memory. Due to its simple metal-insulator-metal (MIM) structure, low power consumption, scalability, and complementary metal-oxide-semiconductor compatibility, ReRAM has been attracted enormous attention as a highly integrated memory to replace NAND flash memory. The transition metal oxides, such as NiO, TiO2, HfO2, and Ta2O5, were the main focus on the ReRAM device fabrication and mechanism analysis. On the other hand, the insulating nitride films, such as silicon nitride (Si3N4), have no reason for not being regarded as the feasible ReRAM material. In fact, the Si:N ratio of Si3N4 can be readily controlled to induce defects inside the film, which is already in massive use for charge-trap layer in NAND flash memory. The defect generation and possible percolation of the defects to form the so-called conducting filament (CF) is the main mechanism for the fluent ReRAM performance. Therefore, N-deficient Si3N4, i.e., Si3N4-x, can be a feasible resistance switching (RS) material. In the first part of this study, a bipolar resistive switching (BRS) property of a Si3N4-x thin film depending N-deficiency was investigated with Pt/Si3N4-x/TiN devices with various NH3 gas flow rate during plasma enhanced chemical vapor deposition process of Si3N4-x thin film. By X-ray photo-electron spectroscopy analysis, it was confirmed that the fraction of nitrogen element in Si3N4-x thin film decreased as NH3 gas flow rate decreased and the degree of N-deficiency could be controlled by changing NH3 gas flow rate. The change of N-deficiency affected the current-voltage (I-V) characteristics of Si3N4-x thin film, and the behavior of BRS and the optimized condition could be achieved. In addition, the series line resistance of Pt/TiN electrode was attributed to the self-compliance behavior, having a stable BRS behavior even without compliance current. The Si3N4-x devices didn't show cell area dependency of I-V characteristics, implying the formation and rupture of CF involved in the RS behavior. To further investigation of RS mechanism, the temperature dependent I-V behavior was examined. With a double logarithmic plot of the I-V curves, the slope of the best-linear-fitted data in the low and high voltage regions was ~1 and ~2, respectively, which coincide with the Childs law and space charge limited conduction mechanism dominated the conduction of Si3N4-x device. In addition, the activation energy and hopping distance for hopping conduction were calculated and both values decreased as NH3 gas flow rate decreased and after switching occured. From these results, CF is formed by the local repelling N to TiN BE and the percolation of the traps. The trap