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Abstract

We present a geometric representation of a tetrahedral mesh that
is solely based on dihedral angles. We first show that the shape
of a tetrahedral mesh is completely defined by its dihedral angles.
This proof leads to a set of angular constraints that must be satisfied
for an immersion to exist in R3. This formulation lets us easily
specify conditions to avoid inverted tetrahedra and multiply-covered
vertices, thus leading to locally injective maps. We then present a
constrained optimization method that modifies input angles when
they do not satisfy constraints. Additionally, we develop a fast
spectral reconstruction method to robustly recover positions from
dihedral angles. We demonstrate the applicability of our representa-
tion with examples of volume parameterization, shape interpolation,
mesh optimization, connectivity shapes, and mesh compression.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: Volume parameterization, interpolation, compression,
optimization

1 Introduction

Geometry represention plays an important role in how we think
about a problem and how we solve it. A careful choice of variables
can simplify the expression of a solution and lead to a straightfor-
ward implementation. Such changes of variables have significantly
improved efficiency and robustness of surface maps, such as methods
based on angles [Sheffer and de Sturler 2001], on metric [Springborn
et al. 2008], and on curvature [Crane et al. 2011; Crane et al. 2013].
Computer animation has also benefited from representions such as
barycentric coordinates [Ju et al. 2005] and modal analysis [Pent-
land and Williams 1989] to reduce computational time. Based on
these experiences for surfaces, it is only natural to look for similar
approaches for volumes. While some deformation techniques using
barycentric coordinates and modal analysis trivially generalize to
volumes, the body of work in this field remains limited.

In this paper, we study dihedral angles, a geometric quantity well-
known to the volume mesh processing community. A dihedral angle
is defined as the angle between two planes; each edge of a tetrahe-
dron has a dihedral angle determined by its two incident triangles. It
is commonly used to assess the quality of tetrahedral meshes [La-
belle and Shewchuk 2007], and therefore, it seems natural to express
an objective function that defines the quality of a mesh directly in
terms of these angles, and to find a numerical solution mechanism to

optimize them. We take a step in this direction by showing that the
shape of a tetrahedral mesh is completely specified by its dihedral
angles, up to a global rotation and isotropic scale. Basically, this
implies that manipulating these angles indeed changes the geometry
of the mesh. Our goal is to study the properties and the structure
of this representation, and to gain some understanding about the
intricate relations between vertex positions and dihedral angles.

Our first contribution is a proof that this change of variables is
equivalent to an immersion of a mesh in R3, where an immersion is
a locally injective simplicial map [Cervone 1996], which guarantees
that there are no inverted tetrahedra and no multiply-covered vertices.
This proof leads to the construction of a set of variables along with
a complete set of constraints required for the representation to be
an immersion. Our second contribution is a numerical algorithm
that optimizes arbitrary input dihedral angles in such a way that they
satisfy the constraints that we have exhibited. We call this process
flattening as a parallel to surface metric flattening techniques. Our
third contribution is a robust spectral reconstruction that recovers
vertex positions from dihedral angles.

Related Work Our work is best interpreted as a volume equiva-
lent of a series of angle-based surface parameterization techniques
that were popularized over the last decades. The first angle-based
technique was conceived by Di Battista and Vismara [1993] to draw
graphs on 2D planes. This method has then been introduced to
the computer graphics community for conformal parameterization
of surfaces [Sheffer and de Sturler 2001]. A considerable amount
of work has been done toward improving its efficiency, including
by Sheffer et al. [2005] who exploit the structure of constraints
to significantly decrease solving time. Convergence rate has also
been improved by reformulating nonlinear constraints [Zayer et al.
2005] and linearizing the problem [Zayer et al. 2007]. More relevant
related work is given along its respective applications.

The success of these methods inspired us to search for an equivalent
representation for tetrahedral meshes, which lead us to dihedral
angles. It is known that the dihedral angles of a single tetrahedron
determine its shape [Luo 1997]. We generalize this observation to
tetrahedral meshes and to build a complete framework to work with
dihedral angles. While this generalization is nontrivial, we show
that the same flattening-reconstruction workflow can be applied in a
simple and intuitive way.

Overview Our goal is to prove that dihedral angles alone deter-
mine the shape of a tetrahedral mesh, and to show how to recover
vertex positions from the sole dihedral angles (plus a global sim-
ilarity transformation). We first proceed to show that the vertex
positions of a tetrahedral mesh can be uniquely reconstructed from
the sole dihedral angles, up to a global similarity transformation (Sec-
tion 2). To prove this, we first demonstrate equivalence for a simple
elementary mesh. Then, we consider a general mesh as a sequence
of elementary combinatorial operations applied to a simple one,
and prove the property by structural induction. In some application
contexts, it may be desired that the angles match some prescribed
values that do not necessarily satisfy the constraints. For these appli-
cations, we propose a constrained optimization problem that looks
for the nearest set of angles that satisfy all constraints. We solve this
problem using a nonlinear least-squares method (Section 3). Finally,
we develop a fast spectral reconstruction method to robustly recover



positions from dihedral angles (Section 4). We show some appli-
cations (Section 5) expressed with dihedral angles that range from
volume parameterization, shape interpolation, mesh optimization,
connectivity shapes, and mesh compression.

2 Dihedral Angle Variables

We now prove that dihedral angles completely determine the shape
of a tetrahedral mesh, and exhibit the set of constraints that these
dihedral angles need to satisfy. We suppose that the mesh is a
topological ball. We can think of this change of representation as
a change of variables. The key is to ensure that our new variables
have the same representation power as position variables.

