
Approximate Computation of Alignments of Business
Processes through Relaxation Labelling

Lluı́s Padró and Josep Carmona

Computer Science Department
Universitat Politècnica de Catalunya

Barcelona, Spain.
{padro,jcarmona}@cs.upc.edu

Abstract. A fundamental problem in conformance checking is aligning event
data with process models. Unfortunately, available techniques for this task are
either very complex, or can only be applicable to very restricted classes of mod-
els. This in practice means that for large inputs, current techniques often fail to
produce a result. In this paper we propose a method to approximate alignments
for unconstrained process models, which relies on the use of relaxation labelling
techniques on top of a partial order representation of the input process model.
The prototype implementation on the proposed technique achieves a speed-up of
several orders of magnitude with respect to available approaches in the literature
(either optimal or approximate), often with a reasonable trade-off on the cost of
the obtained alignment.

1 Introduction

Conformance checking is expected to be the fastest growing segment in process min-
ing for the next years1. The main reason for this forthcoming industrial interest is the
promise of having event data and process models aligned, thus increasing the value of
process models within organizations [5]. On its core, most conformance checking tech-
niques rely on the notion of alignment [1]: given an observed trace σ, query the model
to obtain the run γ most similar to σ. The computation of alignments is a computational
challenge, since it encompasses the exploration of the model state space, an object that
is worst-case exponential with respect to the size of the model or the trace.

Consequently, the process mining field is facing the following paradox: whilst there
exist techniques to discover process models arbitrarily large, most of the existing align-
ment computation techniques will not be able to handle such models. This hampers the
widespread applicability of conformance checking in industrial scenearios.

In some situations, one can live with approximations: For instance, when the model
must be enhanced with the information existing in the event log (e.g., performance,
decision point analysis), or when one aims to animate the model by replaying the log
on top of it (two of the most celebrated functionalities of commercial process min-
ing tools). Examples of approximations are token-replay techniques [13], which do not

1 https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-
254139591.html

Padró, L.; Carmona, J. Approximate computation of alignments of business processes through relaxation labelling. A: International Conference
on Business Process Management. "Business Process Management, 17th International Conference, BPM 2019: Vienna, Austria, September 1-6,
2019: proceedings". Berlín: Springer, 2019, p. 250-267.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-26619-6_17

guarantee optimality, or the techniques in [16, 15], which do not guarantee replayability
in general, but that significantly alleviate the complexity of the alignment computation.
The method presented in this paper is of this latter type.

We propose a method that is applied on a partial order representation of the pro-
cess model [7]. A pre-processing step is then done once on the partial order, to gather
information (shortest enabling paths between event activations and computing the be-
havioral profiles) that is used for aligning traces. We assume this is a plausible scenario
in many situations, where the model is well-known and it is admissible to have some
pre-processing before of aligning traces. For computing alignments, the method uses
Relaxation Labeling algorithm to map events in each trace to nodes in the partial order.
On a training phase, the weights that guide the relaxation labelling problem are tuned.
Once this information is obtained, the approach is ready to be applied in the second
phase. It is remarkable that several modes can be considered corresponding to different
objectives, e.g., strive for replayability, optimality, or a weighted combination.

Experimental results computed over existing benchmarks show promising speedups
in computation time, while still being able to derive reasonable approximations when
compared to reference techniques.

The paper is organized as follows: next section provides related work for the prob-
lem considered in this paper. Then in Section 3 we introduce the background of the
paper, necessary for understanding the main content in Section 4. Experimental evalu-
ation and tool support is provide in Section 5, before concluding the paper.

2 Related Work

The work in [1] proposed the notion of alignment, and developed a technique based on
A∗ to compute optimal alignments for a particular class of process models. Improve-
ments of this approach have been presented in [19]. Alternatives to A∗ have appeared
very recently: in the approach presented in [6], the alignment problem is mapped as an
automated planning instance. Automata-based techniques have also appeared [12, 10].

The work in [16] presented the notion of approximate alignment to alleviate the
computational demands by proposing a recursive paradigm on the basis of structural
theory of Petri nets. In spite of resource efficiency, the solution is not guaranteed to
be executable. A follow-up work of [16] is presented in [20], which proposes a trade-
off between complexity and optimality of solutions, and guarantees executable results.
The technique in [15] presents a framework to reduce a process model and the event
log accordingly, with the goal to alleviate the computation of alignments. The obtained
alignment, called macro-alignment since some of the positions are high-level elements,
is expanded based on the information gathered during the initial reduction. Techniques
using local search have recently been also proposed [14]. Decompositional techniques
have been presented [11, 18] that instead of computing optimal alignments, they focus
on the decisional problem of whereas a given trace fits or not a process model.

Recently, two different approaches have appeared: the work in [3] proposes using
binary decision diagrams to alleviate the computation of alignments. The work in [4],
which has the goal of maximizing the synchronous moves of the computed alignments,
uses a pre-processing step on the model.

2

3 Preliminaries

3.1 Petri nets and Unfoldings

Definition 1 (Process Model (Labeled Petri Net)). A Process Model defined by a la-
beled Petri net system (or simply Petri net) consists of a tupleN = 〈P, T, F,m0,mf , Σ, λ〉,
where P is the set of places, T is the set of transitions (with P ∩ T = ∅), F ⊆
(P × T) ∪ (T × P) is the flow relation, m0 is the initial marking, mf is the final
marking, Σ is an alphabet of actions, and λ : T → Σ ∪ {τ} labels every transition
with an action or as silent.

