VLSI Routing
for
Advanced Technology

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultéat
der

Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von
Michael Gester

aus
Freudenberg

Bonn, Januar 2015

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultéat
der Rheinischen Friedrich-Wilhelms-Universitdt Bonn

1. Gutachter: Prof. Dr. Jens Vygen
2. Gutachter: Prof. Dr. Stephan Held

Tag der Promotion: 12. Mérz 2015

Erscheinungsjahr: 2015

Acknowledgments

At this place I would like to express my gratitude to my supervisor Professor Dr. Jens
Vygen for his excellent support over the past years. This work has benefited sub-
stantially from his valuable ideas und experience.

Special thanks go to Professor Dr. Dr. h.c. Bernhard Korte for the exceptional
working conditions at the Research Institute for Discrete Mathematics which laid
the foundations for this thesis.

I would like to thank my former and present colleagues in the BonnRoute team:
Markus Ahrens, Niko Klewinghaus, Dr. Dirk Miiller, Dr. Tim Nieberg, Christian
Panten, Rudi Scheifele, and Dr. Christian Schulte. They have all contributed ex-
tensively to the success of BonnRoute, and it was a great pleasure to share ideas
and develop solutions for VLSI routing in cooperation with them. Further thanks
go to Professor Dr. Stephan Held, Professor Dr. Stefan Hougardy, and Jannik Sil-
vanus for very helpful discussions on several topics, and to Markus Ahrens, Niko
Klewinghaus, Dr. Dirk Miiller, and Dr. Jan Schneider for proof-reading parts of this
thesis. Moreover, I would like to thank Dr. Nicolai Hahnle and Dr. Jan Schneider
for fruitful discussions and contributions to polygon width decompositions. I also
want to thank all other colleagues for the friendly and encouraging atmosphere at
the institute.

I am very grateful for the excellent cooperation with IBM that has made the
success of BonnRoute possible. At this place I would especially like to thank Karsten
Muuss, Dr. Sven Peyer, Dr. Christian Schulte, and Dr. Gustavo Tellez for the great
collaboration.

Finally, my personal thanks go to my parents for the greatest possible assistance,
and to Blanka for her continuous encouraging support and her patience while I was
writing this thesis.

Contents

(1 __Introduction|

BN . [Defnitions

[3 VLSI Routing Overview|

4 Polygon Decompositions in VLSI Design|
[4.1 Unconstrained Polygon Decomposition|
[4.2 Polygon Decomposition and Design Rule Checking|.
[4.2.1 One-Dimensional Width Decomposition|.
[4.2.2 'T'wo-Dimensional Width Decomposition|
[4.3 Decomposing the Union ot Expanded Polygons|.

5 VLSI Routing for Multiple Patterning Technology|

[>.1 Multiple Patterning Setting|
[>.2 Coloring Given Layouts|.
[5.2.1 Color-Symmetric Design Rules{.
[5.2.2 General Design Rules|
[>.2.3 Practical Approaches

[>.3 Creating Colorable Layouts|
[>.4 Multiple Patterning in BonnRoute|
[>.4.1 Routing Space and Automatic Coloring|
[5.4.2 Computing Long Connections|
[.4.2.1 Search Space and Problem Formulation|

H.4.2.2 Multi-Label Shortest Paths

[5.4.3 Implementation Details|.
[b.4.4 Experimental Results|

[Bibliography|

S UIMIMAary|

17
18
19
21
26
46

55
57
58
59
65
67
68
70
71
74
74
78
86
89
93
96

107

119

iii

1 Introduction

VLSI design is the process of creating construction plans for complex integrated
circuits, commonly known as chips, which contain up to billions of transistors. Due
to its high complexity, this process is divided into several steps, each of them com-
prising hard mathematical problems from fields such as combinatorial optimization
and computational geometry. VLSI design has been and still is a driving force for
many research areas in these fields. It poses great challenges due to enormous in-
stance sizes, complex constraints, and competing objective functions. In this thesis
we focus on problems arising from advanced technology design rules in routing,
a major step in the VLSI design process. The main contributions are as follows:
In Section we describe a new linear time algorithm for computing a width-
preserving decomposition of a simple rectilinear polygon into rectangles in order to
check width-dependent design rules in routing efficiently. In Section [5.4] we present a
detailed routing approach which incorporates multiple patterning technology design
rules, including experimental results which confirm that this approach is superior
compared to an industry standard router (see Table [5.4).

In order to motivate the routing step we give a brief overview of the VLSI design
process. The process starts with an algorithmic specification of the desired chip
functionality which is first translated to a register-transfer level description where
the functionality is modeled as a flow of digital signals (high-level synthesis, see
Coussy and Morawiec| [2010]). This description is further converted into a netlist
which contains a list of circuits and their intended connectivity (logic synthesis,
see Devadas et al. [1994]). These circuits are physical realizations of comparatively
simple logical functions consisting of interconnected transistors. The circuits are
predesigned and collected in a library which is reused for the design of different
chips. Connectivity information is encoded by nets, where each net contains a set
of pins that define inputs or outputs of the circuits which are to be connected.

The netlist serves as input for the subsequent physical design step (Alpert et al.
[2008], Held et al| [2011]) where the circuits and connections between them are
located within a given three-dimensional chip area. The chip area consists of several
stacked layers which are manufactured separately. One major step in physical design
is routing where pins of each net are connected by wires. The wires either run
horizontally or vertically on a layer or connect two layers. See the upper title picture
for a section of a routed real-world chip. Wires, as well as other objects like pins
or blockages, have to respect design rules such as minimum distances, minimum

Very Large Scale Integration

1 Introduction

segment lengths, and minimum areas which reflect manufacturing requirements.
Minimum distances usually depend on the width of the involved objects which are
representable as rectilinear polygons on each layer. However, for simplicity reasons
these polygons are usually decomposed into rectangles in routing. This motivates
the question how to efficiently compute a decomposition which allows for checking
of width-dependent minimum distance rules on the resulting rectangles. We answer
this question for different width notions in Chapter [}

After physical design all objects (also called features) have fixed positions within
the chip area, and they are checked with respect to manufacturing requirements
(encoded by design rules) and transformed in a way such that expected manufac-
turing variations are compensated (Liebmann [2003]). The outcome of these steps
is the final construction plan for the chip which is then manufactured by using litho-
graphic techniques (see |Jaeger| [2002] for details). The lithographic manufacturing
process of VLSI chips becomes increasingly difficult with the continuous shrinking
of feature sizes. The wavelength of the light source used for creating the features
(currently 193nm) has not changed for more than a decade, but in spite of this new
techniques have been developed to allow for increased feature density. One such
technique is multiple patterning. The idea is to assign features on one chip layer
to different manufacturing steps which are commonly abstracted as colors. In its
simplest form, the features are assigned two different masks and the final layout on
the chip is produced by two subsequent exposure steps using these masks. Here the
positions of the masks are chosen such that the desired spacings between features
are realized. See the upper title picture for an example of such an assignment on
a real-world chip. Computing and maintaining the color assignment complicates
routing substantially since design rules now depend not only on the geometry of
the involved objects but also on their colors. In Chapter |5 we investigate the main
challenges in routing which arise from multiple patterning and advanced technology
design rules, and we present efficient solutions for these challenges.

The thesis is organized as follows. After compiling the basic notation and defi-
nitions (Chapter [2) we give a short introduction to VLSI routing (Chapter [3)). In
Chapter [we investigate several polygon decomposition problems, most of them
related to design rule checking in VLSI design. As a main result of this thesis, in
Section we give an O(n) time algorithm for decomposing a simple rectilinear
polygon with n vertices into regions having uniform width. For rectilinear poly-
gons with holes the runtime increases to O(nlogn). Here the width at a point of
the polygon is defined as the edge length of the largest square that contains the
point and is contained in the polygon. See the lower title picture for an example
of such a decomposition. Our algorithm makes use of the Voronoi core, a subset of
the Lo, Voronoi diagram of the polygon edges, which is given by white lines in the
lower title picture. This algorithm can be used to preprocess polygonal shapes on a
chip into rectangles such that width-dependent design rules can be checked on these
rectangles instead of polygons.

In Chapter [f| we first define multiple patterning formally and collect several related
theoretical results in connection with color assignment problems. Subsequently, we
present an efficient approach for managing multiple patterning and advanced tech-
nology design rules in VLSI routing (Section. This approach contains multi-label
shortest paths (Section as a key algorithmic concept. Computing shortest
paths is one of the basic problems to be solved in routing. However, the paths com-
puted by standard shortest path algorithms cannot cope with complicated design
rules. The basic idea of multi-labeling is to encode certain path properties (which
model design rules) as labels, and to allow only certain label transitions for the paths
computed. In this way we are able to compute nearly clean (w.r.t. design rules)
connections for nets, in contrast to the popular approach to first compute unclean
connections and try to fix design rule violations afterwards by a post-processing
step. In advanced chip technologies, such post-processing often fails (see the re-
sults in Section , for example due to missing space for fixing the violations
locally. Further aspects of our multiple patterning approach are an efficient color
management (Section and a framework that uses multi-labeling only when
necessary instead of always (Section [5.4.2.4). This even improves the quality of
results (Section [5.4.4)).

The presented multiple patterning approach has been implemented in BonnRoute
(Gester et al. [2013]), the routing tool contained in the BonnTools software package
which covers all major physical design steps. The BonnTools (Korte et al. [2007])
are being developed at the Research Institute for Discrete Mathematics, University
of Bonn, in cooperation with IBM and have been used successfully by IBM and
its customers for the design of more than thousand highly complex chips, for more
than two decades. In Section we present results confirming that BonnRoute
produces high-quality routing solutions on real-world multiple patterning designs
fast. We also compare a combined flow (BonnRoute followed by an external cleanup
step) against an industry standard router used by IBM and obtain far superior
results with our combined flow (see Table on page . This result is one of
the main contributions of this thesis. We finally note that our proposed combined
BonnRoute flow is the default tool for signal routing at IBM, used for designing all
their ASIC chips as well as their server chips for both single patterning and multiple
patterning technologies.

2 Notation and Definitions

We compile some basic notation and definitions used in this thesis. For a set A we
denote the set of all k-element subsets of A as (?) Let A C R” for some n € Ny.
We denote the border of A as 0A, the interior of A as A°, and the closure of A as
A. All these terms are to be understood relatively, that means with respect to the
affine hull of A. For example, the interior of a line segment in R? contains all of its
points except the endpoints.

Two sets A, B C R" are called interior-disjoint if A° N B° = (. A set A :=
{Ay, As, ..., Ay} with A; CR™ for all i € {1,2,...,k} is called interior-disjoint if A;
and A; are interior-disjoint for all ¢ # j. The Minkowski sum of two sets A, B C R"
is defined as A® B :={a+bla € A be B}.

For two points p,q € R™ we denote the line segment connecting p and ¢, that is
the set {x € R"|z = p+c¢-(q—p),0 < c < 1}, as pg. For a finite sequence of
points pi1, pa, ..., pr € R? the set C' = pips U paps . .. U pr_ipk is called a polygonal
chain. Tt is called closed if p; = py., and simple if each point in {py,pa,...,px} I8
contained in at most two line segments and the inner points of each line segment
are not contained in any other line segment.

The closure of the area enclosed by a simple closed polygonal chain is a simple
polygon. A polygon is a set P := P\ (B°U...U B°), where Py,..., P, are
simple polygons and P, ..., Py, the holes of P, do not intersect pairwise and are all
contained in P;°. The line segments of the polygonal chains defining a polygon are
the edges and their endpoints are the vertices of the polygon. As usual, we assume
that two neighboring edges are not contained in a common line. A vertex is called
converx if the angle formed by the two adjacent edges inside of the polygon is less
than 180° and it is called concave otherwise. A rectilinear polygon is a polygon whose
edges are all parallel to the 2- or y-axis. See Figures and for examples.

When we consider simple geometric figures like rectangles or trapezoids we often
identify them with their enclosed area (including the border, if not stated differ-
ently).

For measuring lengths and distances in R3 we use the following functions.

2 Notation and Definitions

I I
AN
convex vertex
< hole
AN
concave vertex
(a) A simple rectilinear polygon. (b) A rectilinear polygon with two holes.

Figure 2.1

Definition 2.1. For two points p = (x1,y1, 21),q = (T2, Y2, 22) € R we define

di(p,q) :==|lp — qll1 :== |21 — @a| + |1 — va| + |21 — 22 (Ly — distance)

da(p,q) = llp — qll2 == \/|$1 - $2|2 + |y — ?J2|2 + |z — 22|2 (Lo — distance)
doo(p: @) = [[p — qlloo := max([z1 — @], [y1 — 2| ,[21 — 22) (Leo — distance)

For two closed and bounded sets A, B C R® we define

dl(A>B) = min dl(p,Q)

pEAQEB
dy(A, B) = i da(p, q)
doo(A, B) := i dso (P, q)

For basic notions in graph theory we refer to Korte and Vygen| [2012].

3 VLSI Routing Overview

We now give an overview and formalization of VLSI routing with a focus on detailed
routing. The description is not meant to be universal, but depicts how the routing
flow works in BonnRoute.

The basic task in VLSI routing is to connect certain predetermined pins on a chip
with wires. A set of pins which have to be connected is called a net. The pins are
either inputs or outputs of small integrated circuits on the chip or serve as a con-
nection to the exterior. The term circuit is ambiguous since the chip itself is also a
large complex circuit, but here we consider circuits as black boxes realizing compar-
atively simple logical functions. Such circuits (e.g. inverter or NANDs) are usually
predesigned and reused on different chips of the same technology. See Schneider
[2014] for details on the design of such circuits which is done on a transistor level.

A chip consists of several stacked and parallel layers which are manufactured
separately. The circuits and its involved transistors are placed on lower layers, and
wires connecting nets are placed on routing layers above. We now define the search
space and the basic geometric objects for routing.

Definition 3.1. The chip area is a nonempty rectangular cuboid

Achip = [xminpxmax] X [ymina ymax] X [Zmina Zmax} g Rg

with Tmin, Tmax; Ymins Ymaxs Zmin; Zmax € Z and Zminy #max EVEN. We further deﬁne

Zan = {Zmins - - - » Zmax } (the set of layers)
Ziving = {2 € Zan : 2 even} (the set of wiring layers)
Zyia ={2 € Zy : 2z odd} (the set of via layers)
A, ={(z,y,2) € Amip} (the chip area on layer z)

We will see later how wiring and via layers relate and why they alternate. We
restrict ourselves to Manhattan routing meaning that all wires on a chip run parallel
to the z-, y- or z-axis. This restriction, allowing an easier representation of the
routing solution space and the involved objects, is still common practice, although
there have been attempts to soften this restriction by also allowing diagonal wires,
called X architecture (Teig [2002], Ho et al.| [2005], |Chen et al.| [2003]).

Definition 3.2. Let A := [z1, 2] X [y1,92] X [21,22] C R?. We denote A as

3 VLSI Routing Overview

Figure 3.1: Routing snapshot showing less than m of a chip. Blue
shapes are pins on layer 0, green shapes are plane wires on layer
2, purple shapes are plane wires on layer 4, and yellow shapes are
(parts of) vias connecting two layers.

(1) shape, if ©1 < zo, Y1 < y2 and z; = 2,
(ii) stick, if exactly one of |x1 — xa|, |y1 — ya|, or |21 — 22| is nonzero.

Hence geometrically a shape is a rectangle with an assigned z-coordinate and a
stick is a line segment parallel to the z-, y-, or z-axis. We denote the layer on which
a shape A lies by z(A).

There are three basic types of objects on a chip which are relevant for routing:
wires, pins, and blockages. For wires, we differentiate between plane wires running
in 2- or y-dimension and wias running in z-dimension. See Figure for a routing
snapshot viewed from above.

Definition 3.3. (i) A plane wire w is a pair (r,s) where r is a stick, s is a shape
and r C s C A, for some z € Zyiing. We call stick(w) := r the stick and
shape(w) := s the shape of the plane wire.

(i) A via v is a quadruple (7, Spot, Scuts Stop) With r = {x} x {y} x [2,2 + 2| for
some z € Lyiing Such that (x,y,2) € Spot C A,, (x,y,2+ 1) € Seut € Azia,
(Y, 2+2) € Stop C Asio and Spot, Scuts Stop are shapes. We call stick(v) :=r
the stick and bot(v) 1= spet, cut(v) := Seut, and top(v) := siop the bottom,
cut, and top shape of the via, respectively.

(iii) A wire is a plane wire or a via.
(iv) A pin is a finite set of shapes.
(v) A blockage is a finite set of shapes.

P

z z z
x x x
(a) Wire sticks as seen in (b) Wire shapes as seen in (c) Three-dimensional ab-

BonnRoute. BonnRoute. straction of shapes on the
chip.

Figure 3.2: Different wire representations for two plane wires (blue) and a via
(red). Overlapping parts of plane wires and via are purple.

(vi) A net is a finite set of pins.

The stick of a plane wire or via serves as one-dimensional abstraction of the two-
dimensional shape(s) which is much easier to handle for example in shortest path
algorithms. See Figure for an illustration of typical wires in different represen-
tations. The shape(s) of an object shall correspond to the metalized area the object
will fill out on the manufactured chip layer. We note that due to manufacturing in-
accuracies and correction steps modifying the objects for the manufacturing process
(such as optical prozimity correction) the real area on a chip will not be exactly the
same as the set of shapes seen in routing.

In addition to the geometry of these objects, we also manage other properties like
the net a wire belongs to or the layers on which a net should be routed. To simplify
notation we will use such other properties only when needed.

The basic task in routing is to compute connections between the pins of a net which
will carry electrical signals on a working chip later on. For electrical connectivity
it is not sufficient that two wire shapes touch in one point, but they rather have to
share a common area whose minimum size is specified by an overlap rule. It would
be quite cumbersome to always respect and check this rule in routing algorithms, so
one uses the following simpler model for connectivity using the corresponding sticks
which is sufficient in practice.

Definition 3.4. Two wires are called connected if their sticks have at least one
point in common. A connection for a net N is a finite set of wires C' such that

(i) {stick(w)|w € C} is a connected set

(ii) for all pins P € N there exists a pin shape s € P and a wire w € C' with
s Nstick(w) # ()

(iii) for all wires wy,wy € C,wy # wo: |stick(wy) N stick(ws)| <1

3 VLSI Routing Overview

In fact the wire sticks are defined exactly in such a way that they allow for this
easy model for connectivity. At first sight the above model for connectivity is not
sufficient to model all situations occuring in practice. For example, a pin shape may
be used as part of the connection of a net which in our model is not incorporated.
However, we do not go into technical details here and just mention that these and
similar situations can also be modeled e.g. by inserting appropriate dummy wires.

For each wiring layer z € Ziying We define a preferred dimension pdim(z) € {z,y}
in which most wires should be directed to improve space utilization (see Figure .
In routing algorithms this is realized by higher costs for the usage of wires directed
in the other dimension, called the non-preferred dimension (ndim(z) € {z,y}). We
call a plane wire whose stick runs in the preferred or non-preferred dimension pref
wire or jog, respectively.

We assume that neighboring wiring layers have orthogonal preferred dimensions
which is common practice for several reasons: First, crosstalk (electrical interference)
between long parallel wires on neighboring layers is avoided. Second, long jogs
making efficient space utilization hard are less likely because each pair of neighboring
layers covers both x- and y-dimension as preferred dimension.

Due to limitations in manufacturing a wire must have at least a certain width.
While theoretically one could often use wires with arbitrary width greater than that
minimum width, in practice it is reasonable to allow only a small number of different
wire types.

Definition 3.5. A wire type is given by one shape s, C R? X {2} for each
2 € Zyia and by four shapes S, prets Sz.jogs Szbots Sziop C RE X {2} for each z € Zyiying.
Let W be a wire type. We say that a plane wire w on layer z has wire type W if
shape(w) = stick(w) & s, where

) Sapret if w is a pref wire

We say that a via v ranging from layer z to layer z + 2 has wire type W if the
following conditions hold:

bot(v) = (stick(v) N A,) & S bot
cut(v) = (StiCk(U) N Az+l) D Sz41,cut
top(v) = (stick(v) N A.42) B Szt2.t0p

Typically, most nets on a chip use the same wire type which we call standard wire
type and which has minimum allowed width on each layer. Wires using this wire
type are denoted as standard wires or 1x wires. Further wire types are typically
chosen in a way such that they fit well to the 1x wires with respect to width and

10

distance requirements. Their widths are often multiples of the minimum width, and
wires using such wire types are denoted as 2x wires, 3x wires and so on. Wider wires
are primarily used to speed up signals for long connections because of their lower
resistance.

Since the main detailed routing step runs in a sequential fashion (see Algorithm
on page, allowing arbitrary positions for wires would lead to bad space utilization
even if only standard wires are used. Therefore, we define a set of coordinates in
dimension ndim(z) for each wiring layer z where (almost) all wire stick endpoints
should lie on. These coordinates are typically chosen such that standard wires lying
on them can be packed as dense as possible.

Definition 3.6. For each wiring layer z € Zyiving with pdim(z) = x we have track
coordinates T, = {t!, ... t/=1} gy < t! < ... <t < ypae. We call tracks, :=
{[Tmin, Tmax] X {t} : t € T,} the set of tracks on layer z.

Analogously, for each wiring layer z € Zyiing with pdim(z) = y we have track
coordinates T, = {t!,... t/=1} 2 < t! < ... <t < 2. We call tracks, =
{{t} X [Ymin; Ymax| : t € T, } the set of tracks on layer z.

A point q = (z,y, z) with pdim(z) = z (pdim(z) = y) is called point of interest
ifr €T, oUT, o (T, 2UT, o) andy €T, (x € T,). Here we use T, :=) for
Z ¢ Zall-

For details how tracks are computed in BonnRoute see [Miller, 2009, Section 2.4].
We are now able to define the search space for the connections to be computed, called
the track graph.

Definition 3.7. The track graph Gr contains all points of interest as vertices and
contains an edge between two vertices vi = (x1,y1,21) and vy = (Ta, Y2, 22) if and
only if they differ in exactly one coordinate and no other vertex is contained in the
line segment T103.

We identify vertices and edges of G with their corresponding points and line
segments in R3. See Figure for an example of a track graph.