θij

Our variables are dihedral angles of all tetrahedra.
Each tetrahedron has six dihedral angles θij ∈ [0, π],
i.e., one for each pair of facets (i, j) (see inset). To
simplify the expression of further equations, we say
that θij = θji and θii = π. We note that an angle-
based representation is unaware of global position (3
DOFs), rotation (3 DOFs), and scale (1 DOF) of the shape. There-
fore, we must add 7 transformation variables to our representation
for completeness. Note that for applications in this paper, this trans-
formation is usually computed after reconstruction.

We rely on minimal geometric constructions to prove equivalence.
For each construction, we use simple geometric arguments to dis-
cover constraints. We gain additional certification of the property
by a counting argument, showing that the number of variables in the
vertex-based representation coincides with the number of degrees
of freedom in the angle-based representation, i.e., the number of
variables minus the number of equality constraints. We stress that
counting arguments are used only as additional validation and do
not actually constitute part of the proof. We first show that the
dihedral angles of a single tetrahedron are enough to describe its
shape, but that they are not independent. The same conclusions
are drawn for two tetrahedra sharing a triangle, and for tetrahedra
surrounding an edge. During this process, we show that three types
of structural constraints and some inequalities are needed to ensure
representation equivalence. The conclusion is that these structural
constraints are necessary and sufficient to guarantee that the mesh
can be built in R3.

Cell Constraints The simplest construction is composed of a sin-
gle tetrahedron. Luo [1997] gives necessary and sufficient conditions
on dihedral angles to recover vertex positions, for which we give a
simple proof here. It is sufficient to show that for a set of dihedral
angles satisfying some constraints, there exists, up to a rotation, a
unique set of unit normals spanning three dimensions and not lying
in the same half-space. Such normals uniquely determine vertex
positions of a tetrahedron, up to an isotropic scale and a translation,
using plane intersections.

We start from the identity
∑
i niai = 0, where ni and ai are the

unit normal and area of the ith triangle of tetrahedron t. Taking
the dot product with each of the four triangle normals nj keeps the
identity and lets us write −

∑
i cos(θij)ai = 0. We rewrite these

four identities using Gram matrix Gt of triangle normals as 1 − cos θ01 − cos θ02 − cos θ03

− cos θ01 1 − cos θ12 − cos θ13

− cos θ02 − cos θ12 1 − cos θ23

− cos θ03 − cos θ13 − cos θ23 1


︸ ︷︷ ︸

Gt

a0

a1

a2

a3

 =

0
0
0
0

 .

This shows how dihedral angles are determined from normals. We
now show how to uniquely recover normals from Gt. First, we note

that Gt is a Gram matrix of normals spanning three dimensions.
Thus, Gt is rank deficient, which implies

|Gt| = 0. (1)

Additionally, Gt is constructed with normals that do not lie in
the same half-space. Recalling that

∑
i niai = 0 and that ai are

nonzero, this condition is satisfied if and only if ai have the same
sign, which we enforce as follows. Let Ct be the cofactor matrix
of Gt. It can be shown that entries (Ct)ij are proportional to
aiaj [Barrett 1994]. Thus, we could either constrain Ct to be
positive or negative. However, Gt is a rank 3 positive semidefinite
matrix, which forces diagonal entries of Ct to be positive, giving

Ct > 0, (2)

where the inequality is applied element-wise, and for which we give
the complete expression in Appendix A. We do not need to further
enforce positive semidefiniteness since the smallest unconstrained
principal submatrices have determinants 1 and sin2 θij . Positive
determinants of all principal submatrices ensure that Gt is positive
semidefinite.

We now show that Constraints (1) and (2) are sufficient to recover
normals. Since Gt is a rank 3 positive semidefinite matrix, there
exists a unique matrix N3×4, up to a rotation, such that Gt = NTN.
Columns of N are the desired normals. The unit diagonal and the
rank of Gt ensure that normals have unit length and that they span
three dimensions. The same sign property of the area eigenvector
ensures that they do not lie in the same half-space.

As additional validation, we now count DOFs to ensure that they
match the number of position variables. In terms of vertex positions,
t has 12 DOFs (4 vertices × 3 coordinates). In terms of angles, t
has 6 dihedral angle variables and 7 global transformation variables,
for a total of 13 DOFs. Assuming that Constraints (1) and (2) are
satisfied, there remain 12 DOFs, which supports the equivalence.

Each tetrahedron of the mesh should satisfy equality Constraint (1)
and inequality Constraints (2). These constraints ensure the struc-
tural validity of each individual tetrahedron. However, the dihedral
angles need to satisfy additional constraints that enforce the validity
of the assembly of the tetrahedra, namely facet constraints and edge
constraints detailed below.

Facet Constraints The next construction is the assembly of two
neighbor tetrahedra t0 and t1 sharing a triangle. We assume that
cell constraints are satisfied by both tetrahedra. At this point, each
tetrahedron can vary its shape independently. However, the assembly
of t0 and t1 requires that the two glued triangles have the same shape,
for which a necessary and sufficient condition is that all three pairs
of corresponding corner angles are equal. Since cell constraints
are satisfied, we know that corner angles are in [0, π]. Thus, we
can equivalently ensure that the cosine of corner angles are equal.
Noting φ0

i and φ1
i the ith corner angles of glued triangles of t0 and

t1, we have the three constraints

cosφ0
i = cosφ1

i , (3)

φ

θ0

θ1

θ2

for which only two are independent by the identity
φi0 + φi1 + φi2 = π. The cosine of a corner angle
can be computed from dihedral angles incident to
the corner vertex. Following the notations in the
inset, we have [Dittrich and Speziale 2008]

cosφ =
cos θ0 + cos θ1 cos θ2

sin θ1 sin θ2
.