The semantics of Petri nets is given in terms of firing sequences. Given a node x ∈
P ∪ T , we define its pre-set •x def

= {y ∈ P ∪ T | (x, y) ∈ F} and its post-set x• def
=

{y ∈ P ∪ T | (y, x) ∈ F}. A marking is an assignment of a non-negative integer to
each place. A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place in •t
and putting a token to each place in t•. A marking m′ is reachable from m if there is
a sequence of firings 〈t1 . . . tn〉 that transforms m into m′, denoted by m[t1 . . . tn〉m′.
The set of reachable markings from m0 is denoted by [m0〉, and form a graph called
reachability graph. A Petri net is k-bounded if no marking in [m0〉 assigns more than
k tokens to any place. A Petri net is safe if it is 1-bounded. In this paper we assume
safe Petri nets. A firing sequence u = 〈t1 . . . tn〉 is called a run if it can fire from the
initial marking: m0[u〉; it is called a full run if it additionally reaches the final marking:
m0[u〉mf . We write Runs(N) for the set of full runs of Petri net N . Given a full run
u = 〈t1 . . . tn〉 ∈ Runs(N), the sequence of actions λ(u) def

= 〈λ(t1) . . . λ(tn)〉 is called
a (model) trace of N .

One of the key ingredients of this paper is to rely on an acyclic representation of the
Petri net, known as unfolding.
Unfoldings of Petri nets. A finite and complete unfolding prefix π of a Petri net N is a
finite acyclic net which implicitly represents all the reachable states ofN , together with
transitions enabled at those states. It can be obtained through unfoldingN by successive
firings of transitions, under the following assumptions: (a) for each new firing, a fresh
transition (called an event) is generated; (b) for each newly produced token a fresh place
(called a condition) is generated. The unfolding is infinite whenever N has an infinite
run; however, if N has finitely many reachable states, then the unfolding eventually
starts to repeat itself and can be truncated (by identifying a set of cut-off events) without
loss of information, yielding a finite and complete prefix. We denote by B, E and
Ecut ⊆ E the sets of conditions, events and cut-off events of the prefix, respectively.
Efficient algorithms exist for building such prefixes [8, 9, 7].

In this paper we use behavioral profiles [22] to guide the search for alignments.

Definition 2 (Behavioral Profiles [22]). Let x, y be two transitions of a Petri net N .
x � y if there exists a run ofN where x appears before of y. A pair of transitions (x, y)
of a Petri net is in at most one of the following behavioral relation:

– The strict order relation x y, if x � y and y � x
– The exclusiveness order relation x+ y, if x � y and y � x
– The interleaving order relation x‖y, if x � y and y � x

3

3.2 Process Mining

Definition 3 (Log). A log over an alphabet Σ is a finite set of words σ ∈ Σ∗, called
log traces.

A crucial element for this paper is the notion of alignment [1], that relates modeled
and observed behavior. In this paper we will use a simple definition of this concept:

Definition 4 (Alignment). Given a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, and a log
trace σ, an alignment is a full run of the model γ ∈ Runs(N) with minimal edit distance
to σ, i.e., ∀γ′ ∈ Runs(N) : γ′ 6= γ =⇒ dist(σ, γ′) ≥ dist(σ, γ).

3.3 Relaxation Labelling Algorithm

Relaxation labelling (RL) is a generic name for a family of iterative algorithms which
perform function optimization based on local information, from a constraint satisfaction
approach. See [17] for a summary. Its most remarkable feature is that it can deal with
any kind of constraints encoding any relevant domain information.

Although other optimization algorithms could have been used (e.g. genetic algo-
rithms, simulated annealing, or even ILP) we found RL to be suitable to our purposes,
given its ability to use models based arbitrary context constraints, to deal with partial
information, and to provide a solution even when fed with inconsistent information
(though the solution will not necessarily be consistent if that is the case).
Advantages of the algorithm are:

– Its expressivity: The problem is stated in terms of assigning labels –selected from a
finite set– to variables, and a set of constraints between variable-label assignments,
allowing to model any discrete combinatorial problem.

– Its highly local character (each variable can compute its new label weights given
only the state at previous time step). This makes the algorithm highly parallelizable.

– Its flexibility: Total consistency or completeness of constraints is not required.
– Its robustness: It can give an answer to problems without an exact solution (incom-

plete or partially incompatible constraints, insufficient data, etc.)
– Its cost. Being n the number of variables, v the average number of possible la-

bels per variable, c the average number of constraints per label, and I the average
number of iterations until convergence, the average cost is n× v × c× I , that is, it
depends linearly on n. Although for a problem with many labels per variable and/or
many constraints, or if convergence is not quickly achieved, the multiplying terms
might be much bigger than n, it is a good alternative to non-polynomic algorithms.

Drawbacks of the algorithm are:

– Since it acts as an approximation of gradient step algorithms, it has their typical
convergence problems: Found optima are local, and convergence is not guaranteed,
since the chosen step might be too large for the function to optimize.

