2,131 research outputs found

    Unfolding-Based Process Discovery

    Get PDF
    This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.Comment: This is the unabridged version of a paper with the same title appearead at the proceedings of ATVA 201

    The Ecce and Logen Partial Evaluators and their Web Interfaces

    No full text
    We present Ecce and Logen, two partial evaluators for Prolog using the online and offline approach respectively. We briefly present the foundations of these tools and discuss various applications. We also present new implementations of these tools, carried out in Ciao Prolog. In addition to a command-line interface new user-friendly web interfaces were developed. These enable non-expert users to specialise logic programs using a web browser, without the need for a local installation

    Star-topology decoupled state-space search in AI planning and model checking

    Get PDF
    State-space search is a widely employed concept in many areas of computer science. The well-known state explosion problem, however, imposes a severe limitation to the effective implementation of search in state spaces that are exponential in the size of a compact system description, which captures the state-transition semantics. Decoupled state-space search, decoupled search for short, is a novel approach to tackle the state explosion. It decomposes the system such that the dependencies between components take the form of a star topology with a center and several leaf components. Decoupled search exploits that the leaves in that topology are conditionally independent. Such independence naturally arises in many kinds of factored model representations, where the overall state space results from the product of several system components. In this work, we introduce decoupled search in the context of artificial intelligence planning and formal verification using model checking. Building on common formalisms, we develop the concept of the decoupled state space and prove its correctness with respect to capturing reachability of the underlying model exactly. This allows us to connect decoupled search to any search algorithm, and, important for planning, adapt any heuristic function to the decoupled state representation. Such heuristics then guide the search towards states that satisfy a desired goal condition. In model checking, we address the problems of verifying safety properties, which express system states that must never occur, and liveness properties, that must hold in any infinite system execution. Many approaches have been proposed in the past to tackle the state explosion problem. Most prominently partial-order reduction, symmetry breaking, Petri-net unfolding, and symbolic state representations. Like decoupled search, all of these are capable of exponentially reducing the search effort, either by pruning part of the state space (the former two), or by representing large state sets compactly (the latter two). For all these techniques, we prove that decoupled search can be exponentially more efficient, confirming that it is indeed a novel concept that exploits model properties in a unique way. Given such orthogonality, we combine decoupled search with several complementary methods. Empirically, we show that decoupled search favourably compares to state-of-the-art planners in common algorithmic planning problems using standard benchmarks. In model checking, decoupled search outperforms well-established tools, both in the context of the verification of safety and liveness properties.Die Zustandsraumsuche ist ein weit verbreitetes Konzept in vielen Bereichen der Informatik, deren effektive Anwendung jedoch durch das Problem der Zustandsexplosion deutlich erschwert wird. Die Zustandsexplosion ist dadurch charakterisiert dass kompakte Systemmodelle exponentiell große Zustandsräume beschreiben. Entkoppelte Zustandsraumsuche (entkoppelte Suche) beschreibt einen neuartigen Ansatz der Zustandsexplosion entgegenzuwirken indem die Struktur des Modells, insbesondere die bedingte Unabhängigkeit von Systemkomponenten in einer Sterntopologie, ausgenutzt wird. Diese Unabhängigkeit ergibt sich bei vielen faktorisierten Modellen deren Zustandsraum sich aus dem Produkt mehrerer Komponenten zusammensetzt. In dieser Arbeit wird die entkoppelte Suche in der Planung, als Teil der Künstlichen Intelligenz, und der Verifikation mittels Modellprüfung eingeführt. In etablierten Formalismen wird das Konzept des entkoppelten Zustandsraums entwickelt und dessen Korrektheit bezüglich der exakten Erfassung der Erreichbarkeit von Modellzuständen bewiesen. Dies ermöglicht die Kombination der entkoppelten Suche mit beliebigen Suchalgorithmen. Wichtig für die Planung ist zudem die Nutzung von Heuristiken, die die Suche zu Zuständen führen, die eine gewünschte Zielbedingung erfüllen, mit der entkoppelten Zustandsdarstellung. Im Teil zur Modellprüfung wird die Verifikation von Sicherheits- sowie Lebendigkeitseigenschaften betrachtet, die unerwünschte Zustände, bzw. Eigenschaften, die bei unendlicher Systemausführung gelten müssen, beschreiben. Es existieren diverse Ansätze um die Zustandsexplosion anzugehen. Am bekanntesten sind die Reduktion partieller Ordnung, Symmetriereduktion, Entfaltung von Petri-Netzen und symbolische Suche. Diese können, wie die entkoppelte Suche, den Suchaufwand exponentiell reduzieren. Dies geschieht durch Beschneidung eines Teils des Zustandsraums, oder durch die kompakte Darstellung großer Zustandsmengen. Für diese Verfahren wird bewiesen, dass die entkoppelte Suche exponentiell effizienter sein kann. Dies belegt dass es sich um ein neuartiges Konzept handelt, das sich auf eigene Art der Modelleigenschaften bedient. Auf Basis dieser Beobachtung werden, mit Ausnahme der Entfaltung, Kombinationen mit entkoppelter Suche entwickelt. Empirisch kann die entkoppelte Suche im Vergleich zu modernen Planern zu deutlichen Vorteilen führen. In der Modellprüfung werden, sowohl bei der Überprüfung von Sicherheit-, als auch Lebendigkeitseigenschaften, etablierte Programme übertroffen.Deutsche Forschungsgesellschaft; Star-Topology Decoupled State Space Searc

    Approximate computation of alignments of business processes through relaxation labelling

    Get PDF
    A fundamental problem in conformance checking is aligning event data with process models. Unfortunately, existing techniques for this task are either complex, or can only be applicable to restricted classes of models. This in practice means that for large inputs, current techniques often fail to produce a result. In this paper we propose a method to approximate alignments for unconstrained process models, which relies on the use of relaxation labelling techniques on top of a partial order representation of the process model. The implementation on the proposed technique achieves a speed-up of several orders of magnitude with respect to the approaches in the literature (either optimal or approximate), often with a reasonable trade-off on the cost of the obtained alignment.Peer ReviewedPostprint (author's final draft

    Incorporating negative information to process discovery of complex systems

    Get PDF
    The discovery of a formal process model from event logs describing real process executions is a challenging problem that has been studied from several angles. Most of the contributions consider the extraction of a model as a one-class supervised learning problem where only a set of process instances is available. Moreover, the majority of techniques cannot generate complex models, a crucial feature in some areas like manufacturing. In this paper we present a fresh look at process discovery where undesired process behaviors can also be taken into account. This feature may be crucial for deriving process models which are less complex, fitting and precise, but also good on generalizing the right behavior underlying an event log. The technique is based on the theory of convex polyhedra and satisfiability modulo theory (SMT) and can be combined with other process discovery approach as a post processing step to further simplify complex models. We show in detail how to apply the proposed technique in combination with a recent method that uses numerical abstract domains. Experiments performed in a new prototype implementation show the effectiveness of the technique and the ability to be combined with other discovery techniques.Peer ReviewedPostprint (author's final draft
    corecore