We now count DOFs to ensure that they match the number of po-
sition variables. In terms of vertex positions, this construction has
15 DOFs (5 vertices × 3 coordinates). In terms of angles, this con-
struction has 12 dihedral angle variables and 7 global transformation
variables, for a total of 19 DOFs. Assuming that cell and facet
constraints are satisfied by both tetrahedra, there remain 15 DOFs,
which supports the equivalence.

Each pair of neighbor tetrahedra introduces three constraints (Equa-
tion 3). Intuitively, they ensure that strips of tetrahedra glued along
common faces can be reconstructed. For a general topological ball,
we need to examine another configuration that corresponds to a
wheel of tetrahedra sharing a common edge.

Edge Constraints The next construction is the assembly of tetra-
hedra looping around an edge. We assume that cell constraints are
satisfied by all tetrahedra, and that facet constraints are satisfied by
all pairs of neighbor tetrahedra. Even if all these constraints are
satisfied, configurations exist where the wheel does not close. One
can compare this phenomenon to angular defect around vertices of a
curved surface. A necessary and sufficient condition for the wheel to
close perfectly is to constrain the set Θe of dihedral angles around
edge e with ∑

θ∈Θe

θ = 2π, (4)

which ensures that the edge is simply covered, and thus, that the
local construction is injective.

In the 2D case (e.g., ABF), nothing constrains closing edges to be
isometric, and thus, a wheel constraint is necessary. In our case,
closing facets are similar due to facet constraints. However, these
facets share an edge with other tetrahedra. The length of this edge
being equal for all tetrahedra, the facets are not only similar, they
are isometric. Thus, no wheel constraint is needed.

We now count DOFs to ensure that they match the number of po-
sition variables. We first consider the simple case of a wheel with
only 3 tetrahedra. In terms of vertex positions, this construction has
15 DOFs (5 vertices × 3 coordinates). In terms of angles, this con-
struction has 18 dihedral angle variables and 7 global transformation
variables, for a total of 25 DOFs. Assuming that cell, facet, and edge
constraints are satisfied for the 3 tetrahedra, 15 DOFs remain, which
confirms the equivalence. For more general wheels, we proceed
inductively. Adding a tetrahedron in the wheel adds one vertex. In
terms of vertex positions, this adds 3 DOFs. In terms of angles, this
adds 6 dihedral angle variables and 3 constraints, for a total of 3
DOFs. Thus, no more constraints are needed.

Each edge introduces one constraint (Equation 4), which lets us
build topological balls. We now have a complete and valid repre-
sentation of a volume immersed in R3 given by a global similarity
transformation and dihedral angle variables such that cell, facet, and
edge constraints are satisfied.

Vertex Constraints Local injectivity requires that each interior
vertex is simply covered, i.e., that their solid angle is equal to 4π.
However, the combined edge constraints around a vertex already
enforce this equality [Yin et al. 2008], and thus, no vertex constraint
is needed.

We also note that counting DOFs of a local construction containing
a single interior vertex requires some care. Indeed, closing a 1-ring
creates redundant constraints. This is comparable to facet constraints
where only two out of the three constraints are independent. We
stress the fact that they are redundant but not contradictory, and thus,
do not invalidate our method.

3 Flattening

We now tackle the case where given dihedral angles do not satisfy
all constraints. It occurs when geometric constraints are not satisfied
by the data (Section 5.1), or when the user gives an arbitrary set of
dihedral angles (Section 5.2). A failure to satisfy constraints reflect
the impossibility to recover positions without distorting input angles.
We control this distortion by solving the following optimization
problem,

min f(Θ)
s.t. |Gt| = 0 ∧Ct > 0 ∀t ∈ T Eqs. (1,2)

cosφ0
c = cosφ1

c ∀c ∈ C Eq. (3) (5)∑
θ∈Θe

θ = 2π ∀e ∈ E Eq. (4)
θb ≤ θ ≤ π − θb ∀θ ∈ Θ,

where Θ is the vector of all dihedral angles, Θe is the set of dihedral
angles of an edge e, T is the set of tetrahedra, C is the set of corners,
E is the set of edges, φ0

c and φ1
c are corner angles of glued triangles

t0 and t1 associated to c, θb is a positive parameter to bound dihedral
angles, and f(Θ) is an objective function measuring distance to input
dihedral angles.

ω

θ0

θ1

θ2

Objective Function We choose f to be a
quadradic function of Θ that preserves the shape
of tetrahedra defined by original dihedral angles Θ∗.
We use a combination of two sets of geometric prop-
erties that are linearly obtained from dihedral angles.
The first set of properties is composed of the dihe-
dral angles themselves. The second set of properties is composed of
solid angles at each vertex of all tetrahedra. A solid angle ω is a lin-
ear function of dihedral angles incident to a vertex in a tetrahedron.
Using notations in the inset, we have

ω = θ0 + θ1 + θ2 − π.

Noting Ω and Ω∗ the vectors of solid angles computed from Θ and
Θ∗, we define f as

f(Θ) = ‖Θ−Θ∗‖2 + ‖Ω− Ω∗‖2.

The solid angle term tends to penalize
elongated tetrahedra. The inset shows a
connectivity shape (Section 5.3) flattened
with (top) and without (bottom) the second
term. Now that we have a complete formu-
lation of the problem, we can solve it in
practice in the following way.

Optimization To optimize the constrained nonlinear problem (5),
we propose a multi-phase penalty method. Each phase minimizes
an energy function that tries to balance between constraints satis-
faction and objective function minimization in a nonlinear least-
squares sense. After each phase, we set initial dihedral angles Θ∗

to the current solution to let the next phase further satisfy the con-
straints. We repeat this procedure until the constraints are satis-
fied up to a given threshold. A solution is usually attained after
two or three phases. Given initial dihedral angles Θ∗, equality
constraints c(Θ) = {ci(Θ)}, and inequality constraints d(Θ) =
{dj(Θ)}, we define the function to be minimized as

E(Θ) = αf(Θ) + ‖c(Θ)‖2 + ‖min(d(Θ), 0)‖2 (6)

where constraints are expressed as ci(Θ) = 0 and dj(Θ) > 0, and
α is a regularization factor. We set α = 10−6 for all our examples.