4

4 Framework to Approximate Alignments

Figure 1 presents an overall description of the framework: A preprocessing step, (a)
inside the gray box, is executed only once per model to compute the model unfolding,
its behavioural profile, and the shortest enabling path between each pair of nodes. Then,
it is used as many times as needed to align log traces. The alignment algorithm, (c)
relaxation labeling, uses weighted constraints (b), and although their weights can simply
be set manually, better results are obtained if they are tuned using available training data.
The algorithm produces partial alignments without model moves, which are added –if
needed– by a completion post-process (d). The weight tuning procedure is exactly the
same: The system is run on different combinations of constraint weights on a separate
section of the dataset, and the combination producing the best results is chosen to be
used on test data (or used in production).

Fig. 1. Overall framework representation.

4.1 Stage 1: Pre-computation of Model Unfolding and Additional Information

We use one of the state-of-the-art techniques to compute an unfolding π of the Petri
net [9]. There are two main reasons to use the unfolding instead of the Petri net. First,
and most prominently, events in the unfolding correspond to a particular firing of a
transition in a Petri net, thus making the correspondence between events in the trace
and events in the unfolding meaningful2. Second, by being well-structured (e.g., having
a clear initial and final node), the computation of alignments is facilitated.

Two types of information between any pair of events in the unfolding are required
in our setting: behavioral relations, and shortest enabling paths. The former is used
to guide RL in order to reward/penalize particular assignments between events in the
trace and unfolding transitions. The latter is necessary for completing the alignment,
when gaps exist in alignment arising from the solution found by the RL algorithm.
Remarkably, this information is computed only once per model, before the alignments

2 Notice that a transition can correspond to several different firing modes, that depend on the
context, which will be represented as different events in the unfolding.

5

are computed for each trace in the log. We assume a scenario where the cost of pre-
processing is amortized by the low trace-alignment cost of the proposed approach.

Behavioral Relations Between Unfolding Events. As it has been pointed out [2, 21],
not all runs of the Petri net are possible in the complete unfolding, which impacts the
behavioral information between events in the unfolding. To amend this, either the un-
folding is extended beyond cut-off events so that all relations are visible [2], or the be-
havioral relations are adapted to consider the discontinuities due to cut-off events [21].

In this paper we opted instead for a pragmatic setting: next to the original unfolding
π, a copy πr where the backward-conflicts branches and loops corresponding to the cut-
off events are computed (see Fig. 2). We call πr reconnected unfolding. Notice that, in
contrast to the original unfolding, in a reconnected unfolding all the runs of the original
Petri net are possible.

Next, the behavioral profiles (c.f. Def. 2) for both π and πr are computed. Apart
from obtaining the behavioral relations for events, computing these relations both in
π and πr is useful to elicit loop behavior: for two events e1, e2, if e1 ∦ e2 in π, but
e1‖e2 in πr, then the concurrency of e1 and e2 is due to the existence of a loop in the
original Petri net3, while if e1‖e2 in π, then e1 and e2 are in a parallel section (which
may or may not be inside a loop). These behavioral relations (ordering, exclusiveness,
interleaving and loop relations) are then used to assign different constraint weights in
the created constraint satisfaction problem instance (see next Section).

Shortest Enabling Paths Between Unfolding Events. Given two events e1, e2 in πr,
the shortest enabling path is the minimal set of events needed to enable e2 after e1 fires.
Since we pose the problem as choosing an event (transition) in the unfolding for each
event in the trace, the RL algorithm will not suggest new events to be inserted in the
trace (i.e. model moves). To complete the alignment with required model moves, we
fill the gaps in the trace with the shortest enabling path between events. The shortest
enabling path between each pair of events in the reconnected unfolding is computed
off-line, only once per model.

The length of the shortest enabling path between two nodes is also used to modulate
the weight of the constraints (see Section 4.2).

4.2 Stage 2: Computation of Mapping through RL

Given πr and a trace σ = a1 . . . an ∈ L, we post the alignment problem as a consistent
labelling problem (CLP), which can be solved via suboptimal constraint satisfaction
methods, such as RL. We will illustrate how we build our labelling problem, as well as
how it is handled by the RL algorithm, with the example model in Figure 2. Below, to
avoid ambiguities, we will refer to events in the unfolding as transitions.
The CLP is built as follows:

– Each event ai ∈ σ is a variable vi for the CLP problem. The set of variables is
V = {v1, . . . , vn}.

3 In case models do not have duplicate labels, the detection of loops can alternatively be per-
formed as it was done in [2].

6

Fig. 2. Reconnected unfolding πr for model M8. Dashed edges indicate reconnected cut-offs.

– For each variable vi ∈ V , we have a set of labels l(vi) = {ei1 , . . . , eimi
,NULL},

containing all transitions eik in πr such that λ(eik) = ai, plus one NULL label
to allow for the option to not align a particular event in the trace (a log move).
Figure 3 shows the aforementioned encoding for the trace BCGHEFDA and the
M8 model in Figure 2.4

Trace events (variables) v1 (B) v2 (C) v3 (G) v4 (H) v5 (E) v6 (F) v7 (D) v8 (A)
Possible alignments (labels) e11 e1 e4 e5 e2 e9 e10 e0

NULL NULL NULL NULL NULL NULL NULL NULL

Fig. 3. Mapping of a trace alignment as a Consistent Labelling Problem. Boldface labels indicated
the solution selected by the RL algorithm.