Definition 3.8. A wire w is called on-track if stick(w) is the union of edges in
E(Gr), and it is called off-track else.

On a high level finding connections for nets using only on-track wires corresponds
to packing Steiner trees in the track graph. See Figure [3.4] for an illustration of the
theoretical view and the real-world view. However, the track graph may contain
more than 300 billion vertices on real-world instances which makes near-optimal
Steiner tree packing computation hopeless.

A natural way to overcome the huge instance size is to first compute rough con-
nections in a coarsened version of Gr, a step called global routing. Here one first
defines a two-dimensional grid and then contracts vertices of G lying on the same
layer and within the same grid region (called tile).

11

3 VLSI Routing Overview

Figure 3.3: Example for a track graph. Edges are depicted by solid and dashed
line segments between two neighboring vertices, and tracks are
drawn as solid lines.

In this much smaller graph one computes Steiner trees for all nets which lead to
routing corridors (small sections of G7) by undoing the contraction for each tree.
The actual connection for a net is then realized later in detailed routing by using only
the routing corridor as search space. See Miller et al.| [2011], |[Miller| [2009] for the
global routing approach used in BonnRoute which is based on an algorithm for the
MIN-MAX RESOURCE SHARING PROBLEM and is able to take various objectives
and constraints into account. Most important, a global router has to keep congestion
low, meaning that not too many nets use the same routing corridors which will make
it hard or even impossible to realize detailed connections within the corridors.

Some routing tools also use intermediate steps between global and detailed routing
such as switchbox routing (Hitchcock [1969]) or track assignment (Batterywala et al.
[2002], Chang and Cong [2001]) to fix long distance wires previous to detailed routing
in order to further reduce detailed routing runtime and optimize objectives (e.g.
coupling and noise reduction) for these long wires globally. BonnRoute does not use
such a step, here the detailed connections are computed by an extremely fast path
search algorithm (see Section which can deal also with long connections fast
enough in practice.

Since we focus on detailed routing in this thesis, we assume routing corridors
for all nets as given from now on. We also assume that these corridors contain
information on wire type usage for detailed routing.

Definition 3.9. A wire type region is a pair (W, R), where W is a wire type and
R C Auip 1s a union of finitely many axis-parallel cuboids. A routing corridor is a
finite set of wire type regions with pairwise distinct wire types.

We assume that each net N has an assigned routing corridor corr(N) based on
global routing. A connection for N is only allowed to use a wire w if there exists a
wire type region (W, R) in corr(NN) such that w has wire type W and stick(w) C R.

12

e

E 3 -
real chip

(a) Theory: Four node-disjoint Steiner trees in (b) Real world: VLSI routing on a

a three-dimensional grid graph. viewed by an electron microscope. (Pic-
ture adapted from [2007))
Figure 3.4

In BonnRoute this restriction is relaxed by enlarging wire type regions gradually if
no feasible connection is found otherwise.

Since computing shortest Steiner trees within the given corridors would still be
too slow in practice, BonnRoute computes shortest paths between connected com-
ponents of a net sequentially. Here a connected component is a maximal connected
set consisting of wire sticks and pin shapes of the net. We start with choosing two
connected components S and T of a net N. Then we compute a restricted rout-
ing corridor rcorr(N, S, T) which contains only those regions of corr(/N) which are
relevant for finding an S-T-connection, basically following the edges of the global
routing connection for N from S to 7. Searching for an S-T-connection only within
rcorr(N, S, T) speeds up the shortest path computation significantly since many
redundant label steps can be saved this way.

We compute a path consisting of wire sticks inside of rcorr(N, S, T') connecting
S and T and proceed with new connected components S’ and T”. We iterate this
procedure until N is connected. How such an S-T-connection is computed and what
is done when no connection is found is explained in Section [5.4.2

BonnRoute uses a separate routine to precompute short access paths to pins and
connections between nearby pins (short connections), the pin access (see
et al.| [2015], |Ahrens [2014]). Accessing the pins is becoming more challenging and
critical in advanced technology nodes. Our algorithm is suitable for high pin density
routing of small standard circuits, and is capable of handling advanced technology
design rules and various objectives. The pin access routine is important for three
reasons: First, not all pins can be connected by using only on-track wires, i.e. within
the track graph. Second, the sequential routing procedure sketched above may block
pins when connecting another pin, leading to convergence issues, that means not all
nets can be connected in the end. Third, the pin access can globally optimize
objectives over all access paths and short connections, while the sequential routing
step cannot.

13

3 VLSI Routing Overview

Algorithm 1: High-level overview of BonnRoute

1 Compute short connections and pin access paths

2 Compute global routing

3 Sort nets w.r.t. to criticality

4 while Not all nets connected do

5 Choose a not connected net N

Choose two connected components S and 7" of N
Compute rcorr(N, S,T) based on global routing for N
Compute connection between S and 7" in rcorr(N, S, T)
Post-process found connection

© 0w N o

Algorithm [I] shows a simplified high-level overview of BonnRoute. It is impor-
tant to point out that the first and second step of Algorithm 1| operate on all nets
simultaneously and are thus able to globally optimize certain objective functions.
In contrast to that, long connections are computed in a sequential manner until
all nets are connected (lines 4] to @ Therefore, for long connections it is of spe-
cial importance to provide some guidance such that dense wire packings can be
obtained, although the connections are not globally optimized. One such guidance
are routing tracks, but it turns out that they are not sufficient for routing in ad-
vanced multiple patterning technologies. We will return to this important topic in
Section [5.4] All routing steps in BonnRoute are efficiently parallelized, see [Ahrens
[2014] (pin access), Miiller et al.| [2011] (global routing), and Klewinghaus [2013]
(long connections) for details.

One remaining question is what we do in cases where in line [§ no connection can
be found. Then we allow to use wires which are only legal if some present wires
are ripped out, at some high cost. If we found a connection this way, then we
try to reroute (parts of) all connections where wires have been ripped out before.
For these connections we may have to rip out other wires again, and so forth. If
this process (called rip-up and reroute, see Salowe [2008]) does not converge after
a certain number of iterations or we do not even find a connection when rip-up is
allowed, then we allow wires to leave the restricted routing corridor by some specified
margin. If still no connection is found this way (e.g. if a pin is covered by a blockage),
then we compute a connection which is allowed to cross arbitrary shapes, at some
very high cost. Therefore, in any case some connection for a net is computed and
we finish the main loop in Algorithm [1] at some time. We use location based rip-up
costs which increase over time to avoid cyclic rip-up and reroute sequences. See
Hetzel |[1998] for more details.

The complicated lithographic manufacturing process of a chip requires numerous
design rules which have to be satisfied before the chip can be produced. These design
rules tend to become more complicated with each new technology generation. We

14

list the most important types of design rules here, special rules arising from multiple
patterning technology are discussed in Chapter

o diff-net-mindist: Two shapes on the same layer and not part of the same
net must have at least a certain Lo-distance.

o same-net-mindist: Two non-intersecting shapes on the same layer and of
the same net must have at least a certain Lo-distance.

o« minarea: FEach connected set of shapes on a layer must have at least a
certain area.

 minedge: Fach edge of a rectilinear polygon representing a connected set of
shapes must have at least a certain length.

o« minwidth: Each shape must have a certain minimum width.

« minenclosure: The projection of a via cut shape to a neighboring wiring
layer must be enclosed by shapes of this wiring layer, with some specified
minimum margin.

« interlayer via mindist: The projections of two via cut shapes on neighbor-
ing via layers which are not part of the same net must have at least a certain
Lo-distance.

The first and last rule are diff-net-rules, all others are same-net-rules. We simpli-
fied some rules for convenience. For more details and a formal definition of design
rules see Schulte| [2012]. Technically, mindist rules operate on connected components
of shapes (representable as rectilinear polygons), and the required Ls-distance de-
pends on various geometric properties of the involved polygons such as area, width,
or edge lengths at those points of the polygon where distance is measured. However,
in practice it would be cumbersome to permanently maintain connected components
as rectilinear polygons. One is rather interested in storing objects as easy as possi-
ble, e.g. as rectangles. Therefore, an interesting question is if the polygons can be
decomposed into rectangles in such a way that certain design rules can be checked
on the rectangles, giving the same results as if checked on the polygons. We give a
positive answer to this question in Chapter [4] for one of the most important classes
of design rules, width-dependent mindist rules, and present efficient algorithms com-
puting this decomposition. From now on we will thus assume mindist rules based
on shapes as defined above. See Schulte [2012] for a justification why also for many
other design rules it is sufficiently accurate to decompose polygons and check rules
between rectangles later on.

In the following we assume a checking oracle which is able to decide if a set of
shapes violates any design rule or not. This oracle is used by routing algorithms to
query for legal wire locations.

15

3 VLSI Routing Overview

Definition 3.10. A checking oracle is a function 1 which returns for a given set of
shapes S if these shapes violate any design rule (Y(S) = 0) or not (Y(S) =1). If
»(S) =1, then we call S DRC-clean.

Here DRC stands for design rule check. Following the above definition, a chip
is manufacturable if the set of all shapes on the chip is DRC-clean. We will give
some details on the usage of the checking oracle in Section We assume that
the checking oracle knows to which net a shape belongs which is necessary to decide
whether same-net or diff-net rules apply.

For routing algorithms same-net rules are usually much harder to obey than diff-
net rules. The main reason is that with respect to diff-net rules a partial illegal
connection stays illegal when wires are added (with some exceptions), but with
respect to same-net rules a partial illegal connection may become legal by adding a
small piece of wire (e.g. for minarea or minedge rules). Therefore, the approach to
discard any illegal partial solution does not work for same-net rules. In Section
we describe an approach how to respect same-net rules while computing connections.

16

4 Polygon Decompositions in
VLSI Design

Decompositions of polygons into simpler geometric objects have a long history in
computational geometry, see [Keil [2000] for a survey. These simpler objects can
be for example special types of polygons such as monotone, star-shaped or convex
polygons or fixed geometric shapes such as trapezoids, rectangles, squares or trian-
gles. When using simpler objects, data structures can be kept simple and efficient
which is of special importance in VLSI design where rectangles (instead of rectilinear
polygons) are used as main geometric data type and occur millionfoldly.

Another main motivation for such decompositions is that many geometric prob-
lems can be solved much easier on the simpler objects than on the original polygon,
so it makes sense to first decompose the polygon and then solve the problem on
the simpler objects. To use this approach, one has to ensure that the problem to
solve translates somehow from the polygon to the simpler objects. For example,
if we are given a rectilinear polygon and a decomposition into rectangles and we
want to check if a given point is contained in the polygon, then we could answer
this question by just checking if the point is contained in any of the rectangles. So
in this case the problem translates easily. However, if we want to determine the
maximum horizontal width of the polygon, i.e. the length of a longest horizontal
line segment contained in the polygon, we can not just take the maximum of the
horizontal widths of all rectangles because this may be smaller. However, we can
build the decomposition in such a way that it is guaranteed that some rectangle
attains the maximum horizontal width of the polygon. Generally speaking, the de-
composition has to obey certain contraints depending on the problem we want to
solve.

In the following we focus on decomposing a rectilinear polygon into rectangles,
which is of particular interest in several parts of VLSI design (Keil [2000]). Sec-
tion summarizes the most important known results for such decompositions
without additional constraints. In Section we consider constrained decomposi-
tion problems arising in VLSI design in connection with design rule checking. The
main result of this chapter is a new efficient algorithm computing a two-dimensional
width decomposition of a rectilinear polygon (Section [4.2.2)).

Subsequently, in Section we give an efficient algorithm for decomposing the
union of expanded polygons, solving an important subproblem in clock network
design. This result is not restricted to rectilinear polygons.

17

4 Polygon Decompositions in VLSI Design

Throughout this chapter P always denotes a polygon and n is the number of
border segments of P. We assume a polygon given as a set of boundaries (one outer
boundary and one for each hole), each of which is stored as a doubly linked list of
points in the plane, the polygon vertices.

4.1 Unconstrained Polygon Decomposition

We first consider the decomposition of a rectilinear polygon into rectangles with-
out any additional constraints, using as few rectangles as possible. This classical
problem in computational geometry occurs for example when translating connected
metal components on a chip layer to rectangle sets in VLSI design, minimizing the
storage amount for the rectangles, and in VLSI mask generation (see Keil [2000]).
Depending on the application, we may or may not allow proper intersections of
distinct rectangles, leading to the following two problems.

PoLYGON COVERAGE PROBLEM
Instance: A rectilinear polygon P.

Task: Compute a minimum rectangle set covering the same area as
P.

POLYGON PARTITIONING PROBLEM

Instance: A rectilinear polygon P.

Task: Compute a minimum interior-disjoint rectangle set covering the
same area as P.

While both problems look quite similar, the difficulty of solving them differs sub-
stantially. The POLYGON COVERAGE PROBLEM is known to be NP-hard even for
simple rectilinear polygons (Culberson and Reckhow| [1988]) and MAXSNP-hard
for arbitrary rectilinear polygons (Berman and DasGuptal [1992]), implying that no
polynomial-time approximation scheme exists, unless P=NP.

Franzblau [1989] gave a simple sweepline heuristic running in O(nlogn) time
which computes a solution where the number of rectangles is at most 2m for simple
polygons and at most O(m logm) for polygons with holes, where m is the minimum
number of rectangles covering the polygon. [Kumar and Ramesh| [2003] described the
first polynomial time approximation algorithm with an o(log n) approximation factor
for polygons with holes, computing a solution with at most O(m+/logn) rectangles.

In contrast, the POLYGON PARTITIONING PROBLEM can be solved optimally in
linear time for simple rectilinear polygons. This result (Keil [2000]) is obtained by
first applying Chazelle’s algorithm (Chazelle| [1991]) to obtain a triangulation of the
simple polygon in linear time and then applying the partitioning algorithm of |Liou
et al.| [1989]. For arbitrary rectilinear polygons which may also contain degenerated

18

4.2 Polygon Decomposition and Design Rule Checking

holes (single points not contained in the polygon but surrounded by polygon points
only) the best known algorithm runs in O(n? logn) time (Soltan and Gorpinevich
[1993]) while the best known lower bound for runtime is Q(nlogn) (Liou et al.
[1989]). Note that the POLYGON PARTITIONING PROBLEM with degenerated holes
was claimed to be NP-hard by [Lingas [1982] until disproven (unless P=NP) by the
algorithm of |Soltan and Gorpinevich| [1993].

We now want to give some insight into the basic techniques used in the best known
algorithms for the POLYGON PARTITIONING PROBLEM. Let P be an arbitrary
rectilinear polygon in the following.

Definition 4.1. A chord of P is a line segment whose interior is contained in P°
and whose endpoints are contained in OP. A horizontal or vertical chord where both
endpoints are concave vertices of P is called special.

Now let m be the number of concave vertices, h the number of holes, ¢ the max-
imum number of non-intersecting special chords of P, and 74, the number of rect-
angles in an optimal solution for the POLYGON PARTITIONING PROBLEM. The
following theorem gives a nice characterization for all optimal solutions.

Theorem 4.2. |Lipski et al.| [1979], Ohtsuki (1982], \Ferrari et al.| (1984]
Topt =M —C—h+1

This theorem can be seen as the basic module for most algorithms solving the
PoryGcoN PARTITIONING PROBLEM optimally. The key step is to find a maximum
set of non-intersecting special chords. This can be modeled as a maximum stable set
in the bipartite graph G = (A U B, E), where A and B contain one vertex for each
horizontal or vertical special chord, respectively, and F contains an edge between
two vertices if their corresponding special chords intersect.

Using the fact that G is bipartite, it is sufficient to compute a maximum matching
in G from which a minimum vertex cover and finally a maximum stable set can be
easily obtained, as is well known. This approach was first used by Lipski et al. [1979)
who applied the previously fastest known algorithm for finding maximum matchings
in bipartite graphs by Hopcroft and Karp| [1973], resulting in an O(n2 logn) time
algorithm.

The best known algorithms for the POLYGON PARTITIONING PROBLEM cited
above all use the same approach, but are based on techniques to solve the matching
problem faster by exploiting the special structure of the bipartite graph.

4.2 Polygon Decomposition and Design Rule
Checking

We now consider a problem already touched in Chapter 3} How to decompose
polygons into rectangle sets such that certain design rules can be checked on the

19

4 Polygon Decompositions in VLSI Design

p

|
|
1
I
|
|

Figure 4.1: Three different possiblilities to measure the width of the polygon
at p: In blue the horizontal extension of the polygon at p, in red
the vertical extension at p, and in green the edge length of a largest
inscribed square containing p (see Definitions and .

resulting rectangles, giving the same results as if checked on the polygons? A related
problem is to preprocess polygons in a way such that later design rule checking
queries can be processed faster. We will show that these problems can be solved
efficiently for one of the most important classes of design rules, width-dependent
mindist rules.

We first have to specify how the width of a polygon at a certain point is defined.
There are different possible measures as illustrated in Figure [4.1 We will consider
all depicted width measures (being the most important used in the context of VLSI
design rules), the one-dimensional width (z-width in blue, y-width in red in Fig-
ure in Section and the two-dimensional width (green in Figure in
Section 4.2.2]

Now let us assume that we are given one of these width measures as an oracle
function w, such that w(p, P) is the width at point p € P for a rectilinear polygon
P.

Definition 4.3. Given a width measure w, the width class of size s is the set
Cs:={p€ P|w(p,P)=s}. A decomposition of P into interior-disjoint rectangles
with the property that w(-, P) is constant within the interior of each rectangle is
called a width decomposition of P with respect to w.

Definition 4.4. A (width-dependent) mindist rule is a function § : R x R — R.
For two rectilinear polygons P and () and two points p € P and q €), we say that
p and q satisfy § if da(p, q) > 0(w(p, P),w(q,Q)). We say that P and @ satisfy § if
da(p, q) = 6(w(p, P), w(q,Q)) for all p € P,q € Q.

The following important subproblems in design rule checking (see |Schulte [2012])
have to be solved millions of times in VLSI routing.

POINT DISTANCE RULE CHECKING PROBLEM

Instance: Two rectilinear polygons P and @), two points p € P and g € @,
and a mindist rule 9.

Task: Report if p and ¢ satisfy 0.

20

4.2 Polygon Decomposition and Design Rule Checking

PoLyGoN DISTANCE RULE CHECKING PROBLEM
Instance: Two rectilinear polygons P and @), and a mindist rule ¢.
Task: Report if P and @ satisfy 6.

Since polygons representing pins or blockages on a chip are fixed during VLSI
routing, it makes sense to spend some preprocessing time on these structures to
speed up the frequent distance rule checking queries later on. The POINT DISTANCE
RULE CHECKING PROBLEM essentially reduces to querying w(p, P), so we get to
the following problem.

PorLyGoN WIDTH QUERY PROBLEM

Instance: A rectilinear polygon P.

Task: Build a data structure which can report for any point p € P
the width w(p, P) fast.

Given a width decomposition of P, the POLYGON DISTANCE RULE CHECKING
PROBLEM reduces to checking distances between rectangles only (which is actually
done in BonnRoute, see Schulte [2012] for more details), motivating the following
problem.

PorLyGoN WIDTH DECOMPOSITION PROBLEM
Instance: A rectilinear polygon P.
Task: Compute a width decomposition of P with respect to w.

We now show how to solve the PoLycoN WIDTH QUERY PROBLEM and the
PoLycoN WIDTH DECOMPOSITION PROBLEM efficiently for both one-dimensional
and two-dimensional width measures. Typically the polygons occuring in the above
applications are simple in practice, but we also cover polygons with holes.

4.2.1 One-Dimensional Width Decomposition

Definition 4.5. The z-width (y-width) of a rectilinear polygon P at a pointp € P,
denoted as wy(p, P) (wy(p, P)), is the mazimum horizontal (vertical) length of a
rectangle R with p € R C P, where R is called z-width (y-width) representative for

p.

In contrast to the examples in Figure we here use the maximum length of a
rectangle instead of a line segment to simplify degenerated situations. Our goal is
to decompose a given rectilinear polygon P into an interior-disjoint rectangle set S
containing z-width (or y-width) representatives for all p € P. Clearly such an S also
serves as a width decomposition, solving the PoLycoN WIDTH DECOMPOSITION
PROBLEM with respect to z-width (or y-width).

Intuitively such a decomposition forces its rectangles to be maximally extended
(see Figure which is formalized in the following definition.

21

4 Polygon Decompositions in VLSI Design

N

Figure 4.2: A width decomposition of a simple polygon with respect to wy.

Definition 4.6. We call a rectangle set S x-maximized (y-maximized) if the left and
right edge (the bottom and top edge) of each rectangle in S are completely contained
in 0US).

See Figure for examples. The following lemma shows that our desired decom-
position has to be an z-maximized (or y-maximized) rectangle set.

Lemma 4.7. Given a polygon P and an interior-disjoint rectangle set S covering
the same area as P, then S is x-mazximized (y-mazximized) if and only if for each
point p € P there is an x-width (y-width) representative in S.

Proof. W.l.o.g. we consider the horizontal case. First suppose that S is not z-
maximized, then we choose a rectangle R in S with a segment s = {z} X [y, yo]
in its left or right border not intersecting P. Now we choose a point p € R° with
y1 < y(p) < y2. We have wi(p, R) < wy(p, P) and the only rectangle of S covering
pis R (note that S is interior-disjoint), so p has no x-width representative in S.
On the other hand, an z-maximized rectangle set S covering P clearly contains
x-width representatives for any point p € P since every rectangle in § has maximal
extension in z-dimension. O

Now we can reformulate our decomposition problem as follows, adding the objec-
tive to use as few rectangles as possible.

POLYGON STRIPE PARTITIONING PROBLEM

Instance: A rectilinear polygon P and a dimension d (x or y).

Task: Compute a minimum d-maximized and interior-disjoint rectan-
gle set covering the same area as P.

We now characterize optimal solutions for this problem. Let ry,, and r. be
optimal solutions for the POLYGON STRIPE PARTITIONING PROBLEM for dimension

22

4.2 Polygon Decomposition and Design Rule Checking

(a) This rectangle set is z-maximized, (b) This rectangle set is y-maximized,
but not y-maximized. but not z-maximized.