Figure 1: Convergence plots visualized using log scale for shape
interpolation of a twisted bar for different initial solutions: ini-
tial interpolated angles (left), jittered interpolated angles (center),
and random angles (right). The random initial solution experiment
converged to a local minimum and could not be reconstructed. Dis-
continuities in the plots are caused by a change of optimization
phase.

Constraint set c contains all constraints, including dependent ones,
since we observed better convergence.

In this formulation, the objective function plays two roles. First,
since the zero set of the constraint manifold contains every possible
immersion of the mesh, it ensures that we do not stray too far
from the input dihedral angles. Second, since some constraints
are redundant, numerical errors due to the discretization can make
simultaneous constraints impossible to satisfy exactly. In this case,
the objective function regularizes the optimization and forces a
compromise without ending up with degenerate solutions. The
regularization factor is chosen to be very small so that the solver
puts more efforts on satisfying the constraints.

We minimize E with a Quasi-Newton method called L-BFGS as
implemented by Liu et al. [2009] using a M1QN3 preconditioner,
and a memory of eight iterations. This solver only requires first
derivatives of each constraint. We refer the reader to Appendix B
for more details on computing constraint derivatives.

Initial Solution Since the optimization problem in Equation (5) is
nonlinear and nonconvex, convergence to the global minimum is not
guaranteed for arbitrary initial solutions using a local minimization
method. We choose the initial solution to be the initial dihedral
angles Θ∗ specific to each application since experience shows that
it tends to improve convergence. As shown in Figure 1, choosing
a jittered or random initial solution tends to slow convergence or
can lead to a local minimum. The jittered initial solution experiment
started with a larger error and needed 5×more iterations to converge.

4 Reconstruction

At this point, we have a set of dihedral angles satisfying all con-
straints. We can now proceed to recover positions. One could
perform a greedy reconstruction of the entire mesh by laying out one
tetrahedron at a time. However, this method is prone to numerical er-
ror accumulation and is only viable for small meshes (see Figure 2).
Instead, we propose a robust linear spectral reconstruction method
that distributes numerical errors uniformly across the mesh. To this
end, we build a local construction for each tetrahedron. Then, we
extract linear equations from pairs of neighboring tetrahedra relating
their vertex positions using barycentric coordinates. We use these
equations to build a linear system involving the entire mesh. Finally,
we solve this linear system using eigendecomposition. The result is
a set of vertex positions representing the immersion.

Figure 2: Comparison between greedy and spectral reconstructions
of a sphere mesh with jittered dihedral angles. Our spectral method
adds robustness by distributing the error over the entire mesh.

Local Constructions The first step is to lay out each tetrahedron
independently using its dihedral angles. While angles are theo-
retically sufficient for reconstruction, we observed that recovering
edge lengths of a tetrahedron beforehand, and laying out using edge-
length geometry is more stable. This stability has also been observed
in greedy reconstructions of triangle meshes [Springborn et al. 2008].
To this end, we use the following identity [Barrett 1994]

lij = bt
∂|Gt|
∂θij

,

θij

lij

where bt is a coefficient of proportionality, and lij
is the length of the edge associated to θij as shown
in the inset. Even though scale is not important at
this time, we choose bt so that an arbitrary edge has
unit length since it tends to make further computa-
tions more robust. Then, we perform a trilateration
to recover local vertex positions as shown in Appendix C, which
completes the construction.

Linear Relations Local constructions offer a localized view of
the mesh. We now need to position them globally. We do this by
expressing relative positions of neighbor tetrahedra using barycentric
coordinates. For all pairs of tetrahedra (t0, t1) sharing a triangle,
we glue the two local constructions t0 and t1 along their associated
two triangles by transforming the vertex positions of t0. We scale t0
so that the two triangles are congruent. There only remains to find
the position of the vertex v opposite to the associated triangle f in
t0. We compute local coordinates of v using two edges of f and its
normal as basis. We compute a similar basis using the corresponding
elements of t1 and use it to obtain the transformed v.

v4

v2

v0

v3

v1

Using notations in the inset, for two glued
tetrahedra composed of five vertices having
positions vi, where (v0,v1,v2,v3) forms a
tetrahedron, we express v4 by

v4 = a0v0 + a1v1 + a2v2 + a3v3, (7)

where ai are barycentric coordinates computed bya0

a1

a2

a3

 =

[
v0 v1 v2 v3

1 1 1 1

]−1 [
v4

1

]
.

We gather linear equations (7) from all pairs of tetrahedra into a lin-
ear system Ax = 0, where A is a matrix composed of barycentric
coordinates, and x are the unknown global positions of all vertices.
We rewrite this overdetermined system into a least-squares formula-
tion ATAx = 0 to which we must find the kernel.



Spectral Solver We cannot solve for x directly since the kernel is
not empty. This is due to barycentric coordinates being invariant to
affine transformations. Fixing four vertices would remove this invari-
ance, but this would also introduce distortions near anchors [Mullen
et al. 2008]. We instead use eigendecomposition to find the eigen-
vector associated to the smallest non-zero eigenvalue of ATA. This
is efficiently computed using an inverse power method as described
in Algorithm 1, where we use µ = 10−8 and ε = 10−12. We solve
the linear system using Cholesky decomposition, as implemented
by CHOLMOD [Chen et al. 2008]. Since the matrix is constant
throughout iterations, we factorize B beforehand, and then solve
using back-substitution.