– RL requires a set of compatibility constraints to assess which assignments are com-
patible or incompatible. Constraints reward consistent assignments or penalize in-
consistent ones. For instance, the assignment of two consecutive events in the trace
to two adjacent transitions in πr is strongly rewarded if they are in the same order,
but severely penalized if the order is inverted.
Let C be our set of constraints. Each constraint r ∈ C has the form:

Cr (vi : eij) [(vi1 : ei1j1), . . . , (vidr : eidr jdr)]

Where (vi : eij) is the target assignment of the constraint (i.e the assignment that
is rewarded or penalized by the constraint), [(vi1 : ei1j1), . . . , (vidr : eidr jdr)]
are the constraint conditions (i.e. the assignments of other variables required for

4 Notice that, for the sake of simplicity, the example in Figure 2 only contains one unfolding
event per label. In general several events in the unfolding can have the same label, and our
technique handles that general case.

7

the constraint to be satisfied), and Cr is a real value expressing compatibility (or
incompatibility if negative) of the target assignment with respect to the conditions.
For instance, a possible constraint on the M8 example CLP could be +10.0 (v3 :
e4) [(v2 : e1), (v4 : e5)], which states that the assignment of label e4 to variable v3
gets a positive reward of +10.0 from a context where v2 is assigned label e1 and v4
is assigned label e5.

To avoid an explosion of the number of constraints, we restrict ourselves to use
binary constraints –that is, involving just one target assignment and one condition–,
except in the case of the Deletion constraint (see below). We now provide a description
of the constraints used.

Compatibility Constraints.
Each constraint has a compatibility value that may be either positive (to reward consis-
tent assignments) or negative (to penalize inconsistent combinations). The weight for
each constraint type is tuned experimentally.

In what follows, d(vi, vj)
def
= |i − j| refers to the distance between events ai and

aj in σ, and d(ei, ej) corresponds to the length of a shortest enabling path between
transitions ei and ej in πr.
Constraint patterns: For each combination of two possible assignments (vi : ep), (vj :
eq), we create the following constraint instances:

Cr (vi : ep) [(vj : eq)]

Cr (vj : eq) [(vi : ep)]

for each of the following cases that are applicable. The compatibility value Cr depends
on each case:

– Right order. If vi precedes vj in σ (i.e., i < j), and ep eq in πr, Cr is positive,
and inversely proportional to |d(vi, vj) − d(ep, eq)|, rewarding assignments in the
right order, with higher rewards for closer assignments.

– Wrong order. If vi follows vj in σ (i.e., i > j), and ep eq in πr, Cr is negative,
penalizing assignments with crossed ordering in the trace with respect to the model.

– Exclusive. If vi and vj co-occur in the trace but ep + eq in πr, Cr is negative,
penalizing assignments that should not happen in the same trace.

– Parallel. If vi and vj co-occur in the trace, and ep‖eq in π, indicating the pres-
ence of a parallel section, Cr is positive, and inversely proportional to |d(vi, vj)−
d(ep, eq)|, rewarding this combination in any order, with higher rewards for closer
assignments.

– Loop. If vi and vj co-occur in the trace, ep‖eq in πr, and ep ∦ eq in π indicating
that the interleaving is due to the presence of a loop, Cr is positive, which allows
the repetition and alternation of looped events.

Deletion. Also, for each combination of three possible assignments (vi−1 : em), (vi :
ep), (vi+1 : eq) such that 1 < i < n (i.e. three consecutive events in the trace) if the

8

shortest enabling path from em to eq via ep in πr is longer than the shortest enabling
path from em to eq not crossing ep, we create the constraint instance:

Cr (vi : ep) [(vi−1 : em), (vi+1 : eq)]

where Cr is negative. This constraint penalizes the alignment of an event if that would
require more model moves (and thus a higher cost) than its deletion.

Constraint examples
Right order +8.3 (v2 : e1) [(v3 : e4)]

+12.5 (v2 : e1) [(v6 : e9)]
+25 (v6 : e9) [(v7 : e10)]

Wrong Order -500 (v1 : e11) [(v2 : e1)]
-500 (v4 : e5) [(v5 : e2)]
-500 (v7 : e10) [(v8 : e0)]

Parallel +5 (v3 : e4) [(v4 : e5)]

Deletion -200 (v5 : e2) [(v4 : e5), (v6 : e9)]

On the right we show examples
of how these patterns are instantiated
in the M8 example. Note that the
high negative weight of the wrong
order constraints will cause that in
every pair, at least one of the vari-
ables (that with less positive con-
tribution from others) will end up
selecting any other label (which in
this case will be the NULL label).
Weights for right order constraints are inversely proportional to |d(vi, vj)− d(ep, eq)|.
The other constraints in the example use a constant value.

From the defined CLP, we can solve it using RL, described in Algorithm 1, where:

– Cij ⊆ C is the subset of constraints that have the pair (vi : ej) as target assignment
– pij is the current weight for the assignment (vi : ej). Assignment weights are

normalized so that ∀i
∑mi

j=1 pij = 1
– Inf(r) = Cr × pi1j1(s) × . . . × pidr jdr (s), is the influence of constraint r on

its target assignment, computed as the product of the current weights (at time step
s) of the assignments in the constraint conditions (representing how satisfied the
constraint is in the current context) multiplied by the constraint compatibility value
Cr (stating how compatible is the target assignment with the context).

– Sij is the total support received by the pair (vi : ej) from the context, taking into
account all constraints targeting this pair

At each time step, the algorithm updates the weights of each possible labels for each
variable. The results are normalized per variable, causing the labels with higher support
to increase their weight, and those with lower support to reduce it. Note that the support
depends on the current weights of the conditioning assignments, so, the support for a
particular assignment will change over time.