condition of the initial Si3N4-x played an important role in the formation of CF, otherwise the device underwent a hard breakdown. On the basis of the BRS property of a Si3N4-x thin film in the first part of this study, Al2O3 interfacial barrier layer (IBL) was inserted between the Si3N4-x thin film with optimized deposition condition (Si3N3.0) and Pt top electrode, forming the Pt/Al2O3/Si3N3.0/Ti devices with various Al2O3 film thickness (3-5 nm). The seperation between Al2O3 and Si3N3.0 layer could be identified with TEM image and EDS mapping image. While the Pt/Si3N3.0/Ti device showed filamentary BRS, the Pt/Al2O3/Si3N3.0/Ti devices showed electronic BRS with forming free property. In addition, the devices had self-rectifying and nonlinearity characteristics, which is necessary to prevent sneak current for big crossbar-array structure, due to the high band gap of Al2O3 IBL. The devices showed area dependency at HRS and LRS, indicating the interfacial electronic BRS dominated the RS mechanism. The temperature dependency analysis revealed the trap depth of trap sites in Si3N3.0 layer and schottky barreir height between Pt and Al2O3. Thus, the device switched its resistance state by trapping/detrapping of electrons at the trap sites in Si3N3.0 RS layer. To estimate the available maximum crossbar-array size (CBA), HSPICE simulation was performed and it was confirmed that ~106 density could be obtained. To form crossbar-array structure with ReRAM, sneak current is main issue for proper operation of selected cell. To suppress the sneak current, using transistor is a solution. However, relatively large size of transistor device hinders the scaling-down of ReRAM device. In this respect, selector device ,which has simple MIM sutucture, could replace a transistor while suppressing sneak current sufficiently. Therefore, it is needed to investigate the issue of integrated device with 1 selector and 1 RS material (1S1R). In the third part of this study, 1S1R device was fabricated with the Pt/Si3N4-x/TiN RS layer in the first part of this study and Pt/TiO2/TiN selector layer using the atomic-layer deposited TiO2 film. The device was fabricated via lift-off process with single cell, 2 by 2 and 9 by 9 crossbar-array pattern. By comparing each device, optimized deposition condition of selector and RS layer could be founded and additional issue to overcome was identified.