Algorithm 1 Spectral Solver

Input: a matrix ATA and an initial guess x
Output: vertex positions x

B← ATA + µI
x← RemoveAffineTransformation(x)
while ‖Bx−

(
xTBx

)
x‖∞ > ε do

Solve By = x
x← RemoveAffineTransformation(y)

To avoid degenerate solutions, we remove the global affine transfor-
mation contained in x at each iteration as follows. First, we center
vertices around the origin. Then, we remove shearing by comparing
current solution to local constructions. Let Jt be the matrix trans-
forming tetrahedron t, as defined by the current solution, to its local
construction. We compute average shearing S of all tetrahedra in
log-space [Arsigny et al. 2006] as

S = exp

(
1

2N

∑
t∈T

lnJTt Jt

)
,

where the logarithm of a symmetric matrix M is computed using its
diagonalization lnM = ln(QDQT ) = Q ln(D)QT , and the loga-
rithm of a diagonal matrix is computed component-wise on diagonal
elements only. We apply S to all vertices to remove shearing. Then,
we remove rotation by aligning an arbitrary edge on the X-axis
and one of its connected triangles on the XY -plane. Finally, we
normalize x to remove global scale.

Solution x is the immersion in terms of vertex positions devoid of
global scale, translation, and rotation. We choose the final rigid
transformation to fulfill individual application needs.

5 Applications

We need to stress the fact that our motivation was mainly guided
by scientific curiosity, and by the natural question of studying the
structure of the space of admissible values for dihedral angles. We
also studied potential applications based on this representation and
on our constrained optimization procedure. We do not claim that
our experiments perform better than the state of the art in volume
parameterization, shape interpolation, and mesh compression in
terms of computation time, but we think that besides our theoretical
motivation, the experimental results below tend to confirm that our
approach may have potential applications. In particular, we show
that mesh optimization using our formulation manages to recover
highly tangled meshes, which pose problems for many optimization
methods. Moreover, we show that shape interpolation in terms of
dihedral angles is well-behaved, even for large rotations.

We implemented the methods in C++ in the Graphite software [2015]
and all tests were conducted on an Intel R© CoreTMi7 930 processor
with 12GB of memory and without any GPU acceleration. We
took advantage of the multi-threading capacity of the multi-core
architecture using OpenMP. Computation times are shown in Table 2.

From Positions to Dihedral Angles Some applications rely on
the initial dihedral angles of the mesh. Thus, we must be able to
convert vertex positions to dihedral angles. While the process is
straightforward, doing it robustly requires some care. Most program-
ming languages offer a two-argument inverse tangent function that
is generally more robust than an inverse cosine function. For this
reason, we use the following formula [Shewchuk 2013]

θij = tan−1

(
− 3V lij

2ni · nj

)
,

where θij is a dihedral angle of tetrahedron t of volume V , lij is
the length of the edge associated to θij , and ni is the area weighted
normal of the ith triangle of t.

Geometric Constraints So far, we have looked at structural con-
straints that ensure that a mesh is well-formed. For some appli-
cations, we need to further constrain the shape of the mesh. For
example, creating polycubes (Section 5.1) requires patches of the
boundary of a mesh to be flat, and neighboring patches to be orthog-
onal. For mesh optimization (Section 5.4), we require the shape of
the boundary of the mesh to remain unchanged. For both of these
examples, we need geometric constraints to ensure that some geo-
metric properties are satisfied by dihedral angles. We present two
ways of constraining the shape of mesh M .

The first way is to reinterpret edge constraints (4) as follows. General
immersions of volume geometries are described by their Riemann
curvature tensor. An interesting property is that Riemann curvature
is completely defined by sectional curvature. Regge [1961] shows
that sectional curvature of a tetrahedral mesh is a discrete measure
defined per edge e as 2π −

∑
θ∈Θeθ. To prescribe sectional curva-

ture θ̃e of e, we rewrite edge constraint (4) using the more general
equation ∑

θ∈Θe

θ = θ̃e,

where we sum over all dihedral angles incident to e. This curvature
prescription lets us specify the flatness and orthogonality proper-
ties needed to create polycubes. The second way is to prescribe
corner angles of boundary triangles of M . To do so, we add facet
constraints as

cosφc = cos φ̃c,

where φc is the angle of a corner c of M , and φ̃i is its desired angle.
This corner angle prescription lets us constrain the shape of the
boundary needed for mesh optimization.

Note that these two methods are not mutually exclusive. One could
use a combination of both if needed, but one must be careful to
avoid contradictory constraints, in which case a solution will not
exist. However, for the applications presented in this paper, it will
be clear from the context that all constraints are compatible.

5.1 Volume Parameterization

Volume parameterization is the act of deforming the geometry of
a volume so that it fits a simple regular domain. These simpler
domains are quite popular for texturing and remeshing [Li et al.
2012; Livesu et al. 2013]. A dihedral angle-based representation
fits perfectly for this application. In our context, the geometry of
domains is specified by adding geometric constraints. We present
two types of domains. First, we consider polycube domains with
their planar boundaries, and then domains defined by singularity
graphs adding interior singularities.



Figure 4: Geometric ambiguities inherent to singularity graphs. We
show two domains sharing the same singularity graph.

For polycube creation, the input is a surface triangle mesh for which
every triangle has a label specifying the axis that its normal must
be aligned to. From this surface, we create a tetrahedral mesh
using TetGen [Si 2007]. We compute initial dihedral angles for all
tetrahedra using the initial vertex positions. Then, we flatten the
mesh (Section 3) using boundary geometric constraints that force
polycube faces to be flat, and polycube edges to have angle turns
matching the change in normal orientation. Finally, we recover
positions using spectral reconstruction (Section 4). Results are
shown in Figure 3 (left, center).

