7 research outputs found

    Planar Shape Interpolation Based on Local Injective Mapping

    Get PDF
    在只给出用简单多边形表示的两输入形状的情况下,实现一种简单易用、自然高效的形状插值方法.首先利用基于形状感知的特征匹配算法生成源形状和目标形状之间的匹配;之后在源形状上构造三角剖分,并通过求解映射到目标形状上的尽量刚体的局部单射得到同构三角剖分;最后利用扭曲有界的插值方法得到中间序列.实验结果表明,该方法构造的形变结果能较好地体现源形状和目标形状的特征对应信息,形变过程自然,扭曲较小.This paper presents an efficient and easy-to-use planar shape interpolation method, given two input shapes represented by simple polygons. We firstly used a perception-based feature matching algorithm to match the feature points in the source shape with the target shape, then built compatible triangulations by constructing a locally injective mapping between the source and target shapes. Finally, an interpolation method with bounded distortion was adopted to get intermediate frames. Experimental results show that the interpolation results by our method can well reflect the feature correspondences between the source and the target shapes, and the resultant deformation is visually pleasing with less distortion.国家自然科学基金(61472332);; 中央高校基本科研业务费专项基金(20720140520

    Dihedral angle-based maps of tetrahedral meshes

    Get PDF
    International audienceWe present a geometric representation of a tetrahedral mesh that is solely based on dihedral angles. We first show that the shape of a tetrahedral mesh is completely defined by its dihedral angles. This proof leads to a set of angular constraints that must be satisfied for an immersion to exist in R 3. This formulation lets us easily specify conditions to avoid inverted tetrahedra and multiply-covered vertices, thus leading to locally injective maps. We then present a constrained optimization method that modifies input angles when they do not satisfy constraints. Additionally, we develop a fast spectral reconstruction method to robustly recover positions from dihedral angles. We demonstrate the applicability of our representation with examples of volume parameterization, shape interpolation, mesh optimization, connectivity shapes, and mesh compression

    Numerical Methods in Shape Spaces and Optimal Branching Patterns

    Get PDF
    The contribution of this thesis is twofold. The main part deals with numerical methods in the context of shape space analysis, where the shape space at hand is considered as a Riemannian manifold. In detail, we apply and extend the time-discrete geodesic calculus (established by Rumpf and Wirth [WBRS11, RW15]) to the space of discrete shells, i.e. triangular meshes with fixed connectivity. The essential building block is a variational time-discretization of geodesic curves, which is based on a local approximation of the squared Riemannian distance on the manifold. On physical shape spaces this approximation can be derived e.g. from a dissimilarity measure. The dissimilarity measure between two shell surfaces can naturally be defined as an elastic deformation energy capturing both membrane and bending distortions. Combined with a non-conforming discretization of a physically sound thin shell model the time-discrete geodesic calculus applied to the space of discrete shells is shown to be suitable to solve important problems in computer graphics and animation. To extend the existing calculus, we introduce a generalized spline functional based on the covariant derivative along a curve in shape space whose minimizers can be considered as Riemannian splines. We establish a corresponding time-discrete functional that fits perfectly into the framework of Rumpf and Wirth, and prove this discretization to be consistent. Several numerical simulations reveal that the optimization of the spline functional—subject to appropriate constraints—can be used to solve the multiple interpolation problem in shape space, e.g. to realize keyframe animation. Based on the spline functional, we further develop a simple regression model which generalizes linear regression to nonlinear shape spaces. Numerical examples based on real data from anatomy and botany show the capability of the model. Finally, we apply the statistical analysis of elastic shape spaces presented by Rumpf and Wirth [RW09, RW11] to the space of discrete shells. To this end, we compute a Fréchet mean within a class of shapes bearing highly nonlinear variations and perform a principal component analysis with respect to the metric induced by the Hessian of an elastic shell energy. The last part of this thesis deals with the optimization of microstructures arising e.g. at austenite-martensite interfaces in shape memory alloys. For a corresponding scalar problem, Kohn and Müller [KM92, KM94] proved existence of a minimizer and provided a lower and an upper bound for the optimal energy. To establish the upper bound, they studied a particular branching pattern generated by mixing two different martensite phases. We perform a finite element simulation based on subdivision surfaces that suggests a topologically different class of branching patterns to represent an optimal microstructure. Based on these observations we derive a novel, low dimensional family of patterns and show—numerically and analytically—that our new branching pattern results in a significantly better upper energy bound
    corecore