Figure 4.3

x and y, respectively, and let cpo, and ¢y be the number of horizontal and vertical
special chords of P, respectively. We need the following lemma which is similar to
Theorem (again m is the number of concave vertices and h is the number of
holes in P).

Lemma 4.8. rpo, =m —Chor — h+1 and ryep = M — Cyer — h + 1.

Proof. W.l.o.g. we consider the horizontal case. Our proof is constructive, more
precisely we construct the unique optimal solution for the POLYGON STRIPE PAR-
TITIONING PROBLEM in dimension x and deduce the claimed equality from it.

Let C' be the set of horizontal chords in P which contain at least one concave
vertex of P. Let k be the number of connected components into which P\ JC
decomposes. The boundaries of these connected components define an z-maximized
and interior-disjoint rectangle set S which covers P, where |S| = k. We claim that
k=m—chor — h+ 1.

We first assume h = 0. Then P is simply-connected, and successively subtracting
all chords in C' from P increases the number of connected components by |C| (one
in each step), thus we obtain & = |C| + 1. We have m = |C| + cpor because the
elements in C' cover each concave vertex of P, but we have to count special chords
of C' twice. The combination of both equalities yields k = m — ¢ + 1.

If A > 0, then we choose an arbitrary hole H and a leftmost vertical segment s in
OH. We choose a rectangle R C P whose right border is contained in s° and whose
left border is contained in the interior of another vertical segment in 0P \ 0H, see
Figure . The closure of P\ R defines a new polygon which we denote as P’. We
have C' = C, ' = h—1, m' = m, ¢, = Chor, and k' = k + 1, where C’, b/, m/,
Chors and k" are defined analogously. By induction we obtain k = m — ¢yor — h + 1
as claimed.

23

4 Polygon Decompositions in VLSI Design

oP oP

Figure 4.4

Since § is a valid solution for the POLYGON STRIPE PARTITIONING PROBLEM in
dimension z, we have r,o; < |S| = m—cnor—h+1. On the other hand, rectangles of an
arbitrary x-maximized and interior-disjoint rectangle set cannot cross any chord of
C, implying that § is the unique optimal solution and r,o, = k = m—cper—h+1. O

The unique optimal solution for the horizontal POLYGON STRIPE PARTITIONING
PROBLEM given in the above proof can be constructed in optimal linear time for
simple polygons. [Fournier and Montuno [1984] described a decomposition of a gen-
eral simple polygon into trapezoids which gives exactly this optimal solution when
applied to a rectilinear simple polygon. They also showed that this decomposition
can be obtained from a polygon triangulation in O(n) time, thus for simple poly-
gons we can apply Chazelle’s famous linear time triangulation algorithm (Chazelle
[1991]) and achieve a linear total runtime for the POLYGON STRIPE PARTITIONING
PROBLEM.

Despite the theoretically optimal runtime, the above approach is not very prac-
ticable since the linear time polygon triangulation method is quite involved. In
the BonnTools software collection we implemented a standard sweep line approach,
where (for the z-maximized case) the sweep line moves from bottom to top and
keeps track of all intersecting vertical polygon segments at each time in a balanced
binary search tree. Along the way all rectangles of the partition can be easily built.
The worst-case runtime of this algorithm is O(nlogn) which can be easily proved by
standard arguments for sweep line algorithms. Because there are only simple data
structures involved, it is very fast in practice, and it also generalizes to polygons
with holes. See |[Boissonnat et al., 1998, Chapter 12| for more details on a similar
sweep approach.

We obtain the following results for the POLyGoN WiDTH DECOMPOSITION PROB-
LEM and PoLyGoN WIDTH QUERY PROBLEM with respect to one-dimensional
width.

Theorem 4.9. Given a rectilinear polygon P and a dimension d (x ory), a width

24

4.2 Polygon Decomposition and Design Rule Checking

decomposition of P with respect to wq containing a minimum number of rectangles
(m — chor — h + 1 many) can be computed in O(nlogn) time. If P is simple, then
the runtime reduces to O(n).

Proof. By Lemma [4.7, solving the POLYGON STRIPE PARTITIONING PROBLEM
does the job, producing m — cyor — h + 1 rectangles by Lemma |4.8, The runtimes
are obtained from the results above. O]

Corollary 4.10. Given a rectilinear polygon P and a dimension d (x orvy), we can
build a data structure in O(nlogn) time using O(n) space which is able to report a
d-width representative for any given point p € P in O(logn) time. If P is simple,
then the preprocessing time reduces to O(n).

Proof. We compute a width decomposition of P, build a point location data struc-
ture in time O(n) (see e.g. Kirkpatrick |[1983]) which reports for any p € P its (at
most two) covering rectangles in time O(logn), and we report the larger one (w.r.t.
d-width) of these rectangles. O

Since optimal stripe partitioning (in x or y dimension) serves as a nice unique
representation for rectilinear polygons as rectangle sets, it is an interesting question
how far from optimal (in terms of the number of rectangles used for the represen-
tation) this representation is in the worst case. Next we prove some sharp bounds,
justifying that stripe partitioning is used as the standard decomposition method for
rectilinear polygons in the BonnTools. For this the sweepline approach sketched
above is used. In the following theorem we use the same notations as in Lemma [1.8|

Theorem 4.11. Let P be a rectilinear polygon with h holes. We have

. _ . _ 3 . _
e {2 ifh=0 "y {2 Fh=0 i) {2 ifh=0

- 1) -~
Topt 3 else Topt 3 else Topt 2 else

The above inequalities are best possible. In particular, running an algorithm for
the POLYGON STRIPE PARTITIONING PROBLEM for both dimensions and taking the
solution with less rectangles is a 2-approximation algorithm for the POLYGON PAR-
TITIONING PROBLEM. If the polygon is simple we have an approximation guarantee

of%.

Proof. The first estimation follows by

Thor m_chor_h+1<m_h+1< 2 lfh:(]
— 30
Topt m—c—h+1 _%—h‘i‘l_ %miigg clse

Here we use Theorem [£.2) and Lemma [£.8) for the first equality, ¢ < % for the first
inequality, and h < “¢ for the else case. The proof for :V—t is analogous.
op

25

4 Polygon Decompositions in VLSI Design

O]
O]
O]
O]
]
O]
I I HEENE O] O O eeeeeeeee- OO
(a) Polygon with A > 0 holes, 7ver = 3h+ (b) Polygon with A > 0 holes, rno =
1, Topt = Thor = h+37 ::vi hj;)O 3. Tver = 4h + 47 Topt = 2h + 6’
opt min(Thor,Tver) R—00
S — 2.
Figure 4.5

The third estimation follows by

min(rhor, rver) _m— maX(Chora Cver) —h+1 < m— % —h+1

Topt m—c—h+1 " m-—c—h+1
<%m—h+1< : it h=0
SEohrn S \2t<e

3 + lm+1—2 else
4

We use Theorem and Lemma for the first equality, cpor + Cver > ¢ for the
first inequality, ¢ < % for the second inequality (note that the fraction attains its
maximum value for ¢ = %), and h < 7 for the else case.
The examples in Figure |4.5|and Figure 4.6|show that the bounds are best possible
for all cases.
O

In practice, stripe partitioning is typically much closer to the optimal solution as
expressed by these worst-case bounds.

4.2.2 Two-Dimensional Width Decomposition

We now consider a width measure for polygons taking both dimensions into account.

Definition 4.12. The (two-dimensional) width of a rectilinear polygon P at a point
p € P, denoted as wap(p, P), is the edge length of a largest square Q withp € Q C P.
We call () width representative for p.

26

4.2 Polygon Decomposition and Design Rule Checking

(a) Polygon with k spikes, rye = 2k, (b) Polygon with k spikes, rhor = rver =
Topt = Thor = k + 1, :Z—; kioo 2. %k’ Topt = k+1, min(:’x;;rt,rver) ’“100 %
Figure 4.6

See the green line in Figure 4.1} on page [20] for an example. In the following we
will always use wop as width measure. We consider the following two problems.

PorLyGonN 2D WIDTH DECOMPOSITION PROBLEM
Instance: A rectilinear polygon P.
Task: Compute a width decomposition of P with respect to wop.

PoLycoN 2D WIDTH QUERY PROBLEM

Instance: A rectilinear polygon P.

Task: Build a data structure which can report for any point p € P a
width representative for p with respect to wop fast.

See Figure [4.7 for an example of a width decomposition with respect to wap. We
first want to mention some work related to these problems.

If we are only interested in a largest width representative, that means a largest
inscribed square in a polygon, we are dealing with largest empty circle problems
which have been well-known in computational geometry for a long time. In its
original form (Shamos and Hoey| [1975]) a finite set of points in the plane is given
and one is searching for the largest circle centered within the convex hull of the
points and not containing any of the points in its interior. Shamos and Hoey| [1975]
showed how to solve this problem in O(nlogn) time using Voronoi diagrams. The
problem of finding a largest empty square can be solved similarly in O(nlogn) time
using L., Voronoi diagrams (Hwang| [1979], Lee and Wong| [1980]). If we are given
pairwise non-intersecting (but possibly touching) line segments instead of points,

27

4 Polygon Decompositions in VLSI Design

|

Figure 4.7: A width decomposition of a simple polygon with respect to wop.

then a largest empty square can still be obtained in O(nlogn) time by using the L,
Voronoi diagrams of line segments (Papadopoulou and Lee| [2001]). This can also be
used to obtain a largest inscribed square in a (not necessarily rectilinear) polygon
by taking border edges of the polygon as segments.

Kaplan and Sharir|[2012] considered the problem where the width measure w(p, P)
is defined in terms of the radius of the largest disk that contains p but whose interior
avoids P, where P is a set of n points in the plane. They showed that w(p, P) can
be queried in time O(log®n) after a preprocessing step taking O(nlog?n) time and
O(nlogn) space.

A similar problem, where P is a simple polygon and w(p, P) is the radius of the
largest disk inside of P containing p, was studied by |Augustine et al.| [2013]. They
provide a solution where w(p, P) can be queried in time O(logn) using O(nlog®n)
preprocessing time and O(nlogn) space.

Boissonnat et al.[[2001] showed that it is possible to preprocess a convex polygon
P in O(n) time and space, such that given as a query a set of k points, the largest
disk inside of P enclosing all k£ points may be computed in O(klogn) time and
O(n + k) space.

Augustine et al.| [2010] proved that the problem of finding a rectangle of maxi-
mum area that avoids a given point set can be solved in O(logn) query time, given
O(n?logn) time and space preprocessing.

The latter problem was also solved by Kaplan et al. [2012], using O(na(n)log* n)
preprocessing time, O(na(n)log® n) space, and O(log" n) query time, where a(n) is
the inverse Ackermann function.

Dumitrescu and Jiang [2012] studied the number of maximal empty axis-parallel
rectangles (or boxes, in higher dimension) among a randomly chosen point set.

In the following we present a new algorithm solving the PoLycoN 2D WIDTH
DEcoMPOSITION PROBLEM in optimal linear time for simple rectilinear polygons,

28

4.2 Polygon Decomposition and Design Rule Checking

) R

(¢) A width decomposi-
tion for the original
polygon is obtained

(a) Degenerated polygon (b) Width decomposition

(black) and slightly for the perturbed
perturbed polygon polygon. The Hanan

satisfying our general
position assumptions

grid of the original
polygon is drawn as
dashed lines.

by rounding corners of
width classes to the
next vertex on the

(red).
Hanan grid.

Figure 4.8: Illustration of degenerated case.

reporting a linear number of rectangular width regions. Using this result, we are
able to build a data structure in linear time and size which is able to answer width
queries in O(logn) time. For rectilinear polygons with holes the preprocessing time
increases to O(nlogn). Note that for our applications in VLSI design polygons are
usually simple.

To simplify our proofs, we assume that P is in general position in the following
sense. We assume that no two horizontal segments of P have the same y-coordinate
and no two vertical segments of P have the same z-coordinate. Let ¢y, ca,. .., ¢, be
the xz-coordinates of vertical segments and the y-coordinates of horizontal segments
of OP (ordered arbitrarily). We assume that for any four distinct indices i, j, k,l €
{1,2,...,n} we have ¢; — ¢; # ¢ — ¢. In other words, no difference between two
coordinates occurs more than once.

Of course, polygons occuring in VLSI design do not fulfill these assumptions in
general. Typically there are many segments that have equal z- or y-coordinates.
However, we can achieve all conditions by slightly perturbing the input data. After
applying our algorithm to the perturbed polygon, we can round the borders of the
width classes to the next z- and y-coordinates occuring in vertices from the original
polygon. This works because the shapes of width classes vary continuously with
changes of the coordinates in P. This procedure is illustrated in Figure [£.§ For
more details on standard perturbation techniques for geometric algorithms see |Seidel
[1998]. Instead of perturbing the data, the algorithm can also be adapted such that
the general position assumption is not necessary.

Our algorithm makes use of the L., Voronoi diagram of P.

29

4 Polygon Decompositions in VLSI Design

Definition 4.13. The L., bisector of two line segments sy, ss is the set {x €
R?| de(s1,2) = deo(s9,7)}. The Lo Voronoi diagram of P is the set of all points
p € P for which there exist at least two different border segments sy, ss of P with

doo(p751) = doo(p7 52) = ;’Ielé%doo(pa Q>

The L., Voronoi diagram can be computed in time O(nlogn) for arbitrary poly-
gons (see [Papadopoulou and Lee| [2001]) and in time O(n) for simple polygons (see
Chin et al.| [1999]).

We will skip the term L., in the following, when there is no risk for confusion.
It is easy to see that the Voronoi diagram is a subset of the union of all bisectors
between line segments of the polygon. Therefore, bisectors define the structure of
Voronoi diagrams and can be viewed as their basic modules.

Bisectors of line segments may contain two-dimensional parts, see Figure To
avoid this, we use lines with slope £1 as bisectors for touching segments instead of
original L, bisectors (see again Figure [£.9a). We call them refined bisectors. We
are only interested in the parts of the bisectors within P. By our general position
assumption, no border segment of an inscribed square in P can have proper inter-
section with two non-touching segments of 0P. This implies that two-dimensional
bisector parts between non-touching segments do not appear within P. For more
details see [Aurenhammer et al.| 2013, Chapter 7] and Papadopoulou and Lee [2001].

Using the refined bisectors to define the Voronoi diagram (more exactly, inter-
secting the Voronoi diagram with the union of all refined bisectors between any two
border segments) results in a refined Voronoi diagram which we denote as Vo (P).
In the following, we only consider this Voronoi diagram which consists of line seg-
ments only. We call points on V. (P) which lie on OP or have at least three incident
segments in V. (P) Voronoi vertices and the parts between these vertices Voronoi
edges. For more information on Voronoi diagrams in general and its applications see
Aurenhammer et al.|[2013] and (Okabe et al.| [2009].

We associate with every point p lying on V4 (P) the unique square Q(p) centered
at p and touching the nearest segments of dP. The following simple but important
lemma is the key relation between the PorLycoN 2D WIDTH DECOMPOSITION
PROBLEM and the Voronoi diagram which we use for our algorithm.

Lemma 4.14. All width representatives for points in P are of the form Q(q) for
some q lying on Voo (P).

Proof. Each width representative () for some point p touches 0P in at least two non-
touching segments, otherwise () could be enlarged within P while still containing p,
a contradiction to the definition of width representatives. Therefore, the center of
Q lies on Vo (P). O

Before we show how a width decomposition can be obtained efficiently by using
this fact we need to prove some structural properties of V.. (P).

30

4.2 Polygon Decomposition and Design Rule Checking

2 a
A , S1
< —- e K\ b
N ‘ S ’
e ~ N
’ N Sz
’ 7/ N Ne
’ i poesses k4
7 ’
52 S
M 0 B — =
, 82

Figure 4.9: Each figure shows a section of a rectilinear polygon (gray) and
refined bisectors of its segments in dashed lines. In Figures (a)
and (b) the yellow areas are two-dimensional parts belonging to the
original, not refined bisectors. Parts contributing to the Voronoi
edge of s; and s; are red.

Lemma 4.15. All Voronoi edges of Vo (P) are horizontal, vertical or diagonal seg-
ments.

Proof. First note that for each Voronoi edge e there exist two segments s, so of 0P,
such that each point on e has the same d..-distance to s; and sy, and there is no
segment of P with smaller distance (just by definition of the Voronoi diagram, note
that this property still holds with our redefined bisectors).

If s; and sy are touching, then the bisector of the segments is a diagonal line,
see Figures and [4.9b] Thus the Voronoi edge, being a connected subset of the
bisector, is a diagonal segment.

If s; and sy are non-touching and parallel (say both horizontal, w.l.0.g.), then by
our general position assumptions the segments have different y-coordinates. The
part of the bisector inside of P consists of at most three pieces, and both endpoints
of the horizontal piece intersect bisectors induced by vertices incident to s; and s,
(see Figure . The Voronoi edge of s; and s, clearly cannot cross these bisectors
and thus consists of the horizontal segment only.

If s; is horizontal and s, is vertical (or vice versa), then the part of the bisector
inside of P again consists of at most three pieces (see Figure . Here only one
diagonal part of the bisector contributes to the Voronoi edge, because the Voronoi
edge cannot cross the bisector induced by the polygon vertex which causes the break
in the bisector of s; and ss. O

Lemma [4.15implies that Vo (P) can be interpreted as a planar straight-line graph
G = (V, Eqtn U Ediag), where Eoyy is the set of horizontal and vertical edges and
Faiag 1s the set of diagonal edges. In the following we identify vertices and edges
with their embeddings in the plane. We now collect some statements about the
structure of G for later use.

31

4 Polygon Decompositions in VLSI Design

7',— Q (eorth)

Q(w)

(a) (b)
Figure 4.10: Illustration of contradictions in Lemma (G in red).

The next two lemmas follow easily from the definition of V., (P) and our general
position assumption, see also the proof of Lemma [4.15 and Figure [4.9]

Lemma 4.16. For any edge e = {v,w} € E,y and any point ¢ on e, OP intersects
both border segments of QQ(q) which are parallel to e, at least one of them in its
interior. If ¢ ¢ {v,w}, then both are intersected in their interiors.

Lemma 4.17. For any edge e € Egqy and any distinct v',w’ € e we have either

Q) & QW) or Q(w') & Q(v').

0, 1 oP
Lemma 4.18. For allv € V we have |§(v) N Egup| = Z.fv 5
1, ifve P\oP

Proof. If v € OP, then v is a vertex of P and the only Voronoi edge containing v is
diagonal (see Figures and [4.9D)), proving [§(v) N Egn| = 0.

If v is a Voronoi vertex in P\ 0P, then by our general position assumptions there
is exactly one border segment of Q(v) whose interior does not intersect 0P, thus
we can move ((v) in direction of this segment while touching two parallel border
segments of JP, implying the existance of an incident horizontal or vertical Voronoi

edge. By the general position assumptions we cannot have two such incident edges,
so [0(v) N Egn| = 1. O

Lemma 4.19. Let eon, €ding € E(G) be incident edges forming a 45° angle, where
€diag = {V, w1} is the diagonal and eon = {v,wo} the horizontal or vertical edge.
Then w; € OP.

Proof. Suppose eqn is horizontal and egiag leaves the right endpoint of eqwn to the
lower left, all other cases are symmetric.

By Lemma [£.17, we have either Q(v) C Q(wi) or Q(w1) € Q(v). If Q(w)
had greater width than Q(v) (see Figure |4.10a)), then we could choose a point p in
the interior of ey, such that the lower border segment of Q(p) (the black line in

32

4.2 Polygon Decomposition and Design Rule Checking

~ s N ’
. N ‘\ .
N N 7
N NN , 4 0
N NN . ,’ .
~ s N
A « f 4 ,'
S AN ‘ .
N N 4
~) ’ ’
N ¢ ’ 4
N ¢ ’ ’
> == ’ 4
N 7 ’ ’
L4 === . 4
<
. N ’ .
. N ’ 4
N . , .
N ¢ - ’ .
N ¢ Sooocooooooo s
D N
\l\ N
vy s >
N
. . N
. . N
AR
N

Figure 4.11: Rectilinear polygon P, refined Voronoi diagram V. (P) (all dashed
lines), and Voronoi core Gyc (red dashed lines).

Figure is contained in the interior of Q(wy), but by Lemma this segment
also intersects 0P, a contradiction.

So we have Q(eqn) 2 Q(w) as illustrated in Figure . Suppose w; ¢ 0P,
then by Lemma wy is incident to an edge €}, € Eown. By Lemma [1.16], 0P
intersects both segments of Q(w;) parallel to €, ., (the black lines in Figure [4.10b)),
at least one in its interior, so JP intersects the interior of (Q(eqn), a contradiction.

Therefore, we have w; € P as claimed. n

We now define the Voronoi core Gy as the embedded planar graph that is ob-
tained from G by deleting all vertices lying on 0P (the leaves of (G) and their incident
edges (see Figure . We note that this graph is a subset of the medial azis intro-
duced by Blum et al. [1967] which for rectilinear polygons coincides with the straight
skeleton introduced by |Aichholzer et al. [1995]. The medial axis has applications in
pattern recognition (Duda and Hart| [1973], Rosenfeld| [1986]), solid modeling (Ver-
meer| [1993]), and mesh generation (Gursoy and Patrikalakis| [1992])). The straight
skeleton is used in computer graphics (Tanase and Veltkamp| [2003]), graph drawing
(Bagheri and Razzazi [2012]), and for roof construction (Aichholzer et al. [1995],
Ahn et al|[2013]). The roots of straight skeletons used for roof construction ac-
tually go back to the 19th century (|Peschka; |1877, p. 86-122]) as pointed out by
Aichholzer et al.| [2012].

Corollary 4.20. For each edge e € Eyy, all incident edges in Gyc are diagonal
and form 135° angles with e.

Proof. Incident edges must be diagonal by Lemma and cannot form 45° angles
with e because Gy does not contain edges ending in P (see Lemma [4.19), thus
they must form 135° angles as claimed. O

33

4 Polygon Decompositions in VLSI Design

.....

Figure 4.12: Rectilinear polygon with Voronoi core Gyc (red dashed lines) and
overlapping edge rectangles (different colors).