For this particular application, it is possible to stop the optimization
before convergence and let the reconstruction absorb remaining er-
rors. Stopping the flattening process may produce a curved polycube.
To fix this, we add the following equations to the linear system (7)
during reconstruction to align each boundary triangle fijk to its
assigned axis n

(vj − vi) · n = 0

(vk − vj) · n = 0

(vi − vk) · n = 0.

In addition to geometric boundary constraints, users can define edge
constraints that do not sum up to 2π for interior edges. Such con-
straints are useful for introducing interior singularities for hexahedral
meshing [Li et al. 2012]. We define a singularity graph as the set of
such interior edges along with boundary edges such that their edge
constraint does not sum up to π. An example with a handcrafted
graph is shown in Figure 3 (right).

Our framework offers some advantages over position-based tech-
niques for volume parameterization using singularity graphs. First,
since dihedral angles are independent of global positioning, each
tetrahedron can be spatially disconnected from its neighbors. This
implies that dihedral angles naturally encode nontrivial domains
without changing the combinatorics of the mesh. Second, this shows
that a singular graph alone is enough to perform parameterization.
Thus, our work opens the door for new algorithms that could directly
create singularity graphs, instead of being by-products of frame
fields [Li et al. 2012].

We note that two geometric informations are not encoded by singu-
larity graphs (Figure 4). First, the length of each edge of the domain
is not part of the formulation. Second, a singular graph with multiple
components may have pairwise orientation ambiguities.

Combinatorial Considerations Given compatible geometric
constraints, an immersion may not exist for a given mesh combina-
torics. For example, two boundary triangles of a single tetrahedron
cannot be coplanar without degenerating the tetrahedron. For the
same reason, two edges of a single tetrahedron cannot be colinear.
This observation has been made for polycube domains [Aigerman
and Lipman 2013] and singularity graphs [Jiang et al. 2014]. We
rewrite these two constraints here for completeness.

The first constraint is that there should be a sufficient number of
tetrahedra around edge e for given curvature prescription θ̃e. Know-
ing that a single tetrahedron can support a dihedral angle up to π,
we must have θ̃e < |Te|π, where Te is the set of tetrahedra incident
to e. If an edge does not satisfy the condition, we select an arbitrary
tetrahedron t ∈ Te and split the edge opposite to e in t. The second
constraint is related to singularity graphs. The constraint is that
a triangle f should not be incident to two singular edges. In this
eventuality, we split the third edge of f . These corrections only add
tetrahedra around edges, so they cannot break other constraints.

Note that these combinatorics constraints are not only inherent to
our method, but to every method that deforms tetrahedral meshes.

Method Scaling We evaluate how our
method scales with the number of tetrahe-
dra by parameterizing a sphere to a cube
for different resolutions. The inset log-log
plot indicates that the computation time
increases linearly with the number of tetra-
hedra. This behavior has been observed for most experiments. How-
ever, convergence rate also depends on geometric constraints com-
plexity, hence the apparent nonlinear scaling between the Squirrel
and the Buste models shown in Table 2.

5.2 Shape Interpolation

Shape interpolation is the creation of a smooth and natural transi-
tion between two different shapes. This application is inspired by
the work of Chen et al. [2013], that proposes to interpolate planar
shapes using squared edge lengths. The process of interpolating
the metric, and then recovering positions using a robust conformal
metric flattening method, creates a smooth deformation of bounded
distortion. Unfortunately, current surface metric flattening methods
do not trivially generalize to volumes, preventing direct application
of this shape interpolation method to tetrahedral meshes. We pro-
pose to interpolate dihedral angles instead of squared edge lengths
and to use our flattening-reconstruction procedure to recover the
immersion.

The algorithm goes as follows. For two poses of a same tetrahe-
dral mesh, we compute dihedral angles of each pose from vertex
positions. Given a weight w ∈ [0, 1], we linearly interpolate cor-
responding dihedral angles (θ0

j , θ
1
j ) as θ∗j = (1 − w)θ0

j + wθ1
j ,

where θij is the jth dihedral angle of the ith mesh, and then we
flatten resulting angles θ∗j and recover vertex positions to obtain the
interpolated mesh. One can also interpolate between n poses using
n weights wi ≥ 0,

∑
i wi = 1. Finally, we fix the global similar-

ity transformation by interpolating the center of gravity, cancelling
global rotation, and preserving shape volume. Results are shown in
Figure 5.

Our method is most similar to the second-order interpolation method
of Kircher and Garland [2008], which expresses changes in Jaco-
bian matrices across the mesh. As ours, their formulation does not
depend on global coordinates and thus, we achieve similar results.
However, our method has the benefit of guaranteeing local injec-
tivity (this guarantee comes at the cost of a longer computation
time). We note that our method differs from techniques working in
global coordinates, such as ARAP [Alexa et al. 2000], that may have
problems with large rotations and require special care to minimize
fold-overs [Levi and Gotsman 2015].



Figure 3: Volume parameterization using polycube constraints (left and center) and a singularity graph (right). The boundary surface of all
examples are constrained to be planar, but singularities are either on boundaries or inside the mesh.

Figure 5: We linearly interpolate dihedral angles from a straight
bar (left) to a curled bar (right). We show the condition number,
normalized in [0, 1], of the map relative to the straight bar for the
100 most distorted tetrahedra.

5.3 Connectivity Shapes

The connectivity shape concept, as introduced by Isenburg et
al. [2001], shows that a lot of geometric information is encoded
into its combinatorics. To prove their point, they start from a surface
mesh, erase all vertex positions, and manage to recover an approxi-
mation of the original shape using an optimization procedure. This
procedure simply tries to place vertices in space such that every edge
has approximately the same length.