It is important to remark that a single constraint does not determine the alignment
chosen for a particular event. All constraints affecting each possible label for a variable
are combined in Sij . The re-normalization of the label weights for each variable ensures
that there will always be one value selected: even if all values for a variable had a
negative support, the weight for the one with less negative Sij would be increased.
However, this does not happen in our case, because we have the NULL value, which has
neither penalization nor reward (Sij = 0) causing its weight to be raised when all the
other possible values have negative support.

The algorithm stops when convergence is reached –i.e. no more changes in the
weight assignment–. Typical solutions consist of weight assignments of 1 for one label

9

/* Start in a uniformly distributed labelling P */
P := {{p11 . . . p1m1}, . . . , {pn1 . . . pnmn}};
/* Time step counter */
s := 0;
repeat

/* Compute the support Sij that each label receives from
the current weights for the labels of the other
variables and the constraints contributions */

for each variable vi ∈ V do
for each label tij ∈ L(vi) do

Sij :=
∑
r∈Cij

Inf(r)

end
end
/* Compute (and re-normalize) weights for each variable

label at time step s+ 1 according to the support they
receive */

for each variable vi ∈ V do
for each label tij ∈ L(vi) do

pij(s+ 1) := pij(s)× (1 + Sij)
mi∑
k=1

pij(s)× (1 + Sik)

end
end
s := s+ 1

until no more changes;

Algorithm 1: Pseudo code of the RL algorithm.

in each variable, and zero for the rest. However, if constraints are incomplete or contra-
dictory, the final state may be a uniform distribution among a subset of values for some
variables. Also, since the optimized cost function depends on the constraints, conver-
gence is not theoretically guaranteed (since they may be incomplete or contradictory),
although empirical results show that –if constraints are properly defined as it is the case
of our formalization– the algorithm normally converges.

4.3 Stage 3: Generation of Approximate Alignment

The CLP solved via RL will produce a partial alignment, where some trace events will
be assigned to some transitions in the unfolding, and some events will be assigned
the NULL label (see Fig. 3). If the solution is consistent, it represents synchronous
moves (events in the trace are mapped to a transition in the unfolding) and log moves
(events in the trace are assigned to NULL). It may only lack model moves, i.e., necessary
transitions in the unfolding to recover a full model run.

The approach used to add the needed model moves is to simulate the partial trace
on the Petri net, until a mismatch is found (notice that this is a deterministic proce-
dure, since unfolding transitions are unique). Assuming the RL solution alignments and

10

v1 (B) v2 (C) v3 (G) v4 (H) v5 (E) v6 (F) v7 (D) v8 (A)
NULL e0:A e1 e2:E e4 e5 NULL e9 e10 NULL e11:B

Fig. 4. Complete alignment, after adding necessary insertions to make the trace fitting.

deletions are correct, the mismatch can only be caused by a missing event in the trace.
Thus, the shortest enabling path (previously computed) connecting the transition where
the mismatch was detected and the transition corresponding to the next event in the
trace is inserted at this point, and the simulation is continued. Note that this completion
procedure is also able to re-insert events that were wrongly deleted by the RL algo-
rithm. However, if the RL solution contains crucial errors (i.e. alignment of an event
that should have been deleted), the resulting alignment may not be fitting.

To handle the insertions at the beginning or end of the trace, we add two phantom
events, one at the beginning and one the end of the trace, respectively aligned to the
initial and final states. In this way, the simulation will detect if there are missing events
before the first trace element or after the last one.

Figure 4 shows an example of the results of the completion process, i.e., the tech-
nique computes the runACEGHFDB, which is at edit distance 6 (counted as number
of insertions and deletions) for the input trace BCGHEFDA.

5 Experiments and Tool Support

To evaluate the performance of our approach, we resorted to datasets that have been
used recently to test the performance of alignment techniques [11, 15, 16]. Some of
these benchmarks are either very large, and/or contain loops and duplicate activities
in the model. We also applied the tool to a real-world case: We used the Inductive
Miner [10] (with default parameters) to extract a model for BPIC 2017 loan application
data5, and then we aligned it with the whole set of traces.
Source code for our tool is available at https://github.com/lluisp/RL-align.

Since RL results largely depend on the constraint compatibility values, we used part
of the data as a development set to tune the constraint weights, and we evaluated on the
rest. We compared the solution of our approach with a reference solution: Optimal A∗

alignment by ProM for the models where it is available, backing off to an approximate
method (ILPSDP, see [14]) when ProM failed to process the model trace file due to
memory or time limitations. The used partition and some statistics about the models
and traces can be found in Table 1. Cost is computed as edit distance (number of log
moves plus number of model moves). Fitness is computed as the ratio of sync moves
over the length of the trace. The average cost and average fitness columns show the
average cost/fitness per trace over the whole log.