By Corollary [4.20] we can provide Eu4, with a natural notion of diagonal neigh-
borhood. For an edge e € Eq we define n «(e), the upper right neighbor of e,
as the edge f € Eyn that is reached from the top or right end of e, respectively,
when following the diagonal edge in the top right direction. If no such diagonal edge
exists, we set n »(e) := . In the same sense the upper left neighbor nx_(e), the lower
right neighbor n~ (e), and the lower left neighbor n (e) are defined.

We need the following stronger version of Lemma [4.14]

Lemma 4.21. All width representatives for points in P are of the form Q(q) for
some point q lying on an edge of E .

Proof. By Lemma we already have Q(q) for ¢ lying on V. (P). Suppose ¢ lies
on the interior of a diagonal edge e, then by Lemma [£.17] moving ¢ along e in one
direction gives an empty square larger than @(¢) and containing Q(q), thus Q(q)
cannot be a width representative for any point in P. Clearly ¢ cannot lie on 9P,

thus by Lemma it must lie on an edge of Egp. O

For e € Ey, the union of all Q(g) for points ¢ on e is a rectangle which we
denote as Q(e) and which we call edge rectangle (see Figure [1.12)). We define w(e)
as the width (the smaller edge length) of Q(e) and C, := Cy) (see Definition
on page for e € Eqn. We can now extend Lemma as follows.

Lemma 4.22. For all p € P we have
wap(p, P) = max{w(e) [e € Eom Ap € Q(e)}

and each width class can be written as

Ce - Q(e) \ U Q(f)
feEorth
w(f)>w(e)

34

4.2 Polygon Decomposition and Design Rule Checking

Q(e)

Figure 4.13: Polygon with Voronoi core (red) and width decomposition (the
lighter the blue, the greater the width class). To obtain C. we
must subtract Q(f) from Q(e), and e and f are far apart in the
Voronoi core.

for some e € E .

Proof. The first part follows directly from Lemma [4.21] For the second part, note
that by our general position assumption the widths of all edge rectangles are pairwise
distinct, so for each width class Cs we have exactly one edge e with w(e) = s.
Subtracting all edge rectangles with greater width from Q(e) results in Cy = C.. [

The lemma implies that, given the Voronoi core for a polygon, its width classes
can be computed by only building differences of edge rectangles. However, using
the formula for C, from Lemma may result in quadratic total runtime, so it is
an interesting question whether subtracting a constant number of edge rectangles
is sufficient to obtain a single width class. The main difficulty here is that edges
whose edge rectangles are needed for the difference may be arbitrary far away from
e with respect to the Voronoi core.

Lemma 4.23. In general, there is no k € o(n) such that for all e € E,uy,

C.=Q(e)\ U @)
fe€EK(e)
w(f)>w(e)

holds, where Ex(e) is the set of edges in E,.y, having distance at most k to e in the
graph Gvyc.

35

4 Polygon Decompositions in VLSI Design

Foe) P (e)

Figure 4.14: Example for an edge e € E,t;, and its diagonal paths.

Proof. The instance in Figure [£.13] can be clearly extended to an instance with n
arbitrary large, showing that for each k € o(n) we have C. C Q(e) \ Ueer, () @(€) as

w(e)>w
claimed.

We now show that each width class can be obtained by subtracting at most four
edge rectangles and how to find these rectangles efficiently.

For any e € Eon we define P x(e) to be the undirected path in Gy that contains
all edges of the sequence (n »(e),n »(n (€)), (n »(n »(n »(e))),...), all connecting
diagonal edges between them, and the diagonal edge connecting e and n »(e). We
define Px (e), P~ (e) and P(e) analogously, and we call them the diagonal paths of
e in the following. See Figure for an example.

We further define e » to be the first edge f on P »(e) with w(f) > w(e), ore » :=0
if no such edge exists. Let ex, e\, and e be defined analogously. We call them the
the diagonal edge pointers of e.

We are now ready to prove the following description of width classes which involves
only a constant number of edge rectangles.

Theorem 4.24. For each e € E,4 we have

Ce = Q(e) \ (Qe 1) UQ(en,) UQ(ex) UQ(ey)).

Proof. Let f € Eqyn be arbitrary with w(f) > w(e) and Q(e) N Q(f) # 0 maximal,
i.e. there is no g € Eoy, with w(g) > w(e) and Q(e) NQ(g) 2 Q(e) N Q(f). If there
is no such f, then we clearly have C, = Q(e), finishing the proof.

We show that f € {e e\, ex e}, proving the theorem by using Lemma m
We first claim that Q(f) contains at least one vertex of Q(e). Suppose not, then
by w(f) > w(e) and Q(e) N Q(f) # 0 the interior of Q(e) U Q(f) contains a line
segment s € dQ(e) of length greater than w(e) and parallel to e. By Lemma [4.16]
applied to e, P intersects s which contradicts s € (Q(e) UQ(f))° and proves the

36

4.2 Polygon Decomposition and Design Rule Checking

Figure 4.15: If 0P does not intersect the right border of Q(e), then the only
edge f with w(f) > w(e) and Q(e) N Q(f) # 0 maximal is either the
upper right (as shown) or lower right neighbor of e.

claim. We assume that Q(f) contains the upper right corner of Q(e), other cases
are symmetric.

Let v be the left or lower vertex of f and u the right or upper vertex of e. We
will slide a point ¢ starting from v along the Voronoi core until reaching u by using
only edges in lower or left direction, implying that f € E(P »(e)).

We first consider the case that 0P does not intersect the right border of Q(u).
Then by Lemma applied to e and u, e must be horizontal and for either f :=
n x(e) or f := n (e) we must have w(f) > w(e) (see Figure 4.15). We also have
Q(e) NQ(f) € Q(e) N Q(f), otherwise the interior of Q(f) would intersect OP, a
contradiction. By the maximality assumption for f we must have Q(e) N Q(f) =
Q(e) N Q(f) which implies f = f € {e e} as claimed, by our general position
assumption. Similarly, if 9P does not intersect the upper border of Q(u), then e must
be vertical and f € {e »,ex } as claimed. So in the following we may assume that
OP intersects both right and upper border of Q(u). This implies that for each p on
Gvc with Q(p) containing the upper right corner of Q)(u) the interior of Q(p) cannot
intersect one of the blue lines in Figure[4.16] thus we have Q(e)NQ(p) = Q(u)NQ(p).

By the maximality assumption for f, the interiors of the left and lower border
parts of Q(v) not contained in Q(u) (the red lines in Figure intersect a vertical
and horizontal segment of 0P, respectively, and the bisector of these two segments
induces a diagonal edge in Gy from v to the lower left. We move ¢ to the other
vertex w of this edge. Note that Q(u) N Q(q) stays equal for this movement. See

Figure for an example.

By Lemma [{.18) w is incident to an edge f’ € Eun, and by Corollary
f" proceeds in lower or left direction. Suppose f' # e and f’ is horizontal as in
Figure (the vertical case is symmetric), then we can move ¢ along f’ until

37

4 Polygon Decompositions in VLSI Design

2
S
[]

Figure 4.16

either the left border of Q(g) intersects P (which happens at the latest at the blue
line) or the lower right corner of Q(g) meets the polygon vertex denoted as p in
Figure [4.17 In both cases, we arrive at a Voronoi vertex v’ incident to a diagonal
edge in lower left direction. Note that Q(e) NQ(q) = Q(u) N Q(q) increases for this
movement, thus we must have w(f’) < w(e) by our maximality assumption for f.
Now we can iterate this procedure to follow edges in lower or left direction. Note
that at any time ()(q) contains the upper right corner of Q(u) and the interior of
(Q)(g) cannot intersect the blue lines in Figures to thus ¢ is in upper right
direction of u until, after a finite number of steps, we must have ¢ = u. Also note
that Q(e) N Q(q) = Q(u) N Q(q) never shrinks, so for all traversed horizontal or
vertical edges g # [we have w(g) < w(e), implying that f = e » as claimed.
O

By Theorem [4.24] the computation of all width classes can be reduced to deter-
mining diagonal edge pointers for each edge in E,., and subtracting four rectangles
from one other rectangle, where the latter part can be trivially done in constant
time.

The determination of all edge pointers on a maximal diagonal path (that means,
a diagonal path of some edge which is not a proper subset of a diagonal path of
some other edge) in one direction can be abstracted to the following problem.

ALL NEXT GREATER NUMBERS PROBLEM

Instance: A sequence of real numbers x1, o, ..., T,.

Task: For each index i € {1,2,...,n} find the smallest index j > ¢
with z; > x;, if existing.

Here the indices correspond to the edges on the diagonal path (ordered in direction

38

4.2 Polygon Decomposition and Design Rule Checking

P W
, QW
e

e-=-=-

Figure 4.18

of the pointers to be determined) and the real numbers correspond to the widths of
the edge rectangles. This problem can be solved in O(n) time with the ALL NEXT
GREATER NUMBERS ALGORITHM (see Algorithm [2).

Theorem 4.25. The ALL NEXT GREATER NUMBERS ALGORITHM works correctly
and runs in O(n) time.

Proof. To prove the correctness we show that the following conditions hold after
executing line [§| of the algorithm:

39

4 Polygon Decompositions in VLSI Design

Algorithm 2: ALL NEXT GREATER NUMBERS ALGORITHM
Input : A sequence of real numbers z1, o, ..., z,.
Output: A function next : {1,2,...,n} — {1,2,...,n} such that next[i] is the
smallest index greater than 7 with e > 5, if existing, and
next[i] = —1 else.

1 prev[i] < —1, next[i] < —1 Vie {1,2,...,n}
2 for 1 < 2 ton do

3 jei—1

4 while j > 1 and z; < z; do
5 next[j] < i

6 J < prevlj]

7 if j > 1 and x; > x; then
8 prev([i] < j

9 return next

(i) Vj <i: prev[j] is the largest index m < j with z,, > z; (or —1 if no such
index exists)

(i) Vj <i: next[j] is the smallest index m with j <m < and x,, > x; (or —1
if no such index exists)

For i = 2 there are two possible cases: If 1 < x5 we enter the while-loop and
set next[1] « 2 in line [5 otherwise we set prev[2] - 1 in line [§] thus for the first
iteration (¢ = 2) both conditions are clearly satisfied after line [§|

Now suppose 7 > 2 and the conditions hold for i — 1. We show that they also hold
for i. If ;1 > z;, then in iteration ¢ we only have to set prev[i| <— ¢ — 1 which is
done correctly in line [§] of iteration i.

Otherwise, if 2,1 < z;, we have to set next[j] < i for each index j with z; >
2 Vj < j' <iand z; < ;. Because condition (i) holds for i — 1, we traverse exactly
those indices in the while-loop and set next[j] <— i correctly. After finishing the
while-loop, j is either —1 or the largest index smaller than ¢ such that z; > z;, in
which case we correctly set prev[i] <— j in line 8 In summary, both conditions are
satisfied after line [§] of iteration i. Condition (ii) for i = n proves the correctness of
the algorithm.

Next we analyze the runtime. When arriving at the body of the while-loop for
some j we have z; < z;, thus in any later iteration i’ > i we have prev[i'] # j by
condition (i). Therefore, we never reach the body of the loop for the same j again,
bounding the total number of iterations of the while-loop by n. So the total runtime
of the algorithm is also bounded by O(n). O

Now we have all ingredients to solve the POLYGON 2D WIDTH DECOMPOSITION
PROBLEM efficiently, see Algorithm

40

4.2 Polygon Decomposition and Design Rule Checking

Algorithm 3: WIDTH DECOMPOSITION ALGORITHM
Input : A rectilinear polygon P with n vertices.
Output: A width decomposition W of P, containing O(n) rectangles.

W<+ 0
Compute Voronoi core V. (P)
foreach e € F,,4, do
if e, ore » not set then
Set €, and €' » for all edges €’ € Eon N (E(P(e)) U{e} UE(P A(e)))
if ex_or e, not set then
Set €'x_or €'\, for all edges €' € FEon N (E(Px (e)) U{e} UE(P (e)))
foreach e € F,,4, do
Add constant number of interior-disjoint rectangles covering the closure of
Qo) (Qe) UQ(en) UQ(ex) UQ(e,)) to W

10 return W

© 0 N O oW N R

We first compute the Voronoi core (line[2) which takes O(nlog n) time for polygons
with holes (Papadopoulou and Lee [2001]) and O(n) time for simple polygons (Chin
et al. [1999]). For polygons with holes, this is the only step requiring super-linear
time. We assume the Voronoi core given in an appropriate data structure for planar
straight-line graphs such as doubly connected edge list (Muller and Preparata, [1978])
or quad edge data structure (Guibas and Stolfi [1985]). In fact, the only thing we
need is that for each edge we can access its incident edges in constant time.

Subsequently, for each edge in E,., we correctly set all diagonal edge pointers
on maximal diagonal paths containing the edge (see lines |4f to . Note that we
set the pointers only once for each maximal diagonal path, therefore this step takes
linear time in total by using the ALL NEXT GREATER NUMBERS ALGORITHM (see
Theorem [£.25)).

Finally, we traverse all edges in F,, again and build the width decomposition by
using Theorem [4.24] (line [9). We summarize the results in the following theorem.

Theorem 4.26. Given a rectilinear polygon P, a width decomposition of P con-
taining O(n) rectangles can be computed in O(nlogn) time. If P is simple, then the
runtime reduces to O(n).

Corollary 4.27. Given a rectilinear polygon P, we can build a data structure in
O(nlogn) time using O(n) space which is able to report a width representative for
any given point p € P in O(logn) time. If P is simple, then the preprocessing time
reduces to O(n).

Proof. We first compute a width decomposition using Theorem resulting in
O(n) rectangles. For each such rectangle we store its corresponding horizontal or
vertical Voronoi edge. Then we build a point location data structure in time O(n)

41

4 Polygon Decompositions in VLSI Design

(see e.g. Kirkpatrick [1983]) which reports for any p € P its at most four cover-
ing rectangles in time O(logn). For each such rectangle, we easily find a largest
empty square covering p and centered at the Voronoi edge stored for the rectangle
in constant time, and report a largest such square. O

See Figure for an example of a width decomposition. For practical imple-
mentations the complicated linear time algorithm for computing the Voronoi core of
a simple polygon may be replaced by a much simpler randomized algorithm running
in O(nlog™ n) expected time (see |Chin et al.|[1999)]).

From a theoretical point of view it is interesting to consider generalizations of
the WIDTH QUERY PROBLEM in terms of the involved geometric objects, see the
following very general (and rough) problem description.

GENERALIZED WIDTH QUERY PROBLEM

Instance: A set of two-dimensional geometric objects S, a two-
dimensional geometric object C.

Task: A data structure which can report for any point p € R? (the
width of) a largest scaled copy of C' containing p that is interior-
disjoint to S.

Note that much of the related work mentioned in the beginning of this section
fits into this problem definition. In the following we assume that C is compact,
convex, symmetric with respect to the origin, and that (0,0) € C°. We define
deo as the symmetric convez distance function induced by C' which is specified as
follows. To measure the distance dc(p,q) the set C' is translated by the vector p
(the red vector in Figure , resulting in a set C’. The ray from p through ¢
(the blue ray in Figure intersects the boundary of C” at a unique point ¢’. We
set do(p,q) = %. It is easy to verify that ¢ — d¢((0,0),q) is a norm in the
plane. See |[Aurenhammer et al., 2013, Chapter 7] for more details. We also assume
that the objects in S are simply-connected compact sets. The width is no longer
measured by the edge length of a largest empty square but by the diameter of a
largest scaled copy of C' that is interior-disjoint to S, so we set

we(p, S) =2 -max{w|3q € R? : do(q,p) < w < de(q, s) Vs € S}.

Each ¢ that maximizes w in this formula is the center of a width representative for
.

We now sketch a very general approach to solve the GENERALIZED WIDTH
QUERY PROBLEM for a large class of geometric objects. For this, we first com-
pute the Voronoi diagram of S with respect to do. For details on Voronoi di-
agrams for symmetric convex distance functions see |[Aurenhammer et al., [2013]
Chapter 12]. For each point p on the Voronoi diagram we define Q(p) as the
unique maximal scaled copy of C' centered at p and interior-disjoint to S. For a

42

Figure 4.19: Width decomposition of a polygon with holes, Voronoi core in
white and different width classes in random colors.

4 Polygon Decompositions in VLSI Design

Figure 4.20

Voronoi edge e we define v, as the set containing all points belonging to e and
we set Q(e) = Upe,, @(p). We further define the width lifting function of e as
le : Qe) = R, l.(p) := max{wec(q,S)|q € Ye,p € Q(q)} for p € Q(e). This func-
tion simply assigns each point p € @(e) the maximum width of a scaled copy of C'
containing p and centered at ..

We clearly have we(p, S) := max, [.(p) since for each p there is a largest scaled
copy of C' containing p which is centered at the Voronoi diagram and thus centered
at some Voronoi edge. Our goal is to partition the plane into maximal connected
regions such that for all points p in the interior of one region max,.l.(p) can be
defined by a single width lifting function. Such a partition is known as mazimization
diagram or upper envelope of a set of functions, see Sharir and Agarwal| [1995] where
this topic is described in great detail. Given such a partition, the last step is now
to build an appropriate point location data structure on top of the partition. In
summary we have the following preprocessing steps:

a) Compute the Voronoi diagram of S with respect to dc.
b) Compute the width lifting function [, for each Voronoi edge e.
¢) Compute the upper envelope M of all ..
d) Build a point location data structure on M.
Based on this, a width query for a point p can be answered as follows:
(i) Find a region containing p by querying the point location structure.

(ii) Evaluate the width lifting function corresponding to the found region at p
yielding we(p, S).

44

4.2 Polygon Decomposition and Design Rule Checking

Of course, the crucial question is for which types of geometric objects a Voronoi
diagram, an upper envelope, or a point location data structure can be computed in
reasonable time, and what the complexity of the involved structures, particularly
of the width lifting functions, is. We do not go into details how to obtain a width
representative instead of the width here since this very much depends on the type
of the geometric objects.

Let us now reconsider the POLYGON 2D WIDTH QUERY PROBLEM. Here the
width lifting function is constant for each e € FEyupn, namely l.(p) = w(e) for
p € Q(e), and Theorem implies that each single region of the maximization
diagram of all width lifting functions can be computed in constant time, given
the diagonal edge pointers. Note that our solution for the Porycon 2D WIDTH
QUERY PROBLEM follows exactly the proposed approach for the GENERALIZED
WIiDTH QUERY PROBLEM above.

As another example, we now analyze this approach for the case where S is a set
of line segments (n := |S|) and C' is a symmetric convex polygon with constant
complexity. The Voronoi diagram of S with respect to do can be computed in time
O(nlogn) and has complexity O(n) in this case (Leven and Sharir [1987]). For
simplicity we assume that no segment of C' is parallel to any line segment in S, then
the Voronoi diagram does not contain any two-dimensional parts (see [Aurenhammer
et al. 2013, Chapter 7]). It is easy to see that the functions [, are piecewise linear
functions of constant complexity (see Figure for an example), and by the results
in [Sharir and Agarwal, 1995, Chapter 7] the maximization diagram of them has
combinatorial complexity at most O(n?a(n)) and can be computed in time O(n?*°)
for any € > 0. Finally, building a point location data structure on top of the
maximization diagram can be done in time linear in the combinatorial complexity
of the maximization diagram, namely O(n?a(n)), allowing location queries in time
O(log(n*a(n))) = O(logn) (Kirkpatrick| [1983]). The corresponding width lifting
function can be evaluated in constant time. In summary, we can build a data
structure in O(n*™) time (for any € > 0) using O(n?a(n)) space which is able to
report we(p, S) for a given point p € R? in O(logn) time. The same result can be
obtained for the case where S is a set of interior-disjoint simple polygons with n
edges in total (see again Leven and Sharir| [1987]).

We do believe that this result is not best possible. The interesting question is
if the complexity of the maximization diagram and its computation can be better
bounded by utilizing the structure of the Voronoi diagram, where the width lifting
functions essentially arise from. This bounding was exactly what we needed to obtain
the efficient solution for the PoLyGoN 2D WIDTH DECOMPOSITION PROBLEM.
We feel that obtaining similar results for other types of geometric objects (also
for curved objects) serves as an interesting future research topic in computational
geometry. For many types of geometric objects the computation and complexity of
the maximization diagram seems to be the bottleneck, so again the key seems to be
utilizing the structure of the Voronoi diagram.

45

4 Polygon Decompositions in VLSI Design

Figure 4.21: Part of a Voronoi edge (blue) of two line segments (red) with
respect to a convex distance function defined by a regular octagon,
and the width lifting function corresponding to this part of the
edge (upper envelope of green polyhedron which is the convex
hull of the two prisms).

We finally note the interesting fact that the Voronoi diagram itself can be viewn as
the minimization diagram of certain distance functions, as first observed by |[Edels-
brunner and Seidel [1986]. So our above approach contains minimization or maxi-
mization diagrams twice, first in the Voronoi diagram and second to obtain the data
structure for width queries, giving a hint to the power of this concept. These dia-
grams are also closely related to Davenport-Schinzel sequences, another well-known
tool in computational geometry and combinatorics (see Sharir and Agarwal [1995]).

4.3 Decomposing the Union of Expanded
Polygons

We now consider a geometric problem arising from clock network design, a step
in VLSI design dedicated to the construction of a network transmitting the clock
signals to storage elements (latches) on a chip. In Mafiberg [2009] the tool BonnClock
(part of the BonnTools software collection) is described which builds such a network
(called clocktree) successively in the following way.

First, latches which are allowed to receive the clock signal roughly at the same
time and which are not too far apart are combined to clusters. The involved latches
of one cluster are called sinks and can receive the clock signal from a common source.
The position of the source and the device realizing the source are determined later.

We are now interested in a set M of feasible positions where the source can be
placed later on. Such positions must not be too far apart from any sink and must
not intersect with any region on the chip that is already blocked by other devices.

46

4.3 Decomposing the Union of Expanded Polygons

The maximal distance from the source to any sink (which we denote by r in the
following) is measured in d;-distance because the routes connecting source and sinks
later on may only run in horizontal or vertical direction.