We extend this idea to volume mesh. Instead of using uniform edge
length as the main criterion, we use uniform dihedral angles. We
start from the combinatorics of a mesh, set dihedral angles of regular
tetrahedra, i.e., cos−1(1/3), and flatten the result without any geo-
metric constraints. The result is a shape such that each tetrahedron
is as close as possible to a regular tetrahedron, while maintaining
coherency with its neighbors. A result is shown in Figure 6.

This concept is not an application on its own. Nevertheless, it
demonstrates the power of our representation, i.e., we do not need
an initial immersion of the mesh. This property becomes useful
when serving a more practical purpose, such as mesh optimization,
as shown in the next section.

Figure 6: Connectivity shape illustrated with the foot model. The
original immersion (left) has its vertex positions entirely removed.
Using only the combinatorics, we can approximate them (right).

5.4 Mesh Optimization

We apply our method to mesh optimization. We focus on optimizing
the shape of each tetrahedron without modifying the connectivity of
the mesh. For this process, we use the flattening procedure as a mean
to start from regular tetrahedron dihedral angles, and optimize them
so they form a reconstructible set of angles. We include geometric
constraints for boundary edges and triangle corners to preserve the
original boundary shape. We fix boundary vertices to their original
positions during reconstruction. We note that constraining both
boundary dihedral angles and corner angles during flattening ensures
that there are no DOFs left for the boundary to vary its shape. For
this reason, this application supports higher genus meshes.

This procedure ignores the original geometry of internal tetrahedra.
This has the advantage of supporting tangled meshes having inverted
and degenerate tetrahedra. By setting the initial angles to ideal
angles, we ensure that the result will be as close as possible to
regular tetrahedra. In Figure 7, we show initial meshes of a sphere
and fertility model with jittered interior vertices with many inverted
tetrahedra. The mesh optimization procedure improves the quality
of initial meshes and remove all inverted or degenerated tetrahedra.

Our mesh optimization method resembles that of Aigerman et
al. [2013], which aims to improve the quality of each tetrahedron by
bounding distortions relative to a regular tetrahedron. The key differ-
ence is that they measure distortions using the ratio of the maximum
and minimum transformation matrix eigenvalue while we measure



Model IBDM (min/max DA) Ours (min/max DA)
Duck 16◦ / 148◦ 17◦ / 146◦

Elephant (v1) 16◦ / 148◦ 17◦ / 146◦

Elephant (v2) 18◦ / 147◦ 19◦ / 146◦

Hand 17◦ / 148◦ 18◦ / 146◦

Horse 16◦ / 148◦ 18◦ / 146◦

Max Plank 21◦ / 148◦ 22◦ / 146◦

Rocker 16◦ / 148◦ 18◦ / 146◦

Skull 14◦ / 153◦ 16◦ / 151◦

Table 1: Results of mesh optimization using models from Aigerman
et al. [2013] (IBDM). We show the minimum and maximum dihedral
angles (DA) of resulting meshes using IBDM and our method.

Figure 7: Optimization of interior vertices of a sphere and fertil-
ity model. Interior vertices have been jittered (left) to introduce
inversions. After optimization (right), the geometry of all tetrahedra
was recovered without any inversion, as shown by the minimum and
maximum dihedral angles.

differences in dihedral angles. As shown in Table 1, our method is
able to improve extremal dihedral angles for all experiments using
their models as a starting point. As noted by the authors, bound-
ing dihedral angles does not bound aspect-ratio and could create
elongated elements. However, the solid angle term contained in our
objective function tends to minimize this kind of distortions.

5.5 Mesh Compression

Dihedral angles can be used as a way to compress the geometry of
a mesh. Our idea is to quantize angles using a coarse approxima-
tion, for example, using only 2 bits per angle, and recover vertex
positions from this information alone. One could quantize angles
on a uniform sampling of [0, π]. However, a good sampling should
take advantage of the fact that the dihedral angles of a good quality
mesh are concentrated around cos−1(1/3). To this end, we propose
to guide the quantization using the histogram of all dihedral angles.

First, we compute dihedral angles of the initial geometry using
vertex positions. Then, given a budget of n bits per angle, we build
the histogram by creating a single bin containing all dihedral angles
and recursively split it around its mean value until we have 2n bins.
Our sampling is the mean value of each bin. Finally, we encode each
angle using the index of its nearest sample. We also need to keep
the table of mean values for decompression. Note, however, that the
space used by this table is negligible for coarse approximations.

To recover the original geometry, we set initial dihedral angle θ∗i to
the mean value associated to its index. We flatten θ∗i , and then we
recover vertex positions using spectral reconstruction. Results are
shown in Figures 8 and 9.

For all examples, we are able to reduce to 2 bits per angle before dis-

Application Model Tets θb Iters Time

Parameterization

Squirrel 119k 0.20 2× 2k 493
Buste 160k 0.30 3× 3k 1502
Sphere 37k 0.10 2× 2k 129
Torus 6k 0.10 2× 2k 21

Interpolation Bar 9k 0.10 2× 2k 7

Optimization Sphere 37k 0.20 2× 2k 129
Fertility 364k 0.15 2× 2k 1550

Connectivity Foot 158k 0.10 2× 2k 684

Compression
Cube 47k 0.10 2× 2k 50
Bimba 124k 0.10 2× 2k 156
Buste 214k 0.10 2× 2k 274

Table 2: Statistics for all examples, where the number of itera-
tions (iters) is the number of phases times the number of iterations
per phase, and timings are in seconds.