์™ธ๋ถ€ ์ž๊ทน์— ์˜ํ•ด ์†Œ์ž์˜ ์ €ํ•ญ์ƒํƒœ๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋Š” ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ๋Š” ์ฐจ์„ธ๋Œ€ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ์˜ ์œ ๋งํ•œ ํ›„๋ณด ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ฐ„๋‹จํ•œ MIM ๊ตฌ์กฐ, ์ €์ „๋ ฅ ์†Œ๋ชจ, ๊ณ  ์ง‘์ ์„ฑ ๊ทธ๋ฆฌ๊ณ  CMOS ์ ํ•ฉ์„ฑ์œผ๋กœ ์ธํ•ด ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ๋Š” NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๋Œ€์ฒดํ•  ๊ณ ์ง‘์  ๋ฉ”๋ชจ๋ฆฌ๋กœ ๋งŽ์€ ๊ธฐ๋Œ€๋ฅผ ๋ฐ›๊ณ  ์žˆ๋‹ค. NiO, TiO2, HfO2 ๊ทธ๋ฆฌ๊ณ Ta2O5์™€ ๊ฐ™์€ ์ „์ด๊ธˆ์† ์‚ฐํ™”๋ฌผ์ด ์ €ํ•ญ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž ์ œ์ž‘๊ณผ ๊ฑฐ๋™ ๋ถ„์„์˜ ์ฃผ๋œ ์ดˆ์ ์ด์˜€๋‹ค. ๋ฐ˜๋ฉด์— Si3N4์™€ ๊ฐ™์€ ์งˆํ™”๋ง‰ ๋˜ํ•œ ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ๋กœ ์“ฐ์ด์ง€ ์•Š์„ ์ด์œ ๊ฐ€ ์—†์„ ๊ฒƒ์ด๋‹ค. ์‹ค์ œ๋กœ Si3N4์˜ Si์™€ N์˜ ๋น„์œจ์€ ๋ฐ•๋ง‰๋‚ด์˜ ๊ฒฐํ•จ์„ ์œ ๋„ํ•˜๊ธฐ์œ„ํ•ด ์†์‰ฝ๊ฒŒ ์กฐ์ ˆ ๊ฐ€๋Šฅํ•˜๋ฉฐ, NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์—์„œ์˜ charge trap layer๋กœ์„œ๋„ ์ด๋ฏธ ๋„๋ฆฌ ์“ฐ์—ฌ์ง€๊ณ  ์žˆ๋‹ค. ๊ฒฐํ•จ์˜ ์ƒ์„ฑ์œผ๋กœ ์ธํ•œ ์ผ๋ช…, ์ „๋„ ํ•„๋ผ๋ฉ˜ํŠธ๋Š” ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ์˜ ์ฃผ๋œ ๊ฑฐ๋™์ด๋‹ค. ๋”ฐ๋ผ์„œ N ์›์†Œ๊ฐ€ ๋ถ€์กฑํ•œ Si3N4 ์ฆ‰ Si3N4-x๋Š” ์ €ํ•ญ๋ณ€ํ™” ๋ฌผ์งˆ๋กœ ์‚ฌ์šฉ ๊ฐ€๋Šฅ ํ•  ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฒซ๋ฒˆ์งธ ํŒŒํŠธ์—์„œ๋Š” N์›์†Œ์˜ ๋ถ€์กฑํ•œ ์ •๋„์— ๋”ฐ๋ฅธ Si3N4-x์˜ ์–‘๊ทน์„ฑ ์ €ํ•ญ๋ณ€ํ™” ํŠน์„ฑ (BRS) ์„ ์กฐ์‚ฌํ•˜๊ธฐ์œ„ํ•ด Si3N4-x๋ฐ•๋ง‰์˜ plasma enhanced chemical vapor deposition ๊ณผ์ • ์ค‘์— ์‚ฌ์šฉ๋˜๋Š” NH3๊ฐ€์Šค ์œ ๋Ÿ‰์„ ๋‹ค์–‘ํ•˜๊ฒŒ ํ•˜์—ฌ Pt/Si3N4-x/TiN ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. X-ray photo-electron spectroscopy ๋ถ„์„์„ ํ†ตํ•ด, NH3 ๊ฐ€์Šค ์œ ๋Ÿ‰์ด ๊ฐ์†Œํ•จ์— ๋”ฐ๋ผ Si3N4-x ๋ฐ•๋ง‰๋‚ด์˜ ์งˆ์†Œ ์›์†Œ์˜ ๋ถ„์œจ์ด ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ  NH3๊ฐ€์Šค ์œ ๋Ÿ‰์„ ์กฐ์ ˆํ•จ์œผ๋กœ์„œ ์งˆ์†Œ ์›์†Œ์˜ ๋ถ€์กฑํ•œ ์ •๋„๋ฅผ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ์•„๋‚ด์—ˆ๋‹ค. ์งˆ์†Œ ์›์†Œ์˜ ๋ถ€์กฑํ•œ ์ •๋„๋Š” Si3N4-x์˜ ์ „๋ฅ˜-์ „์•• ํŠน์„ฑ๊ณผ BRS ๊ฑฐ๋™์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ ์ตœ์ ํ™”๋œ ์กฐ๊ฑด์„ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ Pt/TiN ์ „๊ทน์˜ ์ง๋ ฌ ์„ ์ €ํ•ญ์œผ๋กœ ์ธํ•ด compliance ์ „๋ฅ˜ ์—†์ด ์•ˆ์ •์ ์ธ BRS ๊ฑฐ๋™์„ ๋ณด์ด๋Š”self-compliance ๊ฑฐ๋™์ด ๋‚˜ํƒ€๋‚จ์„ ํ™•์ธํ•˜์˜€๋‹ค. Si3N4-x ์†Œ์ž๋Š” ์ „๋ฅ˜-์ „์•• ํŠน์„ฑ์—์„œ ๋ฉด์  ์˜์กด์„ฑ์„ ๋ณด์ด์ง€ ์•Š์•˜์œผ๋ฉฐ ์ด๋Š” ์ „๋„ ํ•„๋ผ๋ฉ˜ํŠธ์˜ ํ˜•์„ฑ๊ณผ ๋Š์–ด์ง์— ์˜ํ•ด ์ €ํ•ญ ๋ณ€ํ™” ๊ฑฐ๋™์ด ๋ณด์ž„์„ ์•”์‹œํ•˜์˜€๋‹ค. ์ €ํ•ญ ๋ณ€ํ™” ๊ฑฐ๋™์˜ ์ถ”๊ฐ€์ ์ธ ๋ถ„์„์„ ์œ„ํ•ด ์ „๋ฅ˜-์ „์•• ํŠน์„ฑ์˜ ์˜จ๋„์˜์กด์„ฑ ์ธก์ •์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ „๋ฅ˜-์ „์•• ๊ทธ๋ž˜ํ”„์˜ ๋”๋ธ” ๋กœ๊ทธ ํ”Œ๋กฏ์„ ํ†ตํ•ด, ์ €์ „์••๊ณผ ๊ณ ์ „์•• ์˜์—ญ๋Œ€์—์„œ ํ”ผํŒ…์„ ํ•œ ๊ฒฐ๊ณผ 1๊ณผ 2๊ฐ€ ๊ฐ๊ฐ ๋‚˜์˜ด์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ด๋Š” childs law๋ฅผ ๋”ฐ๋ฅด๋ฉฐ Si3N4-x์˜ ์ „๋„๊ฐ€ space charge limited conduction์— ์˜ํ•ด ์ด๋ฃจ์–ด์ง์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ hopping conduction์„ ์œ„ํ•œ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€์™€ hopping๊ฑฐ๋ฆฌ๋„ ๊ณ„์‚ฐํ•˜์˜€์œผ๋ฉฐ ๋‘๊ฐœ์˜ ๊ฐ’ ๋ชจ๋‘ NH3๊ฐ€์Šค ์œ ๋Ÿ‰์ด ๊ฐ์†Œํ•จ์—๋”ฐ๋ผ, ๊ทธ๋ฆฌ๊ณ  ์Šค์œ„์นญ์ด ๋‚˜ํƒ€๋‚œ ํ›„์— ๊ฐ์†Œํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์งˆ์†Œ ์›์†Œ๊ฐ€ TiN ํ•˜๋ถ€์ „๊ทน์œผ๋กœ ๋ฐ€๋ ค๋‚˜๊ฐ€๋ฉฐ trap๋“ค์ด ๋ญ‰์นจ์œผ๋กœ ์ธํ•ด ์ „๋„ ํ•„๋ผ๋ฉ˜ํŠธ๊ฐ€ ํ˜•์„ฑ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ดˆ๊ธฐ Si3N4-x์˜ trap ์ƒํƒœ๊ฐ€ ์ „๋„ ํ•„๋ผ๋ฉ˜ํŠธ ํ˜•์„ฑ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด ์†Œ์ž๋Š” ๋ง๊ฐ€์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ฒซ ๋ฒˆ์งธ ํŒŒํŠธ์—์„œ์˜ Si3N4-x ๋ฐ•๋ง‰์˜ BRS ํŠน์„ฑ์— ๊ธฐ์ดˆํ•˜์—ฌ, Al2O3 ๊ณ„๋ฉด ์žฅ๋ฒฝ ์ธต์ด ์ตœ์ ํ™” ๋œ ์ฆ์ฐฉ ์กฐ๊ฑด์œผ๋กœ ๋งŒ๋“ค์–ด์ง„ Si3N3.0์ธต๊ณผ Pt ์ƒ๋ถ€ ์ „๊ทน ์‚ฌ์ด์— ์‚ฝ์ž…๋˜์œผ๋ฉฐ ๊ทธ ๊ฒฐ๊ณผ ๋‹ค์–‘ํ•œ Al2O3 ๋ง‰ ๋‘๊ป˜ (3-5 nm)๋ฅผ ๊ฐ–๋Š” Pt/Al2O3/Si3N3.0/Ti ์†Œ์ž๋ฅผ ํ˜•์„ฑ ํ•˜์˜€๋‹ค. TEM ์ด๋ฏธ์ง€์™€ EDS ๋งคํ•‘ ์ด๋ฏธ์ง€๋กœ Al2O3์™€ Si3N3.0 ์ธต ์‚ฌ์ด์˜ ๋ถ„๋ฆฌ๋ฅผ ํ™•์ธ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. Pt/Si3N3.0/Ti ์†Œ์ž๋Š” ํ•„๋ผ๋ฉ˜ํŠธ์˜ BRS ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์ง€๋งŒ, Pt/Al2O3/Si3N3.0/Ti ์†Œ์ž๋Š” forming-freeํŠน์„ฑ์„ ๊ฐ–๋Š” e-BRSํŠน์„ฑ์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋˜ํ•œ ์ด ์†Œ์ž๋Š” ์ž์ฒด ์ •๋ฅ˜ ํŠน์„ฑ ๋ฐ ๋น„์„ ํ˜•์„ฑ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ํŠน์„ฑ์€ ํฐ ์‚ฌ์ด์ฆˆ์˜ ํฌ๋กœ์Šค๋ฐ” ์–ด๋ ˆ์ด (CBA) ๊ตฌ์กฐ์—์„œ ๋ˆ„์„ค์ „๋ฅ˜๋ฅผ ๋ฐฉ์ง€ํ•˜๋Š”๋ฐ ๋„์›€์ด ๋˜๋ฉฐ, Al2O3์ธต์˜ ๋†’์€ ๋ฐด๋“œ ๊ฐญ์œผ๋กœ ์ธํ•ด ์ด๋Ÿฌํ•œ ํŠน์„ฑ์ด ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋œ๋‹ค. ์žฅ์น˜๋Š” HRS ๋ฐ LRS์—์„œ ๋ฉด์  ์˜์กด์„ฑ์„ ๋ณด์—ฌ ์ฃผ์—ˆ์œผ๋ฉฐ ์ด๋Š” ๊ณ„๋ฉด์˜ e-BRS ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ง€๋ฐฐ ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ ์˜จ๋„ ์˜์กด์„ฑ ๋ถ„์„์„ ํ†ตํ•ด Si3N3.0 ์ธต์— ์กด์žฌํ•˜๋Š” trap site์˜ trap ๊นŠ์ด ๋ฐ Pt์™€ Al2O3 ์‚ฌ์ด์˜ ์‡ผํŠธํ‚ค ๋ฐฐ๋ฆฌ์–ด ๋†’์ด๋ฅผ ์•Œ์•„๋‚ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ํ•ด๋‹น ์†Œ์ž๋Š” Si3N3.0 ์ €ํ•ญ ๋ณ€ํ™”์ธต์˜ trap site์—์„œ ์ „์ž๋ฅผ ํŠธ๋ž˜ํ•‘ / ๋””ํŠธ๋žฉํ•‘ํ•˜์—ฌ ์ €ํ•ญ ์ƒํƒœ๋ฅผ ๋ฐ”๊พผ๋‹ค๋Š” ๊ฑธ ํ™•์ธ ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ฐ€๋Šฅํ•œ ์ตœ๋Œ€ CBA ํฌ๊ธฐ๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด HSPICE ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ ์•ฝ 106 ์˜ ๊ฐ’์„ ์–ป์„ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ๋กœ CBA ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•  ๋•Œ, ์„ ํƒ๋œ ์…€์˜ ์ ์ ˆํ•œ ๊ตฌ๋™์„ ์œ„ํ•ด์„  ๋ˆ„์„ค ์ „๋ฅ˜๊ฐ€ ๊ฐ€์žฅ ํฐ ๋ฌธ์ œ์ด๋‹ค. ๋ˆ„์„ค ์ „๋ฅ˜๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด, ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ ์‚ฌ์šฉ์€ ํ•˜๋‚˜์˜ ํ•ด๊ฒฐ์ฑ…์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ƒ๋Œ€์ ์œผ๋กœ ํฐ ์‚ฌ์ด์ฆˆ์˜ ํŠธ๋žœ์ง€์Šคํ„ฐ ์†Œ์ž๋Š” ์ €ํ•ญ ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ์˜ ๊ณ ์ง‘์ ์„ ๋ฐฉํ•ดํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ์—์„œ ๊ฐ„๋‹จํ•œ MIM๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ์„ ํƒ์†Œ์ž๋Š” ๋ˆ„์„ค์ „๋ฅ˜๋ฅผ ์ถฉ๋ถ„ํžˆ ์–ต์ œํ•˜๋ฉด์„œ ํŠธ๋žœ์ง€์Šคํ„ฐ๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ์„๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ 1 ์„ ํƒ์†Œ์ž 1 ์ €ํ•ญ๋ณ€ํ™” ๋ฌผ์งˆ์˜ ์ ์ธต๋œ ์†Œ์ž (1S1R) ์—์„œ ์ƒ๊ธธ ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์ ์— ๋Œ€ํ•ด ์กฐ์‚ฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์„ธ๋ฒˆ์งธ ํŒŒํŠธ์—์„œ๋Š”, ์ฒซ๋ฒˆ์งธ ํŒŒํŠธ์—์„œ์˜ Pt/Si3N4-x/TiN ์ €ํ•ญ ๋ณ€ํ™” ์†Œ์ž์™€ ALD TiO2 ๋ฐ•๋ง‰์„ ์‚ฌ์šฉํ•œ Pt/TiO2/TiN ์„ ํƒ์†Œ์ž๋ฅผ ์ด์šฉํ•˜์—ฌ 1S1R์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ํ•ด๋‹น ์†Œ์ž๋Š” lift-off ๊ณต์ •์„ ํ†ตํ•ด ๋‹จ์ผ์†Œ์ž, 2 by 2 ๊ทธ๋ฆฌ๊ณ  9 by 9 CBA ํŒจํ„ด์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ๊ฐ๊ฐ์˜ ์†Œ์ž๋ฅผ ๋น„๊ตํ•˜๋ฉด์„œ ์„ ํƒ์†Œ์ž์™€ ์ €ํ•ญ๋ณ€ํ™” ์ธต์˜ ์ตœ์ ํ™”๋œ ์ฆ์ฐฉ ์กฐ๊ฑด์„ ์ฐพ์•„๋‚ด์—ˆ๊ณ  ๊ทน๋ณตํ•ด์•ผํ•  ์ถ”๊ฐ€์ ์ธ ๋ฌธ์ œ๋˜ํ•œ ํ™•์ธ ํ•˜์˜€๋‹ค.1. Introduction 16 1.1. Resistive switching Random Access Memory 16 1.2. Research scope and objective 20 2. Bipolar resistive switching property of Si3N4-x thin film depending on N-deficiency 22 2.1. Introduction 22 2.2. Experimental 25 2.3. Results and Discussions 26 2.4. Conclusion 45 3. Area-type electronic bipolar resistive switching of Pt/Al2O3/Si3N3.0/Ti with forming free, self-rectification, and nonlinearity characteristics 46 3.1. Introduction 46 3.2. Experimental 49 3.3. Results and Discussions 51 3.4. Conclusion 69 4. 1S1R property with Pt/Si3N4-x/TiN resistive switching device and Pt/TiO2/TiN selector device 71 4.1. Introduction 71 4.2. Experimental 73 4.3. Results and Discussions 74 4.4. Conclusion 81 5. Bibliography 82 6. Conclusion 88 List of publications 92 Abstract (in Korean) 104Docto

    ์‚ฐํ™”๋ฌผ/์งˆํ™”๋ฌผ ๋ณตํ•ฉ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•œ ์œ ์—ฐํ•œ ์ „์ž ๋ฐ ๊ด‘์ „์†Œ์ž ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌํ•™๊ณผ, 2020. 8. ์ด๊ทœ์ฒ .๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ฐ•ํ•˜๊ณ  ์œ ์—ฐํ•œ ๊ทธ๋ž˜ํ•€๊ณผ ๊ฐ™์€ 2์ฐจ์› ์†Œ์žฌ์œ„์— ์„ฑ์žฅ๋œ ๋ฌด๊ธฐ๋ฌผ ๋‚˜๋…ธ์†Œ์žฌ๋กœ ๊ตฌ์„ฑ๋œ ๋ณตํ•ฉ์ฐจ์› ๋‚˜๋…ธ์†Œ์žฌ๋Š” ์œ ์—ฐํ•œ ๋Œ€๋ฉด์  ์ „์ž ๋ฐ ๊ด‘์ „์†Œ์ž๋กœ์˜ ์‘์šฉ์— ์ ํ•ฉํ•œ ํ˜•ํƒœ์˜ ์†Œ์žฌ ๊ตฌ์กฐ์ด๋ฉฐ, ์‹ค์ œ๋กœ ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์œ ์—ฐํ•œ ์ˆ˜์งํ˜• ์ „๊ณ„ํšจ๊ณผ ํŠธ๋žœ์ง€์Šคํ„ฐ ๋ฐ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ ๋“ฑ์„ ํฌํ•จํ•œ ๋งŽ์€ ์†Œ์ž๋“ค์ด ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ฒ˜๋ฆฌ๋œ ์ •๋ณด๋ฅผ ์ €์žฅํ•˜๊ณ  ์ด๋ฅผ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ „๋‹ฌํ•˜๋Š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด์„  ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ์†Œ์ž๋“ค์ด ๊ฐœ๋ฐœ๋˜์–ด์•ผ ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์ด๋Ÿฌํ•œ ์ˆ˜์š”๋ฅผ ์ถฉ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด, ๋ณตํ•ฉ์ฐจ์› ๋‚˜๋…ธ์†Œ์žฌ ๊ธฐ๋ฐ˜ ์œ ์—ฐํ•œ ๋Œ€๋ฉด์  ์ฐจ์„ธ๋Œ€ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ์œ ์—ฐํ•œ ๋Œ€๋ฉด์  ๋‹คํŒŒ์žฅ ๋ฐœ๊ด‘ ๋‹ค์ด์˜ค๋“œ์˜ ๊ฐœ๋ฐœ์— ๋Œ€ํ•˜์—ฌ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๋ณตํ•ฉ์ฐจ์› ๋‚˜๋…ธ์†Œ์žฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฐจ์„ธ๋Œ€ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ˆ์ผˆ ์‚ฐํ™”๋ฌผ ๋ฐ ์งˆํ™”๊ฐˆ๋ฅจ ์ด์ข…๊ตฌ์กฐ๋กœ ๊ตฌ์„ฑ๋œ ๋งˆ์ดํฌ๋กœ๋””์Šคํฌ ํ˜•ํƒœ์˜ ์†Œ์žฌ๋ฅผ ๊ทธ๋ž˜ํ•€ ์œ„์— ์„ฑ์žฅํ•˜๊ณ , ๋ณธ ์†Œ์žฌ์˜ ์ƒ๋ถ€ ๋ฐ ํ•˜๋ถ€์— ์ „๊ทน์„ ์ฆ์ฐฉํ•˜์—ฌ ์ „๊ทน/์‚ฐํ™”๋ฌผ/์ „๊ทน์œผ๋กœ ๊ตฌ์„ฑ๋œ ํ˜•ํƒœ์˜ ์‚ฐํ™”๋ฌผ ๊ธฐ๋ฐ˜ ์ €ํ•ญ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ œ์กฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋งˆ์ดํฌ๋กœ๋””์Šคํฌ ํ˜•ํƒœ์˜ ์†Œ์žฌ์˜ ์‚ฌ์ด๊ฐ€ ๋–จ์–ด์ ธ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ์†Œ์ž๋ฅผ ์œ ์—ฐํ•œ ํ˜•ํƒœ์—์„œ ๊ตฌํ˜„ํ•˜๊ฑฐ๋‚˜ 1,000 ํšŒ ์ด์ƒ์˜ ๊ตฌ๋ถ€๋ฆผ ๋’ค ์†Œ์ž์˜ ํŠน์„ฑ์„ ํŒŒ์•…ํ•  ๋•Œ ์†Œ์ž ํŠน์„ฑ์˜ ํฐ ๋ณ€ํ™” ์—†์ด ์ •๋ณด๊ฐ€ ์•ˆ์ •์ ์œผ๋กœ ์ €์žฅ๋˜๋Š” ํŠน์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๋‹ˆ์ผˆ ์‚ฐํ™”๋ฌผ ๊ธฐ๋ฐ˜ ์ €ํ•ญ๋ณ€ํ™”๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๋™์ž‘ํ•  ๋•Œ, ์‚ฐํ™”๋ฌผ ๋‚ด๋ถ€์— ์ „๋„์„ฑ์ด ๋†’์€ ๋‹ˆ์ผˆ ์‚ฐํ™”๋ฌผ์ด ํ•„๋ผ๋ฉ˜ํŠธ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑ๋˜๋Š”๋ฐ, ์ด๋ฅผ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ์˜ ๋‚˜๋…ธ์ „๊ทน์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์ €ํ•ญ๋ณ€ํ™”๋ฉ”๋ชจ๋ฆฌ ๋‚ด๋ถ€์˜ ํ•„๋ผ๋ฉ˜ํŠธ ์—ญํ•™์— ๋Œ€ํ•ด์„œ๋„ ์—ฐ๊ตฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•œํŽธ, ์ €์žฅ๋œ ์ •๋ณด๋ฅผ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ •ํ™•ํ•˜๊ฒŒ ์ „๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด์„  ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ์˜ ํ•œ ํ”ฝ์…€ (pixel) ์˜ ํฌ๊ธฐ๊ฐ€ ์ˆ˜ ๋งˆ์ดํฌ๋กœ๋ฏธํ„ฐ ์ดํ•˜๋กœ ์ž‘์•„์•ผํ•˜๊ณ , ๋นจ๊ฐ•, ์ดˆ๋ก, ํŒŒ๋ž‘์ƒ‰์˜ ๋น›์„ ๋ฐœ๊ด‘ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๋Š”๋ฐ ์ด๋Š” ํ˜„์žฌ ์ด์šฉ๋˜๊ณ  ์žˆ๋Š” ํ”ฝ ์•ค ํ”Œ๋ ˆ์ด์Šค (pick and place) ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ์ œ์กฐํ•  ๋•Œ ์†Œ์ž ์ œ์กฐ์˜ ํšจ์œจ์„ฑ ๋ฐ ์žฌํ˜„์„ฑ์— ํ•œ๊ณ„๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์˜ ํ•˜๋‚˜๋กœ, ๋‹ค์–‘ํ•œ ์ƒ‰์„ ๋ฐœ๊ด‘ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ๋ฅผ ํ•˜๋‚˜์˜ ๊ทธ๋ž˜ํ•€ ๊ธฐํŒ์œ„์— ๋™์‹œ์— ์„ฑ์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ  ์ด๋ฅผ ์œ ์—ฐํ•œ ๋‹คํŒŒ์žฅ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์†Œ์ž๋ฅผ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋ชจ์–‘์˜ ์งˆํ™”๊ฐˆ๋ฅจ ๋ฐ ์‚ฐํ™”์•„์—ฐ ์ด์ข…๊ตฌ์กฐ๋ฅผ ๊ทธ๋ž˜ํ•€ ์œ„์— ์„ฑ์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋Š”๋ฐ, ์‚ฐํ™”์•„์—ฐ ๋‚˜๋…ธํŠœ๋ธŒ์˜ ๊ฐ„๊ฒฉ์„ ๋‹ค๋ฅด๊ฒŒ ์„ค์ •ํ•˜์—ฌ ์„ฑ์žฅํ•˜๊ณ  ์ด ์œ„์— ์งˆํ™”๊ฐˆ๋ฅจ์„ ์„ฑ์žฅํ•˜๋ฉด ์งˆํ™”๊ฐˆ๋ฅจ์˜ ์„ฑ์žฅ๋ฅ ์ด ๋‚˜๋…ธํŠœ๋ธŒ์˜ ๊ฐ„๊ฒฉ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ํ˜•์„ฑ๋˜์–ด ๋‹ค๋ฅธ ๋ชจ์–‘์˜ ๋งˆ์ดํฌ๋กœ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ๊ฐ€ ์„ฑ์žฅ๋˜๋Š” ๊ฒƒ์„ ์ด์šฉํ•˜์˜€๋‹ค. ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ์— ๊ฐ™์€ ์ „์••์„ ๊ฐ€ํ•ด์คฌ์„ ๋•Œ ์„ฑ์žฅ๋ฅ ์˜ ์ฐจ์ด๋กœ ์ธํ•œ ๋‹ค์ค‘ ์–‘์ž ์šฐ๋ฌผ ์กฐ์„ฑ์˜ ๋ณ€ํ™” ๋ฐ ์†Œ์žฌ ๋‚ด๋ถ€์˜ ๊ฒฐํ•จ์œผ๋กœ ์ธํ•ด ๊ฐ๊ธฐ ๋‹ค๋ฅธ ํŒŒ์žฅ์˜ ์ƒ‰์ด ๋ฐœ๊ด‘๋˜๋Š” ํŠน์„ฑ์„ ํ™•์ธํ•˜์˜€๊ณ , ์œ ์—ฐํ•œ ํ˜•ํƒœ์—์„œ๋„ ์•ˆ์ •์ ์œผ๋กœ ๋ฐœ๊ด‘ํŠน์„ฑ์ด ์œ ์ง€๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.The hybrid dimensional nanostructrures composed of high-quality inorganic nanostructures grown directly on two-dimensional (2D) materials such as graphene offers a novel material system for flexible electronics and optoelectronics. Indeed, the hybrid dimensional nanostructures have been fabricated to flexible electronics/optoelectronics and attracted many attentions with their excellent performances. Despite of the demonstration of flexible devices using the hybrid dimensional nanostructures, there remains a lot of devices that need to be further investigated in order to realize future electronics/optoelectronics such as wearable devices. This thesis presents the hybrid material system composed of oxide/nitrid heterostructures grown on graphene films and their applications on flexible non-volatile memory and flexible multi-color LEDs.Abstract Chapter 1. General Introduction 1 1.1. Motivation: Potentials of hybrid dimensional nanomaterials for flexible electronic/optoelectronic device applications 1 1.2. Thesis objective and approach 3 1.3. Thesis outline 4 Chapter 2. Literature survey 6 2.1. Oxide-based flexible electronics 6 2.1.1. Current status of oxide-based electronics 8 2.1.2. Next generation oxide-based electronics: ReRAM 12 2.1.3. Flexible ReRAM 17 2.1.3.1. ReRAM on plastic substrates 17 2.1.3.2. Transfer of ReRAM layers on flexible substrates 20 2.2. Nitride-based flexible optoelectronics 23 2.2.1. Current status of nitride-based optoelectronics 