Modeling the set of sinks as a point set {pi,ps,...,p,} and the blockages as
a rectangle set {Ry, Rs,..., R} in the plane we can describe the set of feasible
positions as follows:

M={zreR?|d(x,p;) <rVie{l,2,...,n}and x ¢ R; Vj € {1,2,...,m} }

= N 4\ U &

1€{1,2,....,n} je{1,2,....m}

where A; := {z € R?|d;y(z,p;) < r}, so each A; is a scaled and translated copy of
the L; unit square.

So alltogether we have a set of clusters, and for each cluster C' we have a set Mg
where a source for C' may be placed later on. Now all sinks and sources are added
as nodes to the clocktree, together with one edge between each sink and its assigned
source.

In the next step the previous sinks are not considered anymore, but the previous
sources are considered as sinks now. These new sinks are again combined to clusters,
and feasible positions for new sources are determined. This process is iterated until
one arrives at a common source for all current sinks, the root of the clocktree. Note
that in general each A; is the union of convex polygons with horizontal, vertical and
diagonal segments only (called octagons because of at most eight vertices).

Finally, for all nodes of the clocktree suitable positions and devices realizing these
nodes are chosen, and the connections corresponding to the edges of the clocktree
are routed. For these choices objectives such as power usage and area usage are
taken into account.

See Maflberg [2009] for more details on clock network design which we only
sketched briefly here. A key problem in the whole process can be stated as fol-
lows: Given an interior-disjoint octagon set S, compute an interior-disjoint octagon
set &’ covering

Uges{l' € RZ‘dl(x, S) < d} = US@A

for A := {x € R?|||z||; < d} being a scaled copy of the L; unit square. In |Gester
[2009] an O(nlogn) algorithm for this problem is given, using the L., Voronoi
diagram of octagons.

We study a more general variant of this problem and give a much simpler O(n logn)
algorithm solving this problem.

Definition 4.28. A set A C R? is called zonogon if it is the finite Minkowski sum
of line segments.

47

4 Polygon Decompositions in VLSI Design

A zonogon is either a line segment or a simple polygon. If it is a line segment,
then we consider the two endpoints as vertices of the zonogon. See [Ziegler, 1995
Chapter 7] for more details on zonogons. A scaled copy of the L; unit square can
be represented as the following Minkowski sum of two line segments and thus is a
ZONogon:

werlldiza = (-5.-3)(53) @ (-53) (5-3)

We consider the following problem.

POLYGON EXPANSION PROBLEM

Instance: An interior-disjoint polygon set S, a zonogon A with a fixed
number of vertices.

Task: Compute an interior-disjoint polygon set S’ covering JS & A.

We note that for a zonogon A with k vertices we can compute a set of line segments
whose Minkowski sum equals A in time O(k) (see Boltyanskii and Yaglom| [1961]),
so we may assume the line segments as given in the input w.l.o.g. As objective, we
want the output set S’ to contain preferably simple and few polygonal objects.

A natural approach to solve the POLYGON EXPANSION PROBLEM is to first ex-
pand all polygons of S by A, that means computing the polygon set P := {S@GA|S €
S}, and represent this set as interior-disjoint polygon set afterwards. However, one
difficulty here is that P might contain Q(|S|*) many pairs of intersecting polygons,
even if the contour of P has low complexity, see Figure[4.22] If P only contains axis-
aligned rectangles, then this difficulty can be resolved: We can compute the contour
of n rectangles in optimal time O(nlogn + m), where m is the number of contour
edges (see |(Cheng and Janardan [1991]). However, for more general polygons in P,
even for the case that all polygons are octagons as in our original application, deal-
ing with Q(|S|?) many intersecting polygons is much harder and it is not clear how
to compute the contour of P (or a decomposition into an interior-disjoint polygon
set of size O(m)) efficiently.

Therefore, it might be a better idea to use an approach which avoids intersecting
objects at all. In |Gester| [2009] the special case where S is an octagon set and A is a
square is considered, and the L., Voronoi diagram of S is used to avoid intersections.
There it is proved that the interior-disjoint polygon set P’ := {(S®A)NVR(S)|S €
S} covers US @ A and can be computed in O(nlogn) time, where VR(S) denotes
the Voronoi region of S.

In the following we describe a much simpler O(nlogn) time algorithm yielding
O(n) interior-disjoint trapezoids as output (Algorithm []). The key idea is that
expanding S by A = s1®s9@. . .PH s can be reduced to a sequence of one-dimensional
expansion steps, using the associativity of the Minkowski sum. More detailed, the
algorithm successively computes the sets US@®s1, USHsiPse, ... ,USPs1D

48

4.3 Decomposing the Union of Expanded Polygons

(0;0) ; (SBA|S eS8

Figure 4.22: Instance with Q(|S2|) many pairs of intersecting expanded poly-
gons. The darker the gray, the more expanded polygons overlap.

So @ ...D sg. In any step we are given an interior-disjoint polygon set S’ and a line
segment s’, and compute S’ @ s’ which can be done fast by using a trapezoidal map,
a well-known data structure in computational geometry which has applications in
the context of point location problems (Berg et al.|[2008]) and polygon triangulation
(Seidel [1991], Fournier and Montuno| [1984]). We describe this data structure in
the following.

Let L be a set of non-crossing line segments and let P be the set of endpoints
of segments in L. Let B be the bounding box of P and L’ be the union of L and
of the four border segments of B. For each point p € P, let p,, be the maximal
vertical segment whose inner part does not intersect any segment of L', and whose
lower endpoint is p. If no such segment exists, we set p, = 0. Similarly, let paown
be the maximal vertical segment whose inner part does not intersect any segment
of L', and whose upper endpoint is p. If no such segment exists, we set paown = 0.

It is easy to see that the set of line segments L' U U,y p(Pdown U pup) subdivides B
into trapezoidal regions whose left and right borders are vertical segments. In other
words, the connected components of B\ (L'UU,ecp(Pdown Upup) are open trapezoids,
and we define 7 (L) to be the set containing all these open trapezoids.

The set 7 (L) corresponds to a trapezoidal map as defined in Berg et al.| [2008]
and can be computed in time O(nlogn) with a simple plane sweep algorithm (cf.
). There also exist simple algorithms using random sampling, running in
O(nlogn) expected time and using O(n) expected storage, well suited for building
a point location data structure (see Berg et al. [2008]). The following result can also
be found in Berg et al. [2008].

Lemma 4.29. [T(L)| <3-|L| + 1.

For an interior-disjoint polygon set S we define T(S) = T (L), where L is the set

49

4 Polygon Decompositions in VLSI Design

T~

\ /
.ﬁ/

Figure 4.23: A trapezoidal map of two polygons (gray), given by black lines.

of line segments of all polygons in S. In this case, a trapezoid in 7(S) is either
fully covered by a polygon in S or it is disjoint to all polygons in & which we will
use for our algorithm. See Figure for an example of a trapezoidal map. Given
T(S) for a polygon set S and given a line segment s = (0,0)(0,d) for some d € R,
computing the Minkowski sum JS & s is easy as we will see in the following.

We are now ready to describe and analyze Algorithm 4 which solves the POLYGON
EXPANSION PROBLEM. The input is an interior-disjoint polygon set S and a set
A=5Dsy®...D s, where all s; are line segments. For the runtime analysis, note
that we assume k to be fixed. The output is an interior-disjoint trapezoid set S’
covering [JS @& A. In the following let n be the number of vertices of all polygons
in §. Throughout the algorithm S’ is an interior-disjoint polygon or trapezoid set.
In each call of Procedure expand_1d &’ is expanded in one direction given by the
current s;.

We first prove the correctness of the algorithm. It is easy to see that the output
set &’ consists of interior-disjoint trapezoids because all trapezoids inserted into
S” in Procedure expand_1d are interior-disjoint by definition of 7(S’) and by the
choice of 7" in line [14] (see Figure for a visualization of line [14). It remains to
show that these trapezoids cover exactly the set JS & A. We show by induction
that in the i-th call of Procedure expand 1d the returned set S” covers exactly
S = US D s Dsy @ ... Ds;, proving the above claim by associativity of the
Minkowski sum. We further set Sy :=US.

Suppose that in the i-th iteration S’ covers S;_; at the beginning of Procedure
expand_1d (which is trivial for ¢ = 1). W.l.o.g. we may assume s; = (0,0)(0,d),
otherwise the whole instance is rotated in line [6] and rotated back in line [[6l Now
observe that when §” is returned, it contains two types of trapezoids: first trapezoids
covering all points in S;_; (inserted in line , and second trapezoids covering all
points in (S;—1 @ s;) \ Sy, (inserted in line [15). Therefore, S” covers exactly S; as
claimed.

The runtime of Procedure expand_1d is clearly dominated by computing 7 (S’)
which can be done in time O(nlogn) as noted above. Since k is fixed, also the total

20

4.3 Decomposing the Union of Expanded Polygons

Algorithm 4: POLYGON EXPANSION ALGORITHM
Input : An interior-disjoint polygon set S, a zonogon A = s; B 59 P ... D Sk.
Output: An interior-disjoint trapezoid set S’ covering S @ A.

18«8

2 for i < 1 to k do

3 S’ + expand_14(S’,s;)

4 return &’

5 Procedure expand_1d(S’, s;)
6 Rotate and translate &’ and s; such that s; = (0,0)(0,d) for some d € R
7 Compute 7(S')

8 S" <+
9 foreach trapezoid T in T(S’) do
10 if T is covered by S’ then
// add covered trapezoids
11 S" « S"U{T}
12 else
// add filled empty trapezoids
13 Siow < lower segment of T’
14 T’ + set of at most two interior-disjoint trapezoids covering
(Slow S5 32‘) NnT
15 S+« S"uT’
16 Rotate and translate S” back
17 return S”

runtime of the algorithm is O(nlogn). By applying Lemma once for each call
of Procedure expand_1d the output set &’ contains O(n) trapezoids. We summarize
our results in the following theorem.

Theorem 4.30. Given an interior-disjoint polygon set S with n vertices in total
and a zonogon A with a fized number of vertices, a set of O(n) interior-disjoint
trapezoids S’ covering US @ A can be computed in time O(nlogn).

See Figure for a visualization of Procedure expand_1d of Algorithm [4 Note
that in line [7] we may use any algorithm for computing a trapezoidal map, for
example random sampling algorithms which seem to be easiest to implement, but
provide only a O(nlogn) expected runtime bound. In this case there is no sweep
line process involved in our algorithm. Also note that the algorithm can be easily
adapted to output the boundary of JS @ A instead of a covering trapezoid set.
For this we replace the foreach-loop by a sweep line procedure (in vertical direction)
which does not insert trapezoids directly into 8” as in lines[11]and [I5], but maintains