Figure 8: We compress the geometry of a cube mesh using its
dihedral angles at different bit rates. Keeping 4 bits per angle
creates no visible artifact, while some irregularities can be seen on
edges (dashed) when keeping only 2 bits.

tortions start to be visually perceived. This high compression ratio
is due to geometric redundancies in dihedral angle variables. Indeed,
there is approximately 8× more angle variables than position vari-
ables, which means that we encode an average mesh using 48 bits per
vertex. We do not compete with state-of-the-art methods that achieve
an average of 8 to 16 bits per vertex [Maglo et al. 2015]. However,
exploiting redundancies in angle variables to achieve higher com-
pression ratios is subject to future work. Moreover, one could choose
to keep more geometric information on the boundary, and little to
no information for the interior. Since there is generally more in-
terior variables than boundary ones, this strategy should improve
compression ratios.

6 Discussion and Conclusion

We have shown that the shape of a tetrahedral mesh is completely
determined by its dihedral angles, and have introduced constraints
that must be satisfied to immerse the mesh in R3. This has lead us
to an optimization procedure in the case where constraints are not
readily satisfied. We then developed a robust spectral reconstruction
method to recover positions. The result is an immersion of the
mesh, which implies that there are no inverted tetrahedra and no
multiply-covered vertices.

Furthermore, we demonstrated the applicability of our method in
different contexts of volume geometry processing. In these appli-
cations, in terms of quality, our results are comparable to the state
of the art, and we think that the additional robustness of locally in-
jective maps guaranteed by our method may be a desirable property.
However, this property comes at the expense of several limitations,
which suggests future directions of research to overcome them.

Nonlinear Optimization Our formulation as a nonlinear, noncon-
vex optimization problem is reputably hard to solve numerically. As
a consequence, the performance of our method does not match the



Figure 9: Angle distortion of the compressed cube (Figure 8),
Bimba (left), and Buste (right) meshes at different bit rates. We show
reconstruction of compressed meshes using only 2 bits per angle.

state of the art. In addition, while experience shows that our nonlin-
ear least-squares formulation is well-behaved for most experiments,
we have experienced some failure cases where the solver got stuck
in local minima (see Figure 1). Convexifying the problem would
improve convergence rate and ensure a single global minimum.

Genus > 0 We remind the reader that this
method applies only to topological balls,
with an exception being the mesh optimiza-
tion application. Dealing with global con-
straints has always been a challenge for ge-
ometry algorithms working in local coordi-
nates, and this work is no exception. Each
additional handle needs global constraints to ensure that it closes
perfectly. One way of solving this limitation is to let the spectral
reconstruction deal with remaining errors introduced by the missing
constraints. As shown in the inset, we successfully parameterized
a torus to a polycube with a maximum difference of 0.4◦ between
flattened and reconstructed dihedral angles. Note, however, that
the spectral reconstruction absorbs errors in the least-squares sense,
and thus, does not guarantee injectivity. To remedy this, one could
instead temporarily fill all tunnels before flattening, and remove
them after reconstruction. Another possibility would be to study
the structure of the constraints and feasible set. We think that the
co-homology basis plays a central role in this structure, and that
each generator adds a set of constraints.

Global Injectivity While our method ensures local injectivity for
the mesh interior, we do not guarantee, similar to 2D methods, that
the boundary does not self-intersect. We could potentially achieve
global injectivity using techniques similar to those suggested by
Sheffer and de Sturler [2001], i.e., by iteratively reconstructing the
shape while adjusting boundary constraints to avoid self-intersection.
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A Cell Inequality Constraints

Cofactor matrix C of G is constrained to have positive entries.
First, we note that C is symmetric, which eliminates six inequalities.
Let (i, j, k, l) be a permutation of (0, 1, 2, 3), cij = cos θij and
sij = sin θij . Off-diagonal entries of C can be written as

Cij = cijs
2
kl + cil(cjl + cjkckl) + cik(cjk + cjlckl).

Diagonal inequalities can be simplified using the following observa-
tions. The minor matrix Mii of G is the Gram matrix of a triangle
formed with corner angles (θjk, θkl, θlj), and a triangle is spheri-
cal if and only if its Gram matrix is positive definite [Luo 1997].
However, inequality Cii = |Mii| > 0 and the fact that principal
submatrices of Mii have positive determinants ensures that Mii is
positive definite. Thus, we can replace Cii > 0 with

θjk + θkl + θlj > π.

B Constraint Derivatives

Minimizing energy function (6) requires derivatives of constraints.
Let (i, j, k, l) be a permutation of (0, 1, 2, 3), ∂ij = ∂/∂θij ,
∂i = ∂/∂θi, cij = cos θij , and sij = sin θij . Following identities
from The Matrix Cookbook [Petersen and Pedersen 2012], we have

∂i cosφ =

{
− sin θ0

sin θ1 sin θ2
, if i = 0

− cot θ3−i − cosφ cot θi, otherwise

∂ij |G| = 2sijCij ,

∂ijCij = −sijs2
kl,

∂ilCij = −sil(cjl + cjkckl),

∂klCij = −skl(cikcjl + cilcjk − 2cijckl),

where C is the cofactor matrix of G.

C Trilateration

Given the length of each edge of a tetrahedron t, we can recover
vertex positions using trilateration. We compute positions using
intersection points of circles and spheres. The process is intuitive,
but computations can be tedious. We rewrite these equations here
to ease implementation. Since lengths do not encode translation
and rotation, we arbitrarily set a vertex at the origin, an edge on the
X-axis, and a triangle on the XY -plane. Noting vi the position of
the vertex opposed to the ith triangle of t, and lij the length of edge
incident to the ith and jth triangle of t, we have

v0 = (0, 0, 0) ,

v1 = (l23, 0, 0) ,

v2 = (x2, y2, 0) ,

v3 = (x3, y3, z3) ,

x2 =
l223 + l213 − l203

2l23
,

y2 =
√
l213 − x2

2,

x3 =
l223 + l212 − l202

2l23
,

y3 =
l212 − l201 − 2x2x3 + y2

2 + x2
2

2y2
,

z3 =
√
l212 − x2

3 − y2
3 .
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