23 2.2.2. Next generation nitride-based optoelectronics: flexible & high-resolution LED 29 2.3. Hybrid dimensional material systems for flexible electronics and Optoelectronics 34 2.3.1. Growth of oxide & nitride nano-/micro-structures on graphene layers35 2.3.2. Functional devices using hybrid dimensional material Systems 45 2.3.2.1. Electronics 47 2.3.2.2. Optoelectronics 50 Chapter 3. Experimental Techniques 53 3.1. Growth techniques 53 3.1.1. Metalorganic vapor-phase epitaxy system 53 3.1.1.1. Gas delivery system 53 3.1.1.2. Reactor and temperature controller 55 3.1.1.3. Exhaust disposal system and low pressure pumping System 56 3.2. Structural characterization 57 3.2.1. Morphology inspection 57 3.2.2. Crystallographic and microstructural investigations 57 3.2.2.1. Transmission electron microscopy 57 3.3. Optical characterization 58 3.3.1. Photoluminescence & electroluminescence spectroscopy 58 3.4. Electrical characterization 59 3.4.1. Current-Voltage measurement 59 Chapter 4. Flexible ReRAM based on hybrid dimensional material systems 60 4.1. Introduction 60 4 .2. Growth of oxide/nitride hybrid structures on graphene layers 61 4.2.1. ZnO nanowall growth CVD-graphene films 62 4.2.2. Growth of GaN microdisk arrays 62 4.2.3. Growth of resistive switching layers 65 4.4. Fabrication of flexible ReRAM 65 4.5. Resistive switching characteristics 69 4.6. Discussion for the mechanism of resistive switchings using oxide/nitride hybrid structures 78 4.6.1. Fabrication of ReRAM/LED hybrid device 80 4.6.2. Real-time imaging of resistive switching dynamics 85 4.7. Summary 99 Chapter 5. Monolithic integration of morphology controlled GaN microstructures on graphene films for flexible & multi-color LEDs 101 5.1. Introduction 101 5.2. Morphology control of GaN microstructures on graphene films 103 5.2.1. Growth parameter: spacing & time 103 5.2.2. Growth behavior analysis 109 5.3. Fabrication of LEDs on graphene films 115 5.4. EL and electrical characteristics 118 5.5. High temperature operations of flexible LEDs 125 5.6. Summary 134 Chapter 6. Conclusion and Outlook 136 6.1. Conclusion 136 6.2. Future works and outlook 141 References 143 Abstract (Korean) 151Docto

    Memristive Non-Volatile Memory Based on Graphene Materials

    Get PDF
    Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Youngโ€™s modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 ร— 105 cm2โˆ™Vโˆ’1โˆ™sโˆ’1), and high thermal (5000 Wmโˆ’1โˆ™Kโˆ’1) and superior electrical conductivity (1.0 ร— 106 Sโˆ™mโˆ’1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices

    Expanding the toolbox of atomic scale processing

    Get PDF
    • โ€ฆ
    corecore