o1

4 Polygon Decompositions in VLSI Design

~~~~~ - Slow D Si

Slow

Figure 4.24: Visualization of line of Algorithm
decomposition of (sjow @ s;) N T (left side) into two trapezoids (in
red and blue, right side).

the union of neighboring trapezoids as unfinished polygons and inserts them later
into S”.

We implemented Algorithm 4] as part of the BonnTools where it is used for the
application in clock network design described in the beginning of this section. See
Figure [£.26] for an example instance solved by this algorithm.

52



4.3 Decomposing the Union of Expanded Polygons

Figure 4.25: Visualization of Procedure expand_1d. The first picture shows
sections of two polygons, in the second picture blue lines giving
a trapezoidal map of the empty space between the polygons are
added (for simplicity, the polygons itself are not decomposed into
trapezoids here). In the third picture the empty trapezoids are
filled with respect to s;. New left and right borders of resulting
trapezoids are drawn as red lines. The last picture shows the
resulting decomposition into trapezoids.

53



4 Polygon Decompositions in VLSI Design

(a) A set of octagons, resulting from interior-disjoint octagons ex-
panded by a certain L distance.

54

(b) A set of interior-disjoint trapezoids covering the same area.

Figure 4.26



5 VLSI Routing for Multiple
Patterning Technology

In this chapter we focus on new challenges in VLSI routing arising from multiple
patterning. Multiple patterning is a technique for increasing feature density on a
chip layer by assigning objects on this layer to different manufacturing steps. These
steps are typically abstracted as colors. The main difficulty for a routing tool is
that design rules now depend not only on the geometry of the involved objects
but also on their colors modelling the different manufacturing steps. Basically the
minimum allowed distances between same-colored shapes are considerably larger
than distances between shapes colored differently. The routing tool has to choose
and maintain these colors and produce a routing solution which is clean with respect
to the color-dependent design rules.

The most important manufacturing technologies for double patterning, where two
different manufacturing steps for objects on one layer are used, are LELE (litho-
etch-litho-etch) and SADP (self-aligned double patterning). In LELE the objects on a
layer are assigned to two different masks and the final layout on the chip is produced
by two exposure steps using these masks. Here one needs a very high accuracy in
mask positioning to create the appropriate spacings between objects printed by
different masks. See Figure for an illustration. Here the color dependency
of the shapes is symmetric, that means permuting colors does not influence the
feasibility of shapes, and it is possible to overlay shapes of different colors. Such
an overlay is called stitch and has to obey complex design rules to ensure electrical
connectivity between the involved shapes manufactured by different masks. Also
possible manufacturing variations are particularly critical for stitches and impinge on
the yield rate (the amount of manufactured chips that work as intended). Therefore
it is desirable to minimize the use of stitches.

In SADP technology chemical spacers, called sidewalls, are created around objects
printed by the first mask (called mandrel mask). The second type of objects is built
by gaps between these sidewalls. To allow that not all such gaps result in metalized
objects, a block mask is used to prohibit certain areas from being metalized. For
SADP color dependency is not symmetric and stitches are technically not possible.

For more details on the lithographic process see |[Finders et al. |[February 2008]
for LELE and |Kim et al. [2006], Maenhoudt et al.| [2005] for SADP. Both LELE
and SADP technologies can be extended to more than two colors (called triple
patterning, quadruple patterning and so on) to further increase feature density or

25



5 VLSI Routing for Multiple Patterning Technology

(a) Layout without multiple pattern- (b) Layout with multiple patterning (LELE
ing, all shapes are manufactured by technology), one mask for blue and one
the same mask. d— is the mindist mask for red shapes. d— is the mindist
between any two shapes. between any shapes on the same mask,

d- is the mindist between any shapes on
different masks.

Figure 5.1

to reduce coloring conflicts. In the following, the terms LELE and SADP include
any of these extensions as well.

For economical reasons only few layers on a chip are manufactured in multiple
patterning technology, typically transistor layers and lower wiring or via layers. Here
it is also possible that a via layer is produced with single patterning technology, while
both neighboring wiring layers are produced with multiple patterning technology.
This poses tough challenges to the routing tool since minimum distances between
vias are much larger than minimum distances between wires on the neighboring
layers. We get back to this problem in Section [5.4.2] where we show how to avoid
via (same-net-)mindist violations correct-by-construction.

In Section [5.2] we investigate the fundamental problem how to color a given lay-
out with respect to color-dependent design rules. This problem occurs on multi-
ple patterning transistor and routing layers, depending on the multiple patterning
methodology used. In Section we describe how layouts can be built such that
they are guaranteed to be colorable afterwards.

In the main part of this chapter, Section [5.4] we explain how multiple patterning
is managed in BonnRoute. The most important tools used for this are an automatic
coloring, track patterns, and a multi-label path search. In Section [5.4.1 we describe
how BonnRoute uses automatic coloring and track patterns to maintain an easy
routing flow on the one hand and achieve high packing density of wires on the other
hand. Section describes how detailed routing for long connections is done
in presence of multiple patterning. Our approach does not require stitches at all
and hence avoids the yield and routability penalties associated with it. It is suited
for both LELE and SADP technologies and is used for routing real-world multiple
patterning instances (see Section. We keep color dependencies off the standard

26



5.1 Multiple Patterning Setting

shortest path algorithm by using the automatic coloring described in Section [5.4.1]
A core tool of our approach is a very general and powerful multi-label shortest
path algorithm which is used to compute design rule clean paths and non-trivially
colored paths in situations where standard shortest path algorithms do not find
good solutions. In Section we present results demonstrating that BonnRoute
produces high-quality routings in short runtime on real-world multiple patterning
designs. For these results we combined BonnRoute with an external procedure for
cleaning up remaining design rule violations.

5.1 Multiple Patterning Setting

We now define our multiple patterning setting formally. For each layer z € Z,; we
assume a set of multiple patterning colors {1,...,k.}. On a single patterning layer
we have k., = 1. A coloring for a shape set S is a function as mapping each shape
S € Stoacolorce {l,...,kys} Forasubset T C S we denote ag restricted to
the domain 7 as a7.

For multiple patterning technology a checking oracle cannot decide legality of
shapes just by their geometry, but it needs to take the colors of all involved shapes
into account. Therefore, we assume a colored checking oracle 1), which is a function
such that given a shape set S and a coloring as for S we have

0ul(S, as) 0, if the shapes in S colored by ags violate any design rule
c\©o, as

1, else.

We call a coloring as with ¥.(S,as) = 1 a feasible coloring for S. We further
assume an uncolored checking oracle v, which is a function such that given a shape

set S we have
Du(S) > (1)7 iﬁ for each 7 € (‘;) there is a coloring o/ with ¢.(7,0%) =1
, else.

An uncolored checking oracle always assumes the best case for the colors when
checking two shapes. We may have 1, (S) = 1 although there is no coloring as such
that 1.(S,as) = 1. The advantage of an uncolored checking oracle is that it does
not need a coloring of the shapes as input and thus allows a very simple multiple
patterning methodology, taking coloring complexity completely off the routing algo-
rithms and shifting it to a separate and independent coloring step, see Algorithm [5

Algorithm 5: Uncolored Routing Methodology

1 Compute uncolored routing using the uncolored checking oracle v,

2 Compute coloring of routing minimizing DRC-errors with respect to 1.

3 Resolve remaining DRC-errors by local post-processing and rip-up and reroute,
using . as checking oracle

57



5 VLSI Routing for Multiple Patterning Technology

Note that here the uncolored main routing step is not affected by multiple pat-
terning at all. The coloring step raises the question how to (partially) color a given
uncolored layout optimally which we discuss in Section The main challenge of
this methodology is to resolve the remaining errors in the third step. Here it is not
clear how much of the routing has to be restructured and if routing convergence
can be obtained at all. Also here we have to take color-dependent design rules into
account, in contrast to the first step.

Another possible methodology is that routing algorithms know about colors all
the time (and not only in the cleanup step as in Algorithm |5) and compute and
maintain them for all created wires. However, if the main sequential routing step
chooses colors for wires arbitrarily while satisfying the colored checking oracle, this
may lead to bad space utilization caused by gaps which cannot be used by wires
routed later on. See Section and Figure on page [73] for more details.

In Section we describe a third methodology which is implemented and suc-
cesfully used in BonnRoute for routing real-world multiple patterning designs. Here
wires are automatically colored according to a pattern, guiding the sequential rout-
ing step and producing dense wire packings. Only if a connection cannot be routed
this way we allow deviations from the pattern by using a multi-label shortest path
algorithm.

5.2 Coloring Given Layouts

In this section we consider the problem of coloring an existing uncolored chip layout
from a theoretical perspective. In practice, design rules depending on the color
operate only on shapes on the same layer. Therefore, we can solve the coloring
problem for each layer seperately.

LAYER COLORING PROBLEM

Instance: A shape set S on layer z € Z,.

Task: Compute a coloring ag such that 1.(S, as) = 1, or decide that
there is no such coloring.

We assume from now on that the feasibility of a shape set can be determined by
checking all two-element subsets of the set. That means, for a shape set S and a
coloring g, we assume that 1.(S,as) = 1 if and only if for all T € (‘;)
»e(T,ar) = 1. This assumption is realistic since we are only interested in color-
dependent design rules here, and these are typically mindist rules involving only
two shapes. Since minimum distances between same-colored shapes are larger than
minimum distances between differently-colored shapes, we may also assume that if
two non-intersecting shapes are legal when colored equally, then they are also legal
when colored differently. Note that for intersecting shapes this is not true because

then the different colors correspond to a stitch which has to obey complex design

we have

o8



5.2 Coloring Given Layouts

rules. We here restrict ourselves to the case where no stitches are allowed at all,
that means intersecting shapes must be colored equally. Therefore, we assume that
Y.(S,as) = 0 if ag colors any two intersecting shapes of S with different colors. In
Section we discuss how stitches can be incorporated, if needed.

We now show how the LAYER COLORING PROBLEM can be transferred into well-
known optimization problems on graphs for different design rule settings.

5.2.1 Color-Symmetric Design Rules

We first assume that we only have color-symmetric design rules, that means permut-
ing the colors of shapes does not influence the feasibility of these shapes. Formally,
for each shape set & on layer z, for each coloring as, and for each permutation
m:{1,2,... k. } = {1,2,..., k. } we have ¢.(S, as) = ©.(S, 7o as). This setting is
realistic for LELE technology, but not for SADP technology.

In the following we use the connected component partition Cs of S, that is the set
of maximal subsets A C S with the property that |J.A is a connected set. Since
we do not allow stitches, all shapes in one connected component must get the same
color. We further assume 1, (S) = 1 which is motivated by the application of layout
coloring in Algorithm [5] leading to the following problem.

SYMMETRIC LAYER COLORING PROBLEM

Instance: A shape set S on layer z € Z,; with ¢,(S) = 1, and color-
symmetric design rules.

Task: Compute a coloring as such that 1.(S, as) = 1, or decide that
there is no such coloring.

We now translate this problem to a graph coloring problem. A k-coloring of a
graph is a mapping of its vertices to numbers in {1, ..., k} such that vertices incident
to the same edge are mapped to different numbers (see |Korte and Vygen| [2012]).

Definition 5.1. The color-symmetric conflict graph for a shape set S is the undi-

rected graph Gs with vertices
V(Gs) = Cg

and edges

C
E(Gs) = {{01,02} € <2S> |E|Sl € 01,52 € Cg : wc({Sl,SQ},a{SL&}) = 0},

where ayg, s,) s the coloring function which maps both Sy and Sy to color 1.

In the following we use n := |V (Gs)| and m := |E(Gs)|. The graph G contains
an edge between any two connected components of shapes which are not allowed to
have the same color. Since design rules are color-symmetric and we have ¢, (S) = 1,
each two components not connected by an edge do not produce any design rule

29



5 VLSI Routing for Multiple Patterning Technology

Figure 5.2: A 2-coloring of the graph Gs corresponding to the colored instance
in Figure

violation when colored differently. Therefore, each coloring as with 1.(S,as) = 1
corresponds to a k,-coloring in Gs and vice versa. It remains to solve the following
problem.

GRAPH k-COLORING PROBLEM

Instance: An undirected graph G.

Task: Compute a k-coloring of G, or decide that there is no such
coloring.

See Figure for an example. Before turning to this problem, we first discuss the
runtime for converting an instance of the SYMMETRIC LAYER COLORING PROB-
LEM to the graph Gs. The connected component partition Cs of S can be computed
in O(|S|log|S|) time (see Imai and Asano [1983]), yielding the vertices of Gs. In
the literature the connected components are often assumed to be given as recti-
linear polygons in the input, but we use shapes because we assume the checking
oracle to check shapes only which is more realistic than checking arbitrary rectilin-
ear polygons. If simple rectilinear polygons are given, we can decompose them into
shapes appropriate for the checking oracle in linear time by using the algorithm in
Section [£.2.2]

The runtime for generating the edges of G's very much depends on the complexity
of the design rules. In the worst case we need |S|* calls to the design rule oracle,
but for realistic design rules it is sufficient to check for conflicts only locally within
a certain distance, reducing the number of oracle calls substantially.

In the following we focus on the GRAPH k-COLORING PROBLEM and collect some
theoretical results. For most results G needs to be planar which might not be the
case for all possible design rules. Note that one can find a planar embedding of a

60



5.2 Coloring Given Layouts

given graph or decide that it is not planar in linear time (see Hopcroft and Tarjan
[1974]).

A 2-coloring of a graph is also known as a bipartition. It is well known in graph
theory that a graph is 2-colorable (bipartite) if and only if it has no odd cycles (i.e.,
cycles of odd length), and that one can decide if a graph is bipartite, and find a
bipartition if there exists one, in linear time (see [Korte and Vygen, 2012, Chapter 2];
Konigl [1916]). Therefore, we have the following proposition.

Proposition 5.2. The GRAPH 2-COLORING PROBLEM can be solved in linear time.
For three colors we have the following negative result.

Theorem 5.3 (Dailey| [1980]). The GRAPH 3-COLORING PROBLEM is NP-hard,
even if G is planar and all vertices have degree 4.

Even the problem of deciding whether such a graph is 3-colorable is NP-complete
(Dailey| [1980]). The fastest known algorithm for the GRAPH 3-COLORING PROB-
LEM runs in O(1.3289") time (Beigel and Eppstein| [2005]).

The famous question if each planar graph is 4-colorable dates back to the year
1852 (see |Fritsch and Fritsch| [1994] for a history of this problem). The positive
answer, known as the four color theorem, was first proved by [Appel et al.| [1977a,b]
via a very complicated and computer-assisted proof. Later [Robertson et al. [1997]
gave a simpler, still computer-assisted proof which leads to an O(n?) algorithm for
finding a 4-coloring for a given planar graph.

Theorem 5.4 (Appel et al.| [1977ayb], [Robertson et al.| [1997]). Each planar graph
is 4-colorable, and a 4-coloring can be found in O(n?).

For at least five colors the coloring problem becomes easy in planar graphs, see
Frederickson [1984] for a description of several linear time algorithms.

Theorem 5.5. A 5-coloring for a planar graph can be computed in O(n) time.

We point out the interesting fact that the planar GRAPH k-COLORING PROBLEM
is polynomially solvable for at most two or at least four colors while being NP-hard
for three colors.

So far we only considered the problem of finding a coloring for all shapes or decide
that none exists. However, when solving the layout coloring step in Algorithm [5] it
is very unlikely that there exists a feasible coloring for all shapes. In such a case,
solving the SYMMETRIC LAYER COLORING PROBLEM just gives us the answer that
there is no feasible coloring which does not give any hint how to resolve the conflicts.
In practice, it is more convenient to find a maximum subset of connected components
for which a feasible coloring exists, and to compute such a coloring. After that, we
can focus on uncolored components only and try to get rid of the remaining conflicts
by using rip-up and reroute techniques. We consider the following problem.

61



5 VLSI Routing for Multiple Patterning Technology

PARTIAL SYMMETRIC LAYER COLORING PROBLEM

Instance: A shape set S on layer z € Z,; with ¢,(S) = 1, and color-
symmetric design rules.

Task: Compute a set of connected components C' C Cs containing
the set of shapes 7 := JC’, and compute a coloring a7 such
that ¥.(T,a7) = 1 with |C’'| maximum.

We again use the conflict graph Gs. We first consider the case k, = 2, i.e. double
patterning. Then the PARTIAL SYMMETRIC LAYER COLORING PROBLEM reduces
to finding a maximum set W C V(Gg) such that the induced subgraph Ggs[W] is
2-colorable. This can be reformulated to finding a minimum set of vertices whose
deletion makes G g bipartite, known as the graph bipartization problem (Choi et al.
[1989]).

GRAPH BIPARTIZATION PROBLEM

Instance: An undirected graph G.

Task: Compute a minimum vertex set U C V(G) such that G[V '\ U]
is bipartite.

Such a vertex set U is also known as an odd cycle transversal since it hits all odd
cycles. We have the following negative result.

Theorem 5.6 (Choi et al.|[1989]). The GRAPH BIPARTIZATION PROBLEM is NP-
hard, even when restricted to planar graphs whose mazximum vertex degree exceeds
three.

On the positive side, the GRAPH BIPARTIZATION PROBLEM is fized-parameter
tractable, leading to the following results. Let t be the cardinality of an optimal
solution U of the GRAPH BIPARTIZATION PROBLEM.

Theorem 5.7 (Reed et al.| [2004],Hiffner| [2005]). The GRAPH BIPARTIZATION
PROBLEM can be solved in O(3'mn).

Theorem 5.8 (Fiorini et al. [2008]). The planar GRAPH BIPARTIZATION PROBLEM
can be solved in O(n) time for fized t.

Recently, [Kratsch and Wahlstrom| [2012] gave a randomized polynomial kernel-
ization for the GRAPH BIPARTIZATION PROBLEM. A polynomial kernelization is a
polynomial algorithm turning the graph instance into an equivalent instance whose
size depends only polynomially on ¢. Their approach is based on matroid theory.

For k, > 4 and Gs planar the PARTIAL SYMMETRIC LAYER COLORING PROB-
LEM is equivalent to the SYMMETRIC LAYER COLORING PROBLEM since we always
find a complete coloring by Theorem [5.4]

We now mention some results for the weighted version of the PARTIAL SYMMET-
RIC LAYER COLORING PROBLEM. Here each connected component in S is assigned

62



5.2 Coloring Given Layouts

a nonnegative weight and we want to find a set |C’| of maximum weight instead of
maximum cardinality. These weights can be used to incorporate the estimated hard-
ness of rerouting a component, for example. For k, = 2 this problem reduces to the
weighted GRAPH BIPARTIZATION PROBLEM for which Baiou and Barahonaj [2014]
gave an O(n% logn) time algorithm if the graph is planar and all vertices have degree
at most three. For graphs with maximum vertex degree at least four the problem is
NP-hard, even for uniform weights. For non-planar graphs, the problem is already
NP-hard for graphs with maximum vertex degree at least three, even for uniform
weights. Both results are due to |Choi et al.|[1989] who also mentioned an interest-
ing application of the planar graph bipartization problem for via minimization in
VLSI routing. They consider a two-dimensional Manhattan routing and ask for an
assignment of the wires to two layers minimizing the number of vias needed.

Since in practice the degree of a vertex in Gs corresponding to a large connected
component can be much higher than three, the algorithm by Baiou and Barahona
[2014] is not directly applicable to the PARTIAL SYMMETRIC LAYER COLORING
PROBLEM. However, one could break up components artificially to fulfill the degree
constraint, corresponding to possible stitch positions.

Goemans and Williamson| |[1998] described a %—factor approximation algorithm for
the weighted GRAPH BIPARTIZATION PROBLEM in planar graphs. Their algorithm
runs in O(n?) time and extends to various other hitting cycle problems. See also
Kahng et al. [2001] for experimental results on different heuristics for the planar
weighted GRAPH BIPARTIZATION PROBLEM in the context of double patterning.
They obtain the best results by using the %—factor approximation algorithm of |Goe-
mans and Williamson| [1998].

In the PARTIAL SYMMETRIC LAYER COLORING PROBLEM we were looking for a
maximum partial coloring. Another reasonable approach is to compute a complete
coloring while minimizing the number of remaining conflicts pairs. For a given

coloring as we denote each {C},Cy} € (C25> for which there exist S; € (1, Sy € Cy

such that 1.({{51, S2}, ags,,5,1}) = 0} as conflict pair.

CONFLICT AVOIDING SYMMETRIC LAYER COLORING PROBLEM

Instance: A shape set S on layer z € Z,; with ¥,(S) = 1, and color-
symmetric design rules.

Task: Compute a coloring arg minimizing the number of conflict pairs.

The CONFLICT AVOIDING SYMMETRIC LAYER COLORING PROBLEM reduces to
solving the following problem in Gg for k = k,.

63



5 VLSI Routing for Multiple Patterning Technology

MAXIMUM k-CUT PROBLEM

Instance: An undirected graph G.

Task: Compute a  partition of V(G) into k  subsets
Vi,Vo,..., Vi, maximizing the number of edges whose
vertices are in different sets of the partition, i.e.

{{v,w} € B(G)|3i,j € {1,....k}i#j: veEV,we V.

Here each set of the partition corresponds to one color, and since the number of
edges whose vertices have different color is maximized, the number of edges whose
vertices have the same color and thus the number of conflict pairs is minimized. We
start with a negative result.

Theorem 5.9 (Kann et al. [1997]). There is no polynomial time approximation
algorithm for the MAXIMUM k-CUT PROBLEM with a relative error smaller than

ﬁ, unless P=NP.

In the weighted version of the CONFLICT AVOIDING SYMMETRIC LAYER COL-
ORING PROBLEM each pair {C,Cy} € (625> is assigned a nonnegative weight and
we want to find a coloring such that the total weight of conflict pairs is minimzed.
Here weights can represent the hardness of conflicts.

Hadlockl [1975] first proved that the weighted MAXIMUM 2-CuUT PROBLEM in
planar graphs is polynomially solvable by giving a nice reduction to the maximum
weighted matching problem. A simple algorithm achieving a runtime of O(n% logn)
was proposed by |Liers and Pardella [2012].

Note that approximation algorithms for the MAXiMUM k-CuT PROBLEM are of
limited use for solving the CONFLICT AVOIDING SYMMETRIC LAYER COLORING
PROBLEM because approximation ratios do not translate. For the sake of com-
pleteness, we nevertheless mention some important approximability results. For the
weighted MAXIMUM 2-CUT PROBLEM (also denoted as maz-cut problem) |Goemans
and Williamson| [1995] described a polynomial time approximation algorithm pro-
ducing a cut with weight at least %min0<9§ﬂ ﬁ ~ 0.878567 times the optimal
value. Their pioneering semidefinite programming approach was the first obtaining
an approximation ratio significantly better than two which is achieved by a simple
greedy algorithm already. Interestingly, the above approximation factor is best pos-
sible if the unique games conjecture (Khot| [2002]) holds as shown by Khot et al.
[2007|. For the general weighted MAXIMUM k-CUT PROBLEM the best known ap-
proximation algorithm for small fixed values of k& was given by de Klerk et al. [2004].
Their algorithm produces a solution with weight at least 0.836008 for £ = 3 and at
least 0.857487 for k = 4. A naive randomized heuristic assigning each vertex one of
the k subsets of the partition randomly yields a solution whose expected weight is
at most a factor % less than the weight of an optimal solution (see e.g. Kann et al.
[1997]).

We conclude that, assuming color-symmetric rules and a given planar conflict

64



5.2 Coloring Given Layouts

graph, three colors for multiple patterning are most difficult to handle from a the-
oretical point of view. For two colors we have an efficient approximation algorithm
for solving the planar PARTIAL SYMMETRIC LAYER COLORING PROBLEM, an effi-
cient optimal algorithm for the CONFLICT AVOIDING SYMMETRIC LAYER COLOR-
ING PROBLEM, and a linear time algorithm for the SYMMETRIC LAYER COLORING
PROBLEM. For four colors all problems can be solved optimally in O(n?) time for
planar graphs, but the corresponding complex algorithm which is based on the four
color theorem is not suitable for practice. For at least five colors all problems can
be solved in linear time for planar graphs.

5.2.2 General Design Rules

We now skip our assumption that design rules are color-symmetric. This setting
is also well-suited for SADP technology. We directly focus on the partial coloring
problem here. Again Cs denotes the connected component partition of S.

PARTIAL LAYER COLORING PROBLEM

Instance: A shape set S on layer z € Z,.

Task: Compute a set of connected components C' C Cs containing
the set of shapes 7 := UC’, and compute a coloring a7 such
that ¢.(T,ar) = 1 with |C’'| maximum.

This problem does not translate directly to a graph coloring problem anymore.
We use a construction leading to a stable set problem.

Definition 5.10. The color-asymmetric conflict graph for a shape set S is the
undirected graph Hg with vertices

V(HS) = CS X {1, 2, ey kz}
and edges

B(Gs) = (e et & (V) 1= ina 2 ey

ElSl S Olu SQ S 02 : 1/}0({517 82}»a(51701),(52702)) - 0}7
Where oy e1),(Cares) 15 defined by a(Ch) = ¢1 and a(Cy) = cs.

The conversion of an instance of the PARTIAL LAYER COLORING PROBLEM to
the graph Hg can be done similarly to the color-symmetric case, see Section [5.2.1]
We use n := |V (Hgs)| and m := |E(Hg)| in the following. The graph Hs contains
an edge between any two colored connected components of shapes which are not
legal with respect to 1., and between vertices representing the same component
with different colors.

65



5 VLSI Routing for Multiple Patterning Technology

Figure 5.3: A stable set (green encircled vertices) in the graph Hg correspond-
ing to the colored instance in Figure

By this construction, each coloring ay with 7 = JC’ for some C’ C Cs and
Y.(T,ar) = 1 corresponds to a stable set (a set of pairwise non-adjacent vertices,
see Korte and Vygen| [2012]) of size |C'| in Hgs and vice versa. See Figure [5.3| for an
example. Note that a stable set in Hg cannot have cardinality greater than |Cs],
because each connected component can contribute at most one vertex to a stable
set. Therefore, finding an optimal solution for the PARTIAL LAYER COLORING
PROBLEM reduces to the following problem.

MAXIMUM STABLE SET PROBLEM
Instance: An undirected graph G.
Task: Compute a stable set of maximum cardinality in G.

We have the following negative results.

Theorem 5.11 (Berman and Fujito| [1995]). The MAXIMUM STABLE SET PROB-
LEM is MAXSNP-hard, that means there exists no polynomial-time approzimation