The tuning procedure consisted on a grid search of weights for each constraint.
Since constraints Loop and Parallel use the same weight (the former as a constant,
the latter in inverse proportion to the distance), we have 5 weights to set. We explored
between 6 and 8 possible values for each –totalling over 16,000 combinations– and

5
https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

11

trace length reference alignment
Model #places avg max min #traces avg. cost avg. fitness method
M1 40 13.1 37 8 500 5.8 0.65 ProM
M3 108 35.9 217 10 500 8.9 0.79 ProM
M5 35 34.0 71 27 500 14.7 0.64 ProM
M7 65 37.6 147 20 500 26.3 0.49 IPLSDP
M9 47 44.3 216 16 500 21.3 0.61 ProM

Tuning ML1 27 28.9 123 11 500 17.9 0.51 ProM
ML3 45 26.4 194 8 500 22.9 0.35 ProM
ML5 159 42.0 595 12 500 30.0 0.55 IPLSDP
prAm6 347 31.6 41 19 1,200 4.1 0.90 ProM
prCm6 317 42.8 59 15 500 29.3 0.51 IPLSDP
prEm6 277 98.7 116 80 1,200 4.0 0.96 IPLSDP
prGm6 357 143.0 159 124 1,200 26.3 0.83 IPLSDP
TOTAL 59.3 595 8 8,100 16.0 0.71
M2 34 17.6 52 14 500 10.3 0.56 ProM
M4 36 26.8 176 8 500 22.7 0.35 ProM
M6 69 53.3 125 42 500 42.3 0.46 IPLSDP
M8 17 16.5 109 8 500 7.3 0.65 ProM
M10 150 58.2 240 30 500 42.7 0.47 IPLSDP

Evaluation ML2 165 87.4 582 27 500 80.9 0.30 IPLSDP
ML4 36 28.1 89 17 500 25.6 0.34 ProM
prBm6 317 41.5 59 14 1,200 0.0 1.00 ProM
prDm6 529 248.4 271 235 1,200 3.6 0.99 IPLSDP
prFm6 362 240.6 245 234 1,200 36.7 0.86 IPLSDP
TOTAL 109,9 582 8 7,100 24.0 0.70

TOTAL 83.0 595 8 15,200 19.8 0.71
Realistic BPIC2017 280 38.1 180 10 31,509 38.2 0.10 IPLSDP

Table 1. Statistics about dataset used in the experiments.

selected the weight combinations that maximized the desired measure over the tuning
dataset.

Tables 2 and 3 show the results for the performed experiments. We report the per-
centage of cases where a fitting alignment was found, in how many of those the solution
had the same cost than the reference approach (ProM or ILPSDP), the average cost and
fitness of the alignments, and their differences with the cost and fitness achieved by
the reference approach. In some cases the cost difference is negative (and/or the fitness
difference is positive) showing that RL obtained better solutions than ILPSDP.

We also report the required CPU time to process the trace file for each model.
Dashes in CPU time columns for ProM correspond to files were ProM run out of
memory (using a 8Gb Java heap) or did not end after 8 hours (wall clock time). Re-
ported CPU times exclude time required to preprocess each model computing two be-
havioural profiles (original and reconnected unfolding) and shortest enabling paths for
all event pairs. Since these computations were not the focus of our research, we used
brute force algorithms which could be largely optimized. Also, since the preprocessing

12

is performed only once, it is amortized in the long run when the number of aligned
traces is large enough.

obtained alignment CPU time (sec)
% same avg. ∆ with avg. ∆ with

Model %fitting cost cost reference fitness reference RL ILPSDP ProM
M1 99.4 81.9 6.0 0.3 0.64 -0.01 1 23 4
M3 90.8 75.8 8.9 1.3 0.78 -0.02 5 234 142
M5 44.4 49.5 14.9 1.7 0.64 -0.01 6 59 587
M7 45.2 25.2 16.8 -1.7 0.61 0.06 5 103 -
M9 57.0 62.8 16.1 2.0 0.61 -0.02 10 123 51

Tuning ML1 44.8 47.3 14.9 3.8 0.53 -0.03 7 67 18
ML3 43.8 13.2 46.3 27.3 0.30 -0.08 7 89 61
ML5 87.3 51.6 20.3 3.9 0.60 0.01 23 688 -
prAm6 100.0 91.5 4.3 0.2 0.90 -0.003 5 822 58
prCm6 89.8 21.6 27.0 -2.5 0.54 0.04 4 476 -
prEm6 100.0 100.0 4.0 0.0 0.96 0.00 21 3,145 -
prGm6 0.0 - - - - - 114 7,757 -
TOTAL 66.8 71.2 11.7 1.6 0.75 -0.001 208 13,586 -
M2 97.6 55.1 11.0 0.8 0.55 -0.004 1 30 20
M4 54.8 22.3 31.4 14.6 0.34 -0.05 5 99 29
M6 4.4 4.5 21.7 -7.0 0.68 0.11 8 165 -
M8 62.6 70.3 6.5 1.9 0.68 -0.03 2 19 3
M10 22.4 16.1 32.0 -1.6 0.59 0.08 11 411 -

Test ML2 52.2 4.6 54.4 -9.0 0.61 0.26 61 1,743 -
ML4 28.0 6.4 30.8 11.0 0.33 -0.05 4 63 579
prBm6 100.0 100.0 0.0 0.0 1.00 0.00 5 856 54
prDm6 61.0 0.0 42.5 39.1 0.84 -0.15 177 34,653 -
prFm6 57.2 0.0 9.1 -27.8 0.96 0.10 159 20,631 -
TOTAL 59.5 42.3 18.0 3.2 0.79 0.003 433 58,670 -

Realistic BPIC2017 99.9 0.4 43.8 5.6 0.15 0.05 2,091 8,702 -
Table 2. Results obtained in scenario 1 (Maximize alignment F1 score)

Scenario 1: Maximize quality of obtained alignments. Our first scenario is selecting
weights that get better alignments, even this may cause a lower percentage of cases
with a fitting solution. In order to keep a balance between the quality of the alignments
and the number of solved cases, we measure precision (P = #sync/(#sync+#log),
maximized when there are no log moves) and recall (R = #sync/(#sync+#model),
maximized when there are no model moves), and we aim at maximizing their harmonic
mean, or F1 score (F1 = 2PR/(P +R)). The weight combination obtaining higher F1

on tuning data is: Right Order = +15, Wrong Order = -100, Exclusive = -300, Deletion
= -20, Parallel/Loop = +5.

