194 research outputs found

    Planar rectilinear shortest path computation using corridors

    Get PDF
    AbstractThe rectilinear shortest path problem can be stated as follows: given a set of m non-intersecting simple polygonal obstacles in the plane, find a shortest L1-metric (rectilinear) path from a point s to a point t that avoids all the obstacles. The path can touch an obstacle but does not cross it. This paper presents an algorithm with time complexity O(n+m(lgn)3/2), which is close to the known lower bound of Ω(n+mlgm) for finding such a path. Here, n is the number of vertices of all the obstacles together

    Computing a rectilinear shortest path amid splinegons in plane

    Full text link
    We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain \calS to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain \calP from \calS and transform a rectilinear shortest path computed in \calP to a path between s and t amid splinegon obstacles in \calS. When \calS comprises of h pairwise disjoint splinegons with a total of n vertices, excluding the time to compute a rectilinear shortest path amid polygons in \calP, our reduction algorithm takes O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in splinegons, we have devised another algorithm in which the reduction procedure does not rely on the structures used in the algorithm to compute a rectilinear shortest path in polygonal domain. As part of these, we have characterized few of the properties of rectilinear shortest paths amid splinegons which could be of independent interest

    L_1 Shortest Path Queries among Polygonal Obstacles in the Plane

    Get PDF
    Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, after the free space is triangulated, we present an O(n+h log h) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query point t, the length of the L_1 shortest obstacle-avoiding path from s to t can be reported in O(log n) time and the actual path can be found in additional time proportional to the number of edges of the path. Previously, the best algorithm computes such a shortest path map in O(n log n) time and O(n) space. In addition, our techniques also yield an improved algorithm for computing the L_1 geodesic Voronoi diagram of m point sites among the obstacles

    VLSI Routing for Advanced Technology

    Get PDF
    Routing is a major step in VLSI design, the design process of complex integrated circuits (commonly known as chips). The basic task in routing is to connect predetermined locations on a chip (pins) with wires which serve as electrical connections. One main challenge in routing for advanced chip technology is the increasing complexity of design rules which reflect manufacturing requirements. In this thesis we investigate various aspects of this challenge. First, we consider polygon decomposition problems in the context of VLSI design rules. We introduce different width notions for polygons which are important for width-dependent design rules in VLSI routing, and we present efficient algorithms for computing width-preserving decompositions of rectilinear polygons into rectangles. Such decompositions are used in routing to allow for fast design rule checking. A main contribution of this thesis is an O(n) time algorithm for computing a decomposition of a simple rectilinear polygon with n vertices into O(n) rectangles, preseverving two-dimensional width. Here the two-dimensional width at a point of the polygon is defined as the edge length of a largest square that contains the point and is contained in the polygon. In order to obtain these results we establish a connection between such decompositions and Voronoi diagrams. Furthermore, we consider implications of multiple patterning and other advanced design rules for VLSI routing. The main contribution in this context is the detailed description of a routing approach which is able to manage such advanced design rules. As a main algorithmic concept we use multi-label shortest paths where certain path properties (which model design rules) can be enforced by defining labels assigned to path vertices and allowing only certain label transitions. The described approach has been implemented in BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics, University of Bonn, in cooperation with IBM. We present experimental results confirming that a flow combining BonnRoute and an external cleanup step produces far superior results compared to an industry standard router. In particular, our proposed flow runs more than twice as fast, reduces the via count by more than 20%, the wiring length by more than 10%, and the number of remaining design rule errors by more than 60%. These results obtained by applying our multiple patterning approach to real-world chip instances provided by IBM are another main contribution of this thesis. We note that IBM uses our proposed combined BonnRoute flow as the default tool for signal routing

    The Complexity of Separating Points in the Plane

    Get PDF
    We study the following separation problem: given n connected curves and two points s and t in the plane, compute the minimum number of curves one needs to retain so that any path connecting s to t intersects some of the retained curves. We give the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves have reasonable computational properties. The algorithm is based on considering the intersection graph of the curves, defining an appropriate family of closed walks in the intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle in the family gives an optimal solution. The 3-path-condition has been used mainly in topological graph theory, and thus its use here makes the connection to topology clear. We also show that the generalized version, where several input points are to be separated, is NP-hard for natural families of curves, like segments in two directions or unit circles

    Shortest Path in a Polygon using Sublinear Space

    Get PDF
    \renewcommand{\Re}{{\rm I\!\hspace{-0.025em} R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} We resolve an open problem due to Tetsuo Asano, showing how to compute the shortest path in a polygon, given in a read only memory, using sublinear space and subquadratic time. Specifically, given a simple polygon \Polygon with nn vertices in a read only memory, and additional working memory of size \Space, the new algorithm computes the shortest path (in \Polygon) in O( n^2 /\, \Space ) expected time. This requires several new tools, which we believe to be of independent interest
    • …
    corecore