scheme unless P=NP, even for graphs with maximum vertex degree three.

Theorem 5.12 (Garey and Johnson| [1977]). The MAXIMUM STABLE SET PROB-
LEM is NP-hard for planar graphs with mazimum vertex degree three.

Halldérsson and Radhakrishnan [1997] showed that a simple greedy algorithm,

which selects in each step a vertex v of minimum degree and deletes v and all its
neighbors, is a %—factor approximation algorithm for the MAXIMUM STABLE SET

PROBLEM in graphs with maximum vertex degree A. |Chiba et al.|[1982] described

an O(nlogn) time 2-factor approximation algorithm for the planar MAXIMUM STA-

BLE SET PROBLEM. For the same problem [1994] developed an approxima-

tion scheme yielding a %—factor approximation algorithm for each fixed k, using

66



5.2 Coloring Given Layouts

O(8%kn) time and O(4n) space. See also |Alekseev et al.| [2008] for more hardness
and approximability results on the MAXIMUM STABLE SET PROBLEM in planar
graphs. The best known approximation algorithm for the weighted MAXIMUM STA-
BLE SET PROBLEM in general graphs is due to Halldérsson [1999] and achieves a
performance guarantee of O(=7x-). [Held et al.| [2012] described an efficient and
numerically robust branch—and—sbound implementation solving the weighted M AXI-
MUM STABLE SET PROBLEM and presented a number of results on standard test
instances, comparing their algorithm to other approaches.

Despite the theoretical hardness of the (weighted) MAXIMUM STABLE SET PROB-
LEM, the formulation of the PARTIAL LAYER COLORING PROBLEM as stable set
problem in a conflict graph has some advantages. It offers a flexible and unified
coloring approach, independent from the number of colors k. and suited for LELE
as well as SADP technologies.

5.2.3 Practical Approaches

The problem of coloring given layouts with respect to multiple patterning design
rules is known as layout decomposition in the literature. Most of the proposed
algorithms use integer linear programming or semidefinite programming approaches
in combination with speed-up techniques such as conflict graph partitioning, see e.g.
Kahng et al.|[2008] for double patterning, [Yu et al. [2011] for triple patterning, and
Yu and Pan| [2014] for quadruple patterning and beyond.

The main technique to speed up the runtime for solving layout decomposition
problems is to partition the conflict graph into smaller subgraphs which can be col-
ored independently and merged later on, following the divide and conquer paradigm.
For example, different connected components of the conflict graph can be colored
independently and vertices with degree less than k, can be removed and colored
afterwards. Furthermore, 1-cut, 2-cut and 3-cut removal has been proposed for dou-
ble, triple and quadruple patterning, respectively. See (Kahng et al.| [2008], Yu et al.
[2011], Yu and Pan|[2014]) for more details.

Many approaches also incorporate stitches as a means to minimize conflicts be-
tween same-colored shapes. For this, connected components (and their correspond-
ing vertices in the conflict graph) are split, and the resulting new components are
allowed to be colored differently. Kahng et al. [2010] described how to find all pos-
sible stitch locations and how to manipulate the conflict graph to incorporate these
stitches for double patterning. Fang et al. [2012] showed that this method does not
yield all possible stitch locations for triple patterning and proposed a stitch-aware
mask assignment heuristic.

In practice, the layout to be colored often has a special structure which can be
used to design polynomial time algorithms even for the general PARTIAL LAYER
CoOLORING PROBLEM. For example, often a partition of the chip area on a layer
into stripes with small height (or width) is given by regular power supply wires which

67



5 VLSI Routing for Multiple Patterning Technology

proceed over the whole chip width (or height). Each such stripe corresponds to a
circuit row and contains only a small number of routing tracks (< 20), depending
on the circuit library. Assuming that color conflicts do not cross power wires, this
partition allows to solve the coloring problem for each stripe seperately and merge
the obtained solutions afterwards. This also works if power wires are part of the
coloring instance, see Ahrens| [2012] for more details.

For BonnRoute we developed two coloring algorithms exploiting this stripe struc-
ture, one using a flexible integer programming formulation for the stable set problem
(Nohn| [2012]) and one polynomial time dynamic programming approach (Ahrens
[2012]). In |Ahrens| [2012] experimental results for both algorithms are given and
show that the dynamic programming approach is much faster. Both algorithms
were used in the context of design-technology co-optimization in cooperation with
our industry partner IBM, to quantify the colorability of layouts under preliminary
double patterning design rules.

A similar approach was described in [Tian et al| [2012] where a polynomial time
coloring algorithm for triple patterning is given, using the circuit row structure.
Here also stitches and color balancing are incorporated.

The theoretical reason why hard coloring problems can be solved fast in presence
of seperating power wires is that the underlying conflict graphs have path decomposi-
tions (see Bodlaender| [1994], Robertson and Seymour| [1983]) of small width. Given
such path decompositions, many NP-hard optimization problems can be solved in
linear or at least polynomial time, see Bodlaender| [1994]. We think that it is very
promising to use this general concept of linearizing instances of bounded width to
design fast algorithms for other optimization problems occuring in routing. The
pin access algorithm of BonnRoute (Ahrens [2014]) is actually based on the same
concept.

5.3 Creating Colorable Layouts

Next we consider the problem of creating (uncolored) layouts which are guaranteed
to be colorable afterwards, making a conflict resolution step redundant. Note that
it still might not be trivial to actually compute a coloring for such layouts. For
example, Khanna et al.| [2000] showed that even coloring a 3-colorable graph with
four colors is NP-hard.

We now collect some sufficient conditions for the solvability of the SYMMETRIC
LAYER COLORING PROBLEM. Again, we assume that stitches are not available.
Recall that the SYMMETRIC LAYER COLORING PROBLEM can be formulated as a
k.-coloring problem in the color-symmetric conflict graph Gs (Definition .

For k, = 2 the SYMMETRIC LAYER COLORING PROBLEM has a feasible solution
if and only if Gs has no odd cycles. For k, > 4 we know that the SYMMETRIC LAYER
COLORING PROBLEM has always a feasible solution if G is planar (Theorem [5.4]).

68



5.3 Creating Colorable Layouts

We now focus on sufficient conditions for the case where Gg is planar and k, = 3.
In the following we denote a cycle of length £k in a graph as k-cycle.

Theorem 5.13. (Grotzsch [1959]) A planar graph is 3-colorable if it contains no
3-cycles.

See [Thomassen| [1994] for a short proof of this theorem. Grinbaum et al. [1963]
tightened this result by showing that planar graphs with at most three 3-cycles are
still 3-colorable while graphs with four 3-cycles are not in general.

Steinberg conjectured in 1975 that every planar graph without cycles of length
four and five is also 3-colorable. This conjecture is still open, but there are some
results into this direction.

Theorem 5.14. (Borodin et al| (2005]) A planar graph is 3-colorable if it contains
no cycles of length 4-7.

Theorem 5.15. (Wang and Chen| [2007]) A planar graph is 3-colorable if it contains
no cycles of length 4,6,8.

Theorem 5.16. (Borodin et al| (2009]) A planar graph is 3-colorable if it contains
no cycles of length 5,7 and no adjacent 3-cycles.

There are also results taking the minimum distance of distinct 3-cycles into ac-
count.

Theorem 5.17. (Borodin and Glebov [2011|]) Every planar graph without 5-cycles
and with minimum distance between any 3-cycles at least two is 3-colorable.

See Borodin| [2013] for a survey on colorings of planar graphs and more sufficient
conditions for 3-colorability.

The following problem related to the colorability of graphs was posed by Erdos and
Rényi| [1960): What is the largest number A such that a random graph with average
degree A is k-colorable with high probability? For example, it is known that almost
all random graphs with average degree at most 4.03 are 3-colorable (Achlioptas and
Moore [2003]), while almost all random graphs with average degree at least 4.99 are
not 3-colorable (Kaporis et al. [2001]). See |Coja-Oghlan and Vilenchik [2013] for
more recent results on this topic.

Now that we know certain graphs allowing a feasible solution for the SYMMETRIC
LAYER COLORING PROBLEM, the next question is how to construct artificial (i.e.
not manufacturing driven) design rules such that each layout satisfying an uncolored
checking oracle based on these rules has a feasible coloring. This question is hard to
answer in general, we give an example for the case k, = 2. Here we can add artificial
rules forbidding any jogs, allowing only standard wires running on routing tracks,
and forcing same-color distances between wires on the same track. For realistic color-
dependent design rules (see for example Figure we can then color all shapes on

69



5 VLSI Routing for Multiple Patterning Technology

odd tracks with one color and shapes on even tracks with the other color, without
producing any conflict. However, these artificial rules making the coloring problem
trivial are too restrictive in practice, since all wires must have the same width here.
Generally, designing such artificial rules involves a trade-off between simple over-
restricted rules (such as in the example above) and complex less restrictive rules
which mimic the sufficient conditions for conflict graph colorings on a shape basis.
In this case, the complexity is shifted into the checking oracle and thus into routing
algorithms which one normally tries to avoid. See also Liebmann et al.| [2009] on
this topic, where simple layouts through design-technology co-optimization are pro-
posed, using artificial design rules. BonnRoute also uses simple artificial rules (track
patterns and preferred colors) to manage multiple patterning, see Section m

5.4 Multiple Patterning in BonnRoute

In the following we describe the most important adaptions and innovations in Bonn-
Route related to multiple patterning technology. As pointed out in Chapter [3] the
major step in BonnRoute where no global optimization takes place is computing long
connections (see line [§8/in Algorithm . This step is also affected most critically by
the color dependency of shapes resulting from multiple patterning. Therefore, our
main focus is on computing long connections in the following.

For details on how multiple patterning is incorporated into our pin access algo-
rithm see |Ahrens et al.| [2015], Ahrens [2014]. In global routing, only few adaptions
are needed for multiple patterning technology because it works on a much coarser
view of the chip where the color dependency is not so critical.

We now review some work related to routing for multiple patterning technologies.
Early detailed routing algorithms that have been proposed for multiple patterning
(Cho et al.| [2008], [Yuan et al. [2009], [Lin and Li [2010], |Gao and Macchiarulo
[2010]) have been targeted at LELE technology. These approaches have in common
that they assume the availability of stitches and jogs which is not always realistic.
Moreover, they perform coloring greedily during routing, without consideration of
convergence issues, and do not consider multi-width routing and pin access. The
primary goal of these approaches is to reduce stitch and coloring conflict counts
which they achieve by various heuristics. Furthermore, triple patterning has been
studied as a means to improve on these metrics [Ma et al.|[2012], |Lin et al. [2012].

For SADP technology layer assignment has been proposed to resolve conflicts
(Gao and Pan [2012]), but it is not clear if this is always possible under realistic
via spacing constraints which exceed the track pitch considerably if via layers are
produced with single patterning.

In contrast to the above approaches, BonnRoute does not require stitches and
jogs, incorporates mixed-width wires while still obtaining high packing density, and
handles real-world multiple patterning design rules.

70



5.4 Multiple Patterning in BonnRoute

Parts of this section will be published in |Ahrens et al.| [2015].

5.4.1 Routing Space and Automatic Coloring

We now describe how routing space is represented and used in presence of multi-
ple patterning and how multiple patterning colors for routed wires are determined
automatically in BonnRoute.

In previous technology nodes (up to 22nm) BonnRoute precomputed for each
layer routing tracks (Definition on page on which the majority of wires was
routed. Here all different wire types (Deﬁnitionon page used the same tracks,
and only short connections and access paths were routed off-track (see Definition
on page when necessary.

For advanced technology nodes this track concept is generalized in two ways: First,
different track sets for different wire types (track patterns) are defined. Second, a
preferred color for each track that should be used by the majority of wires is defined.
Both concepts help to increase packing density by guiding the sequential detailed
routing step used in BonnRoute (see Chapter |3| and (Gester et al. [2013]) to pack
wires as dense as possible.

The core idea of automatic coloring is to use these preferred colors as a color pat-
tern, prescribing for each placed on-track wire a certain color. A routing algorithm
computing a connection does not have to know anything about colors, but it just
routes uncolored wires which adopt the color according to the pattern automatically,
like a chameleon. A colored checking oracle is used to answer queries if wires are
legal at certain positions. This concept is preferable to just creating a colorable lay-
out (see Section because here a color of a wire is available directly after it was
routed, and not after all wires were routed. This avoids pessimistic artificial design
rules and allows the flexibility to color wires violating the track or color pattern, if
needed. We now formalize these concepts. Recall that tracks, is the set of all tracks
on layer z (see Definition on page [L1]).

Definition 5.18. A track pattern for a wire type W is a function tpy, assigning
each layer z € Zyiing a set of routing tracks such that tpy,(2) C tracks,. We denote
the set U.cz, ., tPw(2) as the preferred tracks for wire type W.

A preferred coloring for a wire type W is a function cy assigning each preferred
track of W a preferred color such that ey (t) € {1,...,k.} for any t € tpy, (2) and
2 € Lwiring-

We call a wire on-track-pattern if it is on-track and both endpoints of its stick lie
on preferred tracks, and we call it off-track-pattern otherwise. For a plane wire, if
these preferred tracks have the same preferred color (with respect to the wire type),
then we call this color the preferred color of the wire. Note that jogs may not have
a preferred color. For vias we have separate preferred colors for each via or wiring
layer the via intersects. We call these colors the layerwise preferred colors of a via.

71



5 VLSI Routing for Multiple Patterning Technology

Figure 5.4: Example for track patterns and some wires placed and colored
according to these track patterns. We have one track pattern for
1x wires (solid lines) and one for 3x wires (dashed lines). The
colors correspond to multiple patterning colors. The color of a
track represents its preferred color. The color of a wire shape is
the preferred color of the wire.

Note again that different layers are completely independent in terms of coloring.
We defined track patterns and preferred colors only for wiring layers because the
track graph in which we compute long connections is based on wiring layers only
(see Definition [3.7). Preferred colors for via cut shapes can be either aligned with
colors for bottom or top shapes, or defined by seperate color schemes for via layers.
Currently BonnRoute uses the first option.

We want to use track patterns as a means of forcing an efficient usage of wires with
respect to packing density. To this end, a track pattern for a wire type is typically
defined in a way such that wires with this wire type can be packed as dense as
possible on-track-pattern. For this also repeating blocked areas on a chip layer such
as power supply wires are taken into account. As already mentioned in Chapter [3]
typically most wires on a chip have the same standard wire type, so it is of special
importance to allow dense packings for wires of this wire type. See Figure for
an example of track patterns for two different wire types.

BonnRoute is able to read in predefined track patterns, otherwise it computes
them by using the algorithm described in [Miiller, 2009, Section 2.4]. We do not
go into details how these track patterns actually look like since this depends on the
widths of all involved wire types on a chip and is related to routing methodology
decisions of our industry partner IBM which we are not allowed to publish. However,
we note that for mixed 1x, 3x and 5x wires with 1x mindist (these values are typical
for our real-world multiple patterning designs) we obtain a high packing density for
on-track-pattern wires. In general (for example for 1x, 2x and 4x wires with 1x
mindist) a high packing density in case of mixed width wires is harder to obtain by
defining track patterns only. If in such settings the packing density is not satisfying,
then an additional track assignment step (which is not yet needed and integrated
into BonnRoute) could help to obtain better packings (see Batterywala et al.|[2002]).

For current chip technologies this track pattern concept is essential to obtain dense
routing solutions. Without any hint how to place and color wires, the probability

72



5.4 Multiple Patterning in BonnRoute

el —

3x 3x
1x 1x
(a) Two differently colored 1x wires making (b) The 3x wire using the same tracks as 1x
the crossed out part of the middle track wires blocks three tracks, while shifting it
unusable (minimum distance is 1x for diff- by 1x distance below or above would only
color and 3x for same-color). If both wires block two tracks for 1x wires (minimum
had the same color, then the middle track distance is 1x between any wires).
could be used.
Figure 5.5

of unusable gaps produced by the sequential routing step (see Figure would
be much higher. Without separate tracks for different wire types, wider wire types
block more tracks than necessary for other wire types (see Figure .

BonnRoute uses track patterns in the following way. First, all wires are preferably
routed on-track-pattern. Only if some connection cannot be found otherwise, then
off-track pattern wires are allowed at some penalty cost. We will handle this case
later. Second, the shapes of on-track-pattern wires are automatically colored with
their (layerwise) preferred colors. The only problem occurs if a wire has no preferred
color, which is only the case for jogs whose stick ends on tracks with different
preferred colors. We have three options to handle such cases:

(i) We forbid such jogs without preferred color to be routed at all.

(ii)) We add a stitch to the jog shape, such that the ends of the jog shape get the
preferred colors of their tracks, see Figure [5.6al

(iii) We color the jog shape completely in one of the preferred colors of the ending
tracks. Here for the end of the jog with the wrong color we also need to
insert a stitch because subsequent wires are assigned their preferred color, see
Figure Here the color pattern is disarranged and a part of the red track
above the upper wire gets blocked for wires in preferred color.

Currently BonnRoute uses the first option since on our real-world multiple pat-
terning designs such jogs are not crucial for routing convergence. See Section
for more details.

For the vast majority of routed wires it is sufficient to stay on-track-pattern and
use the preferred color, taking color dependency off the routing algorithms. Only if
no connection can be found this way we allow to use other colors (see Section
for more details). This approach allows dense wire packings on the one hand since
wires and colors are well aligned by track patterns, with only few exceptions (see

73



5 VLSI Routing for Multiple Patterning Technology

1

«— stitch stitch

(a) (b)

Figure 5.6: Two possibilities to color jogs having no preferred color. The over-
lay area corresponding to a stitch is purple.

Figure [5.4]), and faster shortest path computations on the other hand since the in-
volved algorithms do not need to try different color variants in presence of automatic
coloring.

5.4.2 Computing Long Connections
5.4.2.1 Search Space and Problem Formulation

We now describe how the search space for the computation of long on-track-pattern
connections is represented in BonnRoute. We use a directed version G of the track
graph (see Definition and Figure on page in the following, where each
undirected edge is replaced by two oppositely directed edges. We assume that we
are given a net N, two connected components S and T of N, and a restricted routing
corridor rcorr(N, S, T) (see Chapter , based on the global routing for net N. For
simplicity we assume that this corridor consists of one wire type region (W, R) only,
more wire types can be handled in a straightforward way. Let A C V(G) be the set
of vertices that are contained in R. Our goal is to connect the two components S
and T by on-track wires within the induced subgraph G[A]. If no connection can
be found within G[A], then this restriction is relaxed gradually. However, note that
we should aim at routing connections within the corridors given by global routing
because otherwise the congestion estimation made by the global router is disregarded
and we block routing space not foreseen by the global router.

The source and target components (consisting of pins or wires) are transformed
to sets of access objects by an access area oracle (see [Schulte, 2012, Section 2.5] for
details). Each such object contains one vertex of G[A] where the source or target
component can be accessed (called the access vertex) together with at most one
additional vertex of G[A] for each possible routing direction (called direction verter).
The access objects are build in such a way that when accessing an access vertex

74



5.4 Multiple Patterning in BonnRoute

Figure 5.7: Section of a directed track graph (all edges are meant to be bidi-
rectional) including an example for an access object in presence
of one minedge rule whose minimum length is given by the red
arrow. The blue shape is the pin to access, the red vertex one of
its access vertices, and the green vertices the corresponding direc-
tion vertices. We assume that all shapes of the wire type to use
have the same width as the pin, and that all tracks are preferred
tracks with respect to the wire type. The example access wire with
green border would be legal since it aligns with the pin, while the
wire with red border would produce a too short edge. Therefore,
accessing the access vertex from the right is only allowed when
reaching the direction vertex on the right.

with a wire in a certain direction, this wire must run at least to the corresponding
direction vertex to be legal with respect to same-net rules. If there is no direction
vertex, then the access vertex cannot be legally accessed from this direction. See
Figure [5.7] for an example.

Now let S C V(G) be the set of access vertices of the source component S and
T C V(G) the set of access vertices of the target component 7. The decision which
of the components becomes source and which target is arbitrary in principle, but can
make a big difference in runtime. For example, precomputing estimated distances to
the target for vertices in G (a speed-up feature called future cost, see Section

is faster if the target component is small.

We assume ANS # ) and ANT # (), otherwise we clearly cannot find a connection.
In the following we identify each edge e € F(G[A]) with a corresponding wire, that
is the unique wire with wire type W and e as its stick. Again, we identify edges
of G[A] with their corresponding line segments here. Let G be the graph resulting
from G[A] by

5



5 VLSI Routing for Multiple Patterning Technology

a) replacing each edge of the form (s,w) with s € S by an edge (s,w’), where w’
is the direction vertex of access vertex s for the direction of edge (s,w), and
deleting the opposite edge (w, s)

b) replacing each edge of the form (v,t) with ¢ € T' by an edge (v/,t), where v’ is
the direction vertex of access vertex t for the direction of edge (v, t), and deleting
the opposite edge (t,v)

c) removing each pref wire and via edge with at least one vertex contained in a
non-preferred track of W

d) adding an edge (vy, v, for each sequence of jog edges (v1, v2), (v2,v3), ..., (Vg_1, Vk)
such that
o all vertices vy, v9,...,v; are distinct

« the outer vertices v; and v, are contained in preferred tracks of W whose
preferred colors are equal, say they have color ¢

o the inner vertices v, ..., v;_1 are either not contained in preferred tracks,
or the preferred colors of their preferred tracks differ from ¢,

and afterwards removing the edges (v, v2), (va,v3),..., (vk_1,v;) for each se-
quence as above

e) removing each edge whose corresponding wire colored with its preferred color
introduces a diff-net-mindist violation to any other present colored shape on
the chip, using the colored checking oracle (see Section m for implementation
details).

Each modification step is done based on the result obtained from the preceding
modification step. Note that the order of the steps is important. By construction, S-
T-paths in G' do not violate diff-net-mindist rules (see e)), and the two end segments
of the path do not produce same-net errors in combination with the pins or wires
they access (see a) and b)). Furthermore, all endpoints of segments of such paths lie
on preferred tracks of W (see ¢) and d)), and jogs in such paths have a preferred color
(see d)). The edges inserted in step d) are needed to jump from a preferred track to
the next preferred track with the same preferred color by a jog. The main remaining
potential DRC-errors are same-net errors caused by inner path segments which is
precisely the main motivation for multi-label shortest paths (Section . The
deletion of opposite edges in a) and b) is not necessary for standard shortest paths,
but helpful for multi-label shortest paths. See Figure for an example of the
conversion from G[A] to G.

Note that G is not a three-dimensional grid graph in general, in contrast to G,
see again Figure |5.8] However, the algorithms we describe in the following are able
to handle such graphs as well. We do not store GG explicitly, but rather query the

76



5.4 Multiple Patterning in BonnRoute

“ —
i

Figure 5.8: Example for the conversion from G|[A] to G. The upper figure shows
G[A], where solid black lines are tracks, all solid or dashed black
lines between neighboring vertices are bidirectional edges in G[A],
the red circle is a source access vertex, and the green vertices are
the corresponding direction vertices. We assume that the fourth
track on the middle layer is the only non-preferred track of the
wire type to use, all preferred tracks have the same preferred color,
and that the blue shape on the upper layer belongs to a different
net. Each modification step corresponds to a color, where a zigzag
line marks the deletion of an edge and a straight or curved line
represents a new edge. First, according to modification step a)
(blue), the outgoing and incoming edges of the access vertex are
replaced by outgoing edges to direction vertices. Then according
to step c) and d) (orange) all edges incident to the fourth track on
the middle layer are deleted or replaced, respectively. Note that
here the just created curved blue edge is deleted again. Finally,
according to step e) (red), edges in conflict with the shape of a
different net are deleted. The lower figure shows the resulting
graph G, where solid lines with arrow are directed edges and solid
lines without arrow are bidirectional edges.

7



5 VLSI Routing for Multiple Patterning Technology

colored checking oracle, the access area oracle, and the next preferred tracks for
usable edges as needed. In this context, the modifications from G[A] to G can be
understood as changed label rules for the used shortest path algorithm.

For a vertex v € V(G), we denote its z-, y- and z-coordinates by x(v), y(v) and
z(v), respectively. We further denote the set of possible directions for edges in G
by R :={zx_,x1,y_,ys,z_,2:}. For an edge e = (v,w) € E(G), we denote its
direction by 7(e) € R and its length by I(e) := d; (v, w).

We call a path P in G an r-path if r(e) = r € R for all e € E(P) and we call
a path a straight path if it is an r-path for some r € R. Further we denote the