Results of this configuration both on tuning and test data are shown in Table 2.

Scenario 2: Maximize number of aligned traces. A second configuration choice con-
sists of selecting the weights that maximize the number of fitting alignments, even if

13

they have a higher cost. The weight combination obtaining a higher percentage of fitting
alignments on tuning data is: Right Order = +5, Wrong Order = -500, Exclusive = -400,
Deletion = -300, Parallel/Loop = +5.

Results of this configuration both on tuning and test data are shown in Table 3.

obtained alignment CPU time (sec)
% same avg. ∆ with avg. ∆ with

Model %fitting cost cost reference fitness reference RL ILPSDP ProM
M1 100.0 58.8 7.5 1.7 0.59 -0.06 1 23 4
M3 89.4 62.9 9.9 2.2 0.76 -0.03 5 234 142
M5 100.0 11.4 21.7 7.0 0.55 -0.10 3 59 587
M7 99.8 11.8 30.7 4.6 0.49 -0.01 3 103 -
M9 58.4 18.8 27.4 12.4 0.42 -0.21 5 123 51

Tuning ML1 69.4 19.3 26.2 10.3 0.36 -0.16 3 67 18
ML3 49.2 8.1 46.5 26.3 0.27 -0.10 2 89 61
ML5 86.7 13.7 34.1 16.8 0.36 -0.22 24 688 -
prAm6 100.0 77.1 5.5 1.4 0.88 -0.02 4 822 58
prCm6 100.0 4.4 61.3 32.0 0.17 -0.33 3 476 -
prEm6 100.0 100.0 4.0 0.0 0.96 0.00 40 3,145 -
prGm6 98.9 4.5 35.3 9.1 0.78 -0.05 65 7,757 -
TOTAL 90.8 42.1 22.0 7.8 0.66 -0.05 158 13,586 -
M2 100.0 21.4 15.0 4.7 0.44 -0.12 1 30 20
M4 60.6 11.9 35.0 16.2 0.30 -0.08 2 99 29
M6 63.6 4.1 37.7 0.5 0.51 0.02 5 165 -
M8 62.0 59.7 7.0 2.4 0.66 -0.05 1 19 3
M10 73.2 4.1 57.3 18.0 0.35 0.-0.13 6 411 -

Test ML2 85.4 4.0 65.8 -9.6 0.57 0.26 45 1,743 -
ML4 54.6 0.4 44.1 20.1 0.14 -0.20 2 63 579
prBm6 100.0 100.0 0.0 0.0 1.00 0.00 8 856 54
prDm6 99.6 0.0 57.2 53.6 0.80 -0.19 258 34,653 -
prFm6 100.0 5.2 35.0 -1.7 0.87 0.01 160 20,631 -
TOTAL 85.8 26.9 33.4 12.8 0.70 -0.05 488 58,670 -

Realistic BPIC2017 100.0 0.0 40.3 2.2 0.06 -0.04 1,576 8,702 -
Table 3. Results obtained in scenario 2 (Maximize number of aligned traces)

Discussion. Selecting constraint weights that maximize the percentage of fitting traces
(scenario 2) results on large negative values for constraints penalizing unconsistent as-
signments (i.e. Wrong Order, Exclusive, and Deletion), which create a larger number
of NULL assignments. Thus, the obtained alignments will contain more deletions (in-
cluding wrong deletions of events that could have been aligned), creating gaps that will
be filled by the completion post-process, solving more cases with a fitting alignment,
though more likely to differ from the original trace, and thus with a higher cost. Note
that in the limit, we could use penalization weights so large that would cause all trace
events to be deleted and replaced with a fitting trace, with the maximum possible cost.

On the other hand, when selecting weights that maximize F1 score of the obtained
solution (scenario 1), milder penalization values are selected. Thus, less events are

14

deleted, causing less alignments to be fitting (a single wrongly aligned event can cause
the whole trace to become non-fitting), but for those that are, the cost is closer to the
reference (since the alignment does not discard trace events unless there is a strong
evidence supporting that decision).

It is interesting to note that the proposed algorithm allows us to choose the desired
trade-off between the percentage of fitting alignments and the quality of the obtained
solutions. Moreover, it is also worth remarking that we tuned the weights for the dataset
as a whole, but that they could be optimized per-model, obtaining configurations best
suited for each model, if our use case required so.

Regarding computing time, the linear cost of the algorithm offers very competitive
execution times (making possible to quite exhaustively explore configuration space, and
customize it to specific use cases if needed) and for real-time conformance checking,
even on large models. Specifically, our computation times are about two orders of mag-
nitude smaller than those offered by ILPSDP and ProM, as presented in Tables 2 and 3.

Our tool also performs well on BPIC 2017 real-world data, achieving results com-
parable to other state-of-the-art methods, and solving them in a shorter time (although
the speed-up is not as large in this case).

