87,339 research outputs found

    Planning and Explanations with a Learned Spatial Model

    Get PDF
    This paper reports on a robot controller that learns and applies a cognitively-based spatial model as it travels in challenging, real-world indoor spaces. The model not only describes indoor space, but also supports robust, model-based planning. Together with the spatial model, the controller\u27s reasoning framework allows it to explain and defend its decisions in accessible natural language. The novel contributions of this paper are an enhanced cognitive spatial model that facilitates successful reasoning and planning, and the ability to explain navigation choices for a complex environment. Empirical evidence is provided by simulation of a commercial robot in a large, complex, realistic world

    Geoscience after IT: Part J. Human requirements that shape the evolving geoscience information system

    Get PDF
    The geoscience record is constrained by the limitations of human thought and of the technology for handling information. IT can lead us away from the tyranny of older technology, but to find the right path, we need to understand our own limitations. Language, images, data and mathematical models, are tools for expressing and recording our ideas. Backed by intuition, they enable us to think in various modes, to build knowledge from information and create models as artificial views of a real world. Markup languages may accommodate more flexible and better connected records, and the object-oriented approach may help to match IT more closely to our thought processes

    A half century of progress towards a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders

    Full text link
    Invited article for the book Artificial Intelligence in the Age of Neural Networks and Brain Computing R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, Eds. Cambridge, MA: Academic PressThis article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. The article describes a theoretical method that has enabled such a theory to be developed in stages by carrying out a kind of conceptual evolution. It also describes revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART proposes how advanced brains learn to attend, recognize, and predict objects and events in a changing world that is filled with unexpected events. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. The article mentions why a theory of this kind may be useful in the design of autonomous adaptive agents in engineering and technology. It also notes how the theory has led to new mechanistic insights about mental disorders such as autism, medial temporal amnesia, Alzheimer’s disease, and schizophrenia, along with mechanistically informed proposals about how their symptoms may be ameliorated

    Geoweb 2.0 for Participatory Urban Design: Affordances and Critical Success Factors

    Full text link
    In this paper, we discuss the affordances of open-source Geoweb 2.0 platforms to support the participatory design of urban projects in real-world practices.We first introduce the two open-source platforms used in our study for testing purposes. Then, based on evidence from five different field studies we identify five affordances of these platforms: conversations on alternative urban projects, citizen consultation, design empowerment, design studio learning and design research. We elaborate on these in detail and identify a key set of success factors for the facilitation of better practices in the future

    Learning and Production of Movement Sequences: Behavioral, Neurophysiological, and Modeling Perspectives

    Full text link
    A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-Ă -vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409); National Institute of Mental Health (R01 DC02852

    The Implementation Of Multiple Intelligences Based Learning To Improve Students’ Learning Activities, Response, And Learning Outcome In Mathematics

    Get PDF
    The fundamental basic theory of this study comes from Howard Gardner, who introduced a theory of human intelligence known as the Multiple Intelligences Theory. This theory concludes that there are eight types of intelligence which belongs to each person. The purpose of this study was to find out the implementation of multiple intelligences based learning to improve students’ learning activities, response, and learning outcome in mathematics. This research was conducted in SMP PGRI 1 Ciputat in academic Year 2009/2010. This research used Classroom Action Research, which consists of four stages research procedures were planning, action, observation, and reflection. The instruments of collecting data were using observation sheet activities, daily student journals, interview, and test. The result of the research revealed that the implementation of Multiple Intelligences based learning can enhance mathematics learning activities, giving a positive response towards mathematics and to improve student learning outcomes. Key Words: Multiple intelligences based learning, learning activities, response, learning outcom
    • …
    corecore