We must remark that ProM offers optimal solutions (when computational resources
are enough), while relaxation labeling does not. Also, even ILPSDP is also suboptimal,
it produces a fitting alignment for all cases, while RL may produce non-fitting solutions
for some traces. However, we believe that our approach can be used as fast preprocess
to obtain accurate enough suboptimal alignments, before resorting to more complex and
computationally expensive approaches. RL solutions, either fitting or not, can also be
useful as heuristic information to guide optimal search algorithms such as A∗.

6 Conclusions and Future Work

We presented a flexible approach to align log traces with a process model. The used
problem representation allows a trade-off between amount of solved cases and quality of
the obtained solutions. The behaviour can be customized to particular use cases tuning
the weights of the used constraints. Weights can be optimized for a whole dataset (as in
presented scenarios 1 and 2), but better results can be obtained if they are optimized for
each model, which may be useful for some use cases.

The algorithm requires one-time preprocessing to compute model unfolding, be-
havioural profile, and shortest enabling paths. Once this is done, any number of traces
can be aligned in linear time, with a CPU time orders of magnitude smaller than other
state-of-the-art methods. The obtained results show that the method is able to achieve
competitive alignments with reasonable costs.

Further research lines include exploring higher-order constraints that allow the al-
gorithm to use more fine-grained context information, and use the results as heuristic
information to guide optimal search algorithms.

References
1. Arya Adriansyah. Aligning observed and modeled behavior. PhD thesis, Technische Uni-

versiteit Eindhoven, 2014.

15

2. Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and Luciano Garcı́a-Bañuelos. Be-
havioral comparison of process models based on canonically reduced event structures. In
Business Process Management Conference, Haifa, Israel, pages 267–282, 2014.

3. Vincent Bloemen, Jaco van de Pol, and Wil M. P. van der Aalst. Symbolically aligning
observed and modelled behaviour. In 18th International Conference on Application of Con-
currency to System Design, ACSD, Bratislava, Slovakia, June 25-29, pages 50–59, 2018.

4. Vincent Bloemen, Sebastiaan J. van Zelst, Wil M. P. van der Aalst, Boudewijn F. van Don-
gen, and Jaco van de Pol. Maximizing synchronization for aligning observed and modelled
behaviour. In Business Process Management - 16th International Conference, BPM, Sydney,
NSW, Australia, pages 233–249, 2018.

5. Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich. Confor-
mance Checking - Relating Processes and Models. Springer, 2018.

6. Massimiliano de Leoni and Andrea Marrella. Aligning real process executions and prescrip-
tive process models through automated planning. Expert Syst. Appl., 82:162–183, 2017.

7. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of mcmillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

8. Victor Khomenko and Maciej Koutny. Towards an efficient algorithm for unfolding Petri
nets. In 12th International Conference on Concurrency Theory,, pages 366–380, 2001.

9. Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical prefixes of Petri net un-
foldings. Acta Inf., 40(2):95–118, 2003.

10. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable process discovery
and conformance checking. Software and System Modeling, 17(2):599–631, 2018.

11. Jorge Munoz-Gama, Josep Carmona, and Wil M. P. Van Der Aalst. Single-entry single-exit
decomposed conformance checking. Inf. Syst., 46:102–122, December 2014.

12. Daniel Reißner, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Abel Armas-
Cervantes. Scalable conformance checking of business processes. In OTM CoopIS, , Rhodes,
Greece, pages 607–627, 2017.

13. Anne Rozinat and Wil M. P. van der Aalst. Conformance checking of processes based on
monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

14. Farbod Taymouri. Light Methods for Conformance Checking of Business Processes. PhD
thesis, Universitat Politècnica de Catalunya, 2018.

15. Farbod Taymouri and Josep Carmona. Model and event log reductions to boost the com-
putation of alignments. In Proceedings of the 6th International Symposium on Data-driven
Process Discovery and Analysis (SIMPDA 2016), pages 50–62, 2016.

16. Farbod Taymouri and Josep Carmona. A recursive paradigm for aligning observed behavior
of large structured process models. In 14th International Conference of Business Process
Management (BPM), Rio de Janeiro, Brazil, September 18 - 22, pages 197–214, 2016.

17. Carme Torras. Relaxation and neural learning: Points of convergence and divergence. Jour-
nal of Parallel and Distributed Computing, 6:217–244, 1989.

18. Wil M. P. van der Aalst. Decomposing petri nets for process mining: A generic approach.
Distributed and Parallel Databases, 31(4):471–507, 2013.

19. Boudewijn F. van Dongen. Efficiently computing alignments - using the extended marking
equation. In Business Process Management - 16th International Conference, BPM 2018,
Sydney, NSW, Australia, September 9-14, 2018, Proceedings, pages 197–214, 2018.

20. Boudewijn F. van Dongen, Josep Carmona, Thomas Chatain, and Farbod Taymouri. Aligning
modeled and observed behavior: A compromise between computation complexity and qual-
ity. In Advanced Information Systems Engineering - 29th International Conference, Essen,
Germany, June 12-16, 2017, pages 94–109, 2017.

21. Matthias Weidlich, Felix Elliger, and Mathias Weske. Generalised computation of be-
havioural profiles based on petri-net unfoldings. In Web Services and Formal Methods -
7th International Workshop WS-FM, pages 101–115, 2010.

16

22. Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient consistency measurement
based on behavioral profiles of process models. IEEE Trans. Softw. Eng., 37(3):410–429,
2011.

17