direction of a straight path P by r(P). We define edge costs

Vi(),2(w)} if (v, w) corresponds to a via
c((v,w)) = ¢ Loy - 1((v,w)) if (v,w) corresponds to a jog
(v, w)) otherwise
for two neighboring vertices v,w € V(G), where ..), V{z(v),-(w)} € N>o are layer-
dependent parameters that encode penalty costs for wires running in non-preferred

dimension and for vias, respectively. Now the core problem to be solved for com-
puting on-track-pattern connections can be formulated as follows.

PATH SEARCH PROBLEM

Instance: A search instance (G, ¢, S,T).

Task: Compute a shortest S-T-path in G with respect to cost function
¢, or decide that no such path exists.

5.4.2.2 Multi-Label Shortest Paths

In the following we present a generalization of the PATH SEARCH PROBLEM taking
additonal constraints for the resulting path into account. We discuss applications
such as shortest paths with minimum segment lengths or shortest colored paths with
stitch costs. In Section we explain how this approach can be integrated into
the interval-based on-track path search algorithm in BonnRoute. This integration
was performed in joint work with Felix Nohn (Nohn| [2012]).

There has been related work on finding shortest paths incorporating same-net rules
such as minimum edge lengths, see for example Mafiberg and Nieberg [2013] and
Chang et al.|[2013]. However, our approach is much more general and can also model
non-geometric specifications such as colored design rules. It can be incorporated into
any existing graph-based shortest path algorithm by only adapting the underlying
graph (or the label rules of the algorithm, alternatively).

The key idea is to model path properties by assigning labels to the vertices of the
path and allowing only certain label changes, at some specified cost. The following
definition formalizes this idea.

78



5.4 Multiple Patterning in BonnRoute

Definition 5.19. A label system is a triple (L,t,d), where L := {l1,ls,... Iy} is a
finite set of label types, t : L X L X Zyiing X R = Nog U {00} is a label transition
function, and d : L X L X Zyiing X B — Ny is a label cost function.

A label system is called well-defined if it satisfies the following properties for all
ll, l2 c L, A Zwiring; r e R:

(i) t(li,l, z,7) € {1,00}
(ii) t(ly,lp,z,7) #£ 00 = t(lo,lp,z,7) =1
(iii) d(ly, 1y, z,7) = 0.

In the following we only use well-defined label systems since they are general
enough for our purpose and we will utilize their properties for our graph construction.
If we want to specify path properties (e.g. minimum segment lengths in certain
directions) by label systems, we cannot just inspect the edges of a path in G since
there may be straight paths which are long (and thus legal), but contain short edges
only. Because of this we directly define multi-label sequences and paths based on
straight paths instead of edges.

Definition 5.20. A multi-label sequence in G is a pair (P, ¢), where P is a sequence
vy, Py, v9, ..., Uk, Pr,vky1 such that P; is a straight path in G from v; to v;y1 and
¢ : {v,ve, ..., 0501} = L for a label system L = (L,t,d). If each vertex in G is
traversed at most once (P, ¢) is called multi-label path. A multi-label sequence is
called feasible with respect to L if for each i € {1,2,... k} we have

(F) = t(@(v:), §(vigr), z(v:), ().

The cost of a feasible multi-label sequence (P, @) is given by

ce(P) =3 (e(P)+d(d(vi), p(vis1), 2(v), ()

i=1,2,...k

As an example, we define a label system L, := (L, t, d) such that feasible multi-
label S-T-paths in G are exactly those paths where all inner segments in z- or y-
direction have length at least l,,;,. Note that the end segments of a path are same-net
clean by construction of GG, see Section . For this let L := {pref,jog, via},
d = 0 and the label transition function ¢ given by the table in Figure [5.9

Note that L., is a well-defined label system. Here the label types pref, jog and via
at some vertex have the meaning that the incoming path segment must be directed
in pref, jog or via direction, respectively. The label transition function ensures that
at least distance [, is covered between label type changes in x- or y-direction. Note
that the end segments of the path may be shorter since one can start and end the
path with an arbitrary label type. We consider the following problem.

79



5 VLSI Routing for Multiple Patterning Technology

T[T Y-y [z
pref — pref 1 o0 o0
jog — pref linin 00 00
via — pref lmin 00 00
pref —  jog 00 lmin 00
jog — jog 00 1 00
via  — jog 00 Lnin 00
pref — via 00 00 1
jog — via 00 00 1
via — via %9 %) 1

Figure 5.9: Definition of label transition function for the label system L, for
a layer z with preferred dimension x. The value of t(l1,ls,7,2) is
given by the entry in row [; — l» and column r. For layers with
preferred dimension y the roles of x and y are interchanged.

MuLTI-LABEL PATH SEARCH PROBLEM

Instance: A search instance (G,c,S,T) and a well-defined label system
L.

Task: Compute a shortest feasible multi-label S-T-path in G with
respect to cost function ¢ and label system L, or decide that
no such path exists.

We cannot hope to solve this problem in polynomial time in general since it is
NP-hard.

Theorem 5.21. The MULTI-LABEL PATH SEARCH PROBLEM s NP-hard.

Proof. We reduce the HAMILTONIAN S-T-PATH PROBLEM in a two-dimensional grid
graph H (see [Itai et al. [1982] for a proof of NP-hardness) to the MULTI-LABEL
PATH SEARCH PROBLEM.
Let (H,s,t) be an instance of the HAMILTONIAN S-T-PATH PROBLEM, where
s 1= (84, 8y) and t := (t;,1t,). Let G be the three-dimensional grid graph containing
a copy of H on layer 0, two additional vertices s’ := (s, sy, 1) and t' := (t,,t,,1)
and two additional edges es := ((S4, Sy, 1), (52,54, 0)) and e; := ((tz, 1y, 0), (tz, £y, 1)).
We now define n := |H| and £ := (L,t,d), where L :={ly,l5,...,1,},
1, ifref{zr,zy,y,y.tandj<i+1
1, ifr=z andi=j3=1
1

oo, else
and d = 0. Note that £ is a well-defined label system. We further set S = {s'} and
T ={t'}.

t(l, i, z,r) ==
(b ) , ifr=zyandi=j=n

80



5.4 Multiple Patterning in BonnRoute

Algorithm 6: Multi-label sequence algorithm

Input : A search instance (G, ¢, S,T) and a well-defined label system L.
Output: A shortest feasible multi-label sequence P in (G, ¢, S,T) with respect
to L (if existing).

1 Compute modified search instance (G, dz, Sz, Tr)

2 Compute shortest path P’ for instance (G, d., Se,Tr)
3 Map P’ to shortest feasible multi-label sequence P

4 return P

We claim that H contains a Hamiltonian s-t-path if and only if there is a feasible
multi-label S-T-path in G with respect to £, proving NP-hardness of the MULTI-
LABEL PATH SEARCH PROBLEM. To see this, first note that leaving S is only
possible with label type [; and entering T is only possible with label type [,,. There-
fore, since the label type index increases by at most one at any label transition on
layer 0, a feasible multi-label S-T-path must visit each vertex on layer 0 exactly
once, yielding a Hamiltonian s-t-path in H. On the other hand, a Hamiltonian s-¢-
path P in H can be extended to a feasible multi-label S-T-path in G by just adding
the two edges e; and e; and choosing the label types Iy, 11, 1ls,13, ..., l,_1,1,, 1, for
the n + 2 vertices of the path, starting at s'. H

The constraint making the problem hard is that a path must not visit any edge or
vertex multiple times. Therefore, we relax this constraint and search for a shortest
feasible multi-label sequence as a start. This can be done in polynomial time as
described in the following. We build a modified search instance (G, dg, Sz, Tr)
from (G,c,S,T) and a given well-defined label system L, search a shortest path
in (Gg,dg,Se, Tr) and then translate this path back to a shortest feasible multi-
label sequence P in (G,¢,S,T) (see Algorithm [6]). If P is a path, then it is the
desired shortest feasible multi-label path in G. We will discuss later how cycles in
P are handled and how often they actually appear with reasonable label systems on
practical instances.

We now describe how the modified search instance is built. Given a graph G and
a label system L := (L,t,d), we define the graph G as follows. For each vertex in
G we have one copy per label type in G, that means V(G.) := V(G) x L. Now
let v € V(Gr), l1,lp € L and r € R be fixed. Let w be the first vertex reachable in
G by an r-path P from v whose length [(P) is at least ¢(ly,l2, z(v), 7). If such a w
exists, then we insert an edge e = ((v,11), (w,l2)) into G¢. The cost of e is defined
by de(e) :=c(P) + d(ly, ls, z(v), ).

We insert edges in this way for all vertices, label types and directions. The graph
G contains exactly |L| [V (G)| vertices and at most |L|*|V(G)| edges. Note that
usually |L| is a very small constant (< 5 for our applications). We denote the
induced subgraph G[V(G) x {l}] as G, for any label type | € L. Edges between

81



5 VLSI Routing for Multiple Patterning Technology

- \ - \ -~
_-7 _-" _-x \
G»cmin ::::\.i:::f::::( TR Gpref
~ VAR /N
/- R/ \'(\ I N
min N P N
7 e ¢ N N b ¢ N
- - \
G e--—-—-0-—-0--—-0----0 e~ e &7 B L Gvia

(a) Simple grid graph G, dashed lines are bidi- (b) Graph G, corresponding to graph G in
rectional edges in x_ and x direction, and Figure (a) and label system L, based
Imin value needed for label system L;y. on Iy, value in Figure (a). Curved

dashed lines are directed and represent la-
bel changes, straight dashed lines are bidi-
rectional.

Figure 5.10

different such subgraphs represent valid label changes.

Building the graph G can be done in time O(|L|* - dpas - |V(G)|), where dpaq
is the maximum number of edges on a straight path in G corresponding to an edge
in G, (the path denoted as P in the definition of the edges above). Assuming
maxy, perrert(l,l2, 2,7) < 0o we have

max; o€, ERt ll lg z.r
dmaz < max vaeLrertlils, 2,7)

- +1
2€Zwiring MMe=(v,w)eE(G):2(v)=2 l(e)

which is a small constant in practice since typically the numerator is a minimum
segment length or a minimum distance originating from a design rule and the
denominator is in the order of the minimum wire width. See Figure for
a small example of the graph construction for label system L,;,. By defining
Se = {(v,l) € V(Gg)|v € S} and T := {(v,1) € V(G,)|v € T} we obtain a
new shortest path instance (G, dg, Se, Tr).

We now show that for a well-defined label system L every feasible multi-label
path P in G corresponds to a path P’ in G such that c.(P) = dz(P’). Let (P, ¢)
be a feasible multi-label path in G, where P is a sequence vy, Py, vo, ..., U, P, Vg1
of straight paths. Let i € {1,2,...,k} be fixed. Then by definition G, contains an
edge ((vi, d(v;)), (w, ¢(vi41))) such that w lies on the straight path P;. We map P,
to this edge plus possible edges between ((w, ¢(vi11)), (vir1, ®(vi11))) which are part
of G by definition (here we use that £ is well-defined, otherwise these edges could
be missing). Doing this mapping for each straight path of P yields a path P’ in G
with ¢z (P) = dg(P') (note that keeping a label type does not produce label costs,
since L is well-defined).

On the other hand, each path P’ in G, can be mapped to a feasible multi-
label sequence P in G with c.(P) = dg(P'), just by mapping each edge of P’

82



lmin

(a) Three-dimensional grid graph G (edges are

dashed and bidirectional) with a shortest
s-t-path P (red) and a shortest feasible
multi-label s-t-path @ (blue) with respect
to label system L,,;, and with the restric-
tion that s and t are labeled with type via,
ie. ¢(s) = ¢(t) = via. While P contains
five segments which are shorter than [y,

(b) The graph G

5.4 Multiple Patterning in BonnRoute

(t,via)

(s, via)

i (edges are dashed and
bidirectional) and the shortest (s,via)-
(t,via)-path Q" corresponding to path Q
from Figure (a) (blue). FEach curved
arc represents a label transition on path
(). Other label transition edges in G,
which are not used by @’ are not drawn
for the sake of clarity.

potentially causing various same-net errors
(minarea, minedge, via same-net-mindist),
the path @ does not have any segment
shorter than li,.

Figure 5.11

to a corresponding straight path in G which exists by construction of G,. For an
example of a shortest feasible multi-label path with respect to L., in a graph G
and its corresponding shortest path in G, see Figure|5.11

For the shortest path search in G, (step 2 in Algorithm @ we can now use any
existing graph-based shortest path algorithm. For the runtime analysis of this algo-
rithm, note that the number of vertices and the number of edges increase at most
by the factors |L| and |L|?, respectively, which are small in practice.

As mentioned earlier, we do store neither G nor G, explicitly, but rather query
if an edge is usable when we need it. See Section for implementation details.
Suppose we query if an edge ((v,l1), (w,l2)) is usable, then it is very useful if the
answer may depend on the involved label types [; and [,. In this case label types
can represent different wire types or wire colors, we just have to check if an edge
is usable when wused with a certain wire type or color. We illustrate this at the
well-defined label system Leoor := (L, t,d), where L := {red, blue}, d = 0, and the
label transition function ¢ is given by the table in Figure [5.12] Here s, can be

83



5 VLSI Routing for Multiple Patterning Technology

T [ry Y- [ys [z
red — red 1 1 1
blue — red 00 Smin 1
red — blue 00 Smin 1
blue — blue 1 1 1

Figure 5.12: Definition of label transition function for the label system L.uo,
for layers with preferred dimension x. The value of t(l,l2,7,2) is
given by the entry in row /; — [ and column r. For layers with
preferred dimension y the roles of x and y are interchanged.

used to control overlay rules for stitches at jogs, if desired. Now we say that edge
((v,1y), (w,3)) is usable if a wire running from v to w and colored with ls (not with
the preferred color) does not introduce a diff-net-mindist violation.

With this label system one can find shortest colored paths avoiding stitches in
preferred dimension and allowing only safe stitches (controlled by $py;,) in non-
preferred dimension. The label cost function can incorporate costs for such stitches.
When using this label system, we may use a slightly different underlying graph G
because we do not have to forbid jogs without preferred colors here since we do not
use automatic coloring anyway. We do not go into more details here. We use label
system Leoor in cases where we did not find a path with automatic coloring, see
Section (5.4.2.4

We also have a similar label system where label types correspond to different
wire types, and wire type changes are only allowed in certain directions and at
some penalty cost. This is useful to avoid electrically bad configurations in wiring
(for example a thin wire between two wide wires) and minedge errors caused by
disadvantageous wire type changes.

Next we describe how cycles in shortest feasible multi-label sequences are handled
and how they can be avoided in advance.

Definition 5.22. A cycle in a multi-label sequence (P, ¢) in G is a cycle in G whose
edges are all contained in straight paths of P.

Note that the appearence of cycles very much depends on the involved label
systems and cost functions. Cycles with length three or more occur very rarely in
practical instances. On our testbed less than 0.4% of all multi-label path searches
produce such cycles (using the 4STAGE implementation of the DRC-aware path
search framework, see Section . We just remove such remaining cycles by
deleting one or more of its edges afterwards, yielding a multi-label path which is
feasible except for possible violations caused by these removals. These rare violations
are not too problematic, and many of the corresponding same-net errors can be fixed
by a post-processing, yielding paths which are almost clean in terms of those same-
net errors respected by the label system.

84



5.4 Multiple Patterning in BonnRoute

A
W

E |
C 1

lmin

(a) Shortest feasible multi-label sequence from  (b) Shapes corresponding to the multi-label
s to t (blue) with respect to Ly, which sequence in the left figure. The 2-cycle
contains a 2-cycle. does not lead to violated minedge rules

(green lines), but it introduces a via same-
net-mindist violation (red line).

Figure 5.13

Cycles of length two (2-cycles) appear more often, thus we treat them in a special
way depending on the label system. If the label system does not model any dis-
tance rules, but rather minimum lengths for shapes (for example to satisfy minarea
or minedge rules), then 2-cycles do not cause any trouble since they just provide
additional shapes ensuring that minimum lengths are satisfied. In fact, 2-cycles are
even desirable in such situations and allow to find legal solutions which shortest
path approaches only controlling the lengths of path segments (e.g. [MaBberg and
Nieberg| [2013]) do not find.

But if we have for example a label system forcing certain minimum distances
between two vias on the path to compute, then 2-cycles may lead to violations of
these distances. See Figure for an example. One option would be to remove
2-cycles for such label systems and try to fix DRC-errors afterwards as it is done in
the case of larger cycles. However, since the remaining errors are often hard to fix
(if at all) we adapted our Dijkstra-based shortest path algorithm in the following
way to avoid such 2-cycles. When labeling from a node v to an adjacent node w,
we only allow this labeling operation if the currently shortest path to v does not
arrive at v from the same direction as w. With this approach we avoid 2-cycles, but
we may also forbid legal paths, thus the returned path may not be shortest possible
anymore (or we may not even find a path if one exists). However, in practice this
approach gives a good trade-off between length and the number of DRC-errors in
the computed paths.

The prevention of 2-cycles can be also incorporated into the label system. How-
ever, this approach highly depends on the definition of the label system, hence we
omit the details.

85



5 VLSI Routing for Multiple Patterning Technology

5.4.2.3 Multi-Label Interval-Based Path Search

In Section we described a framework to compute shortest feasible multi-label
sequences with existing graph-based shortest path algorithms (see Algorithm |§] on
page . We now sketch how to integrate this framework into the interval-based
on-track path search (simply denoted as path search in the following), the main
shortest path algorithm in BonnRoute (Gester et al. [2013]) used for computing
long connections. The path search uses a Dijkstra-based algorithm (Dijkstral [1959)])
with two major speed-up features: a future cost to reduce the number of labeling
steps, and merging vertices to so-called intervals to speed up sequences of labeling
steps.
A future cost is a function 7 : V(G) — Ny satisfying the following conditions:

cr((v,w)) = c((v,w)) —w(v) + w(w) > 0 forall (v,w) € E(G)
w(t) = 0 forallteT

One easily observes that m(v) is a lower bound on the distance (with respect to
¢) from v to T in G for each v € V(G). Let G’ result from G by adding a vertex
s and an edge (s,s’) with c((s,s")) := 7(s') for each s’ € S. Then all shortest
S-T-paths in G w.r.t. ¢ are also shortest s-T-paths in G’ w.r.t ¢, and vice versa.
However, computing them in G’ with respect to ¢, consumes substantially less label
operations in practice (the better the lower bound m, the fewer label operations)
since Dijkstra’s algorithm operates goal oriented in this case, similarly to the A*
heuristic proposed by Hart et al.| [1968] which was applied to detailed routing by
Rubin| [1974]. Note that each future cost 7 for an instance (G, ¢, S,T) is also a valid
(but potentially weak) future cost for (G, d;, Sz, Tz). Therefore, we can use this
future cost to compute a shortest path in step 2 of Algorithm [6]

BonnRoute uses two different future costs. The simpler one is given by

(2,9, 2)) := byie(x,y) + byia(2)

where Ibyire(#,y) 1= min(, y, -,)er (|2 — 2| + |y —y¢|) and 1byia(2) is the minimum cost
for a via connection from layer z to a layer containing a target location (see Hetzel
[1998]). Let Tiect be a set of shapes covering exactly the vertices in T' projected to one
layer. Then Ibyie(z,y) can be queried for each vertex (x,y, z) in time O(log |Trect|)
by point location (Kirkpatrick [1983]) applied to the L; Voronoi diagram of the
rectangles in Trecy by spending O(|Trect| 10g |Trect|) preprocessing time (Papadopoulou
and Lee| [2001], Gester [2009]).

The main advantage of my is its simplicity and fast computability since the run-
time only depends on |Tie.| and not on the size of G. For runtime reasons, it here
makes sense to check which of the two components to connect is representable by
less rectangles and choose this as the target component. However, not considering
the structure of G in 7wy can lead to a big gap between 7y (v) and the length of a
shortest v-T-path.

86



5.4 Multiple Patterning in BonnRoute

Figure 5.14: Small section of a path search instance, we assume unit costs in
x- and y-dimension. Nine vertices can be labelled from the source
(green) in only two label steps (red arcs) by merging vertices to
intervals (solid lines) and storing label functions (blue) at intervals
instead of label values at vertices.

To avoid this problem, Peyer et al.| [2009] proposed a blockage-aware future cost
7wp which computes shortest paths to T from all nodes in a supergraph G’ of G
that captures the structure of G quite well by ignoring small blockages and keeping
larger blockages. In particular, G’ is chosen such that mp > mgy. This results
in considerably fewer labeling steps in Dijkstra’s algorithm, but the runtime for
computing 7p is usually higher than for computing 7. Therefore, we use 7p only
if the global routing for the connection to route already contains a large detour,
and 7wy otherwise. The future cost used in the path search is denoted as 7 in the
following.

The merging of congenerous and consecutive vertices to intervals was proposed
in [Hetzel |[1998] for the special case of equidistant routing tracks which match in all
layers with the same preferred dimension. The key idea is to group vertices that
can be labeled at once to intervals and maintain label functions for these intervals.
When the path search labels one vertex of an interval, then the label function of the
whole interval is also updated at once, saving label operations on the other vertices
of the interval later on. See Figure for a small example. See Peyer et al.| [2009]
and [Humpola [2009] for more details and further generalizations, and |Gester et al.
[2013] for a short description.

When computing a shortest path for our modified search instance (G, d., Sg,Tr)
as given in Algorithm [6] we can use the same merging into intervals, but we may
have to split intervals at label operations (such splits are not needed in the standard
path search algorithm). We illustrate this in Figure [5.15

In Nohn! [2012] a new runtime bound for the path search applied to multi-label
instances is given, including the additional split operations and the buildup of the
modified search instance (step 1 in Algorithm [6] on page [81]).

Theorem 5.23. ((Nohn| [2012]) A shortest feasible multi-label sequence P with re-
spect to a given label system L = (L,t,d) for the instance (G, ¢, S, T) and future

87



5 VLSI Routing for Multiple Patterning Technology

t(a,b,x4,2(v))

Figure 5.15: Example showing that intervals (solid lines) must be split for some
label operations in graph G;. Labeling from (v,a) to (w,b) in
direction z; (red arc) is allowed, but it is not allowed to any
vertex left from (w,b). Therefore, the interval must be split at
the blue dashed line to avoid implicit labels (given by the label
function of the interval) in the left part.

cost m: V(G) — Ny can be found in time
Omin{ (A + V) duax - K2Z)° - log(k |Z|), dmax - k>0 - log(kn)}),

where A is the cost of P w.r.t. ¢, I is the set of intervals representing the vertices

of G, dmax is defined as in Section k= |L| and n = |V(G)|.

Note that k& and d,., are very small constants in practice (typically both < 5).
Also note that an ordinary shortest path can be found in time

O(min{ (A + 1) [Z] - og(|Z{), n - log(n)})

for the same instance and notations as in the theorem above (see Hetzel [199§], Peyer
et al. [2009], Humpola [2009] for details). We point out that the choice of design
rules considered in the definition of the label system impacts its size k£ and hence
offers a trade-off between accuracy (w.r.t. design rules) and runtime for multi-label
paths.

In practical experiments multi-label path searches are also much slower than stan-
dard path searches, motivating that one should not always use multi-label path
searches, but only when needed, which we explain in more detail in Section [5.4.2.4]

It is also an interesting question which speed-up the merging of vertices to intervals
yields in the case of multi-labeling. Note that in this case the number of intervals
contributes quadratically to the theoretical worst-case bound given in Theorem [5.23]
Indeed, the speed-up gained by intervals is much lower for multi-labeling compared
to the standard path search. For the most complex label system we use the speed-up
is only 35%, while for the standard path search it is 65%. We did these experiments
on a testbed similar to the one described in Section (.4.4l Here the runs without

88



5.4 Multiple Patterning in BonnRoute

merging vertices to intervals were also done with the interval-based path search
where all intervals were split to singletons. Thus the actual benefit of intervals may
be smaller since the path search could be implemented faster without supporting
intervals, of course.

5.4.2.4 DRC-Aware Path Search Framework

A drawback of many shortest path algorithms used for detailed routing is that most
same-net rules cannot be easily incorporated. See Figure for an example where
a shortest path may contain many same-net errors. In previous technology nodes (up
to 22nm with single patterning technology) BonnRoute computed long connections
by simply calling a standard path search and then trying to fix same-net errors by
a post-processing step. This approach gave excellent results in combination with an
external DRC-fixing step as demonstrated in |Gester et al. [2013].

However, in advanced technology nodes design rule dimensions do not scale well
with feature miniaturization anymore (meaning that feature size decreases much
more than for example minimum area values) which requires relatively more space
for fixing same-net errors afterwards. Here a post-processing step often fails to make
a path DRC-clean which motivates the need for a correct-by-construction path search
mode.

In multiple patterning technologies, finding a connection with automatic coloring
may fail, motivating the need for a path search mode which is able to choose arbitrary
colors on its own.

However, the above desirable modes of the path search (using multi-labeling) are
much slower than the standard path search combined with post-processing which
is still sufficient in many situations. Therefore, we propose the framework sketched
in Algorithm 7| incorporating same-net errors as well as non-trivial color choices (in
addition to automatic coloring as described in Section [5.4.1)). In the following we
explain this framework which was developed in joint work with Markus Ahrens.

We denote different types of design rules such as minarea, minedge, or via same-
net-mindist as design rule types. We denote the set of design rule types for which a
path P has violations as drt(P), and we denote the set of design rule types a label
system L respects as drt(L£). We also need to combine different label systems to a
new one which respects all rules and costs encoded in the original label systems.

Definition 5.24. The cross product of two label systems L1 := (Li,t1,dy) and
Lo := (La, ty, do) 1is the label system defined as L1 x Ly := (L, t,d), where

L= L1 X L2
t((I1,12), (15, 15), z,7) == max(ty (1,1}, z,7), ta(l2, 1, 2, 7))
d((l1, 1), (11, 15), z,7) == dy (11,1}, z,7) + da(la, 15, 2, 7)

for all (I1,1z), (I{,13) € L, 2 € Zyiring, T € R.

89



5 VLSI Routing for Multiple Patterning Technology
Corollary 5.25. The cross product of two well-defined label systems is well-defined.

Proof. For two well-defined label systems £, := (L1, t1,d;) and Lo := (Lo, ta, dy) the
following properties hold for all (I1,12), (I},15) € L1 X Lo, 2 € Zyiring, 7 € R:

(1) maX(t1<ll,ll,Z,T),tQ(Zg,lg,Z,T)) S {1,00}

(ii) if max(ty (11,17, z,7), ta(lo, 1, 2,7)) # o0,
then max(t, (1}, 11, z,7), ta(ly, 15, 2,7)) = 1

(iil) di(ly, 01, 2,7) + da(l2,la, z,7) = 0.
Therefore, £ x Ly is well-defined. O

As input for Algorithm [7] we use a set of well-defined label systems M which is
ordered by the design rule types they respect. Formally, we define a partial order <
on M such that for £4, L2 € M we have £ < Ly if and only if drt(£y) € drt(Ls),
that means Ly respects all design rule types that L£; respects and at least one
additional type. M always contains the standard label system which stands for a
call of the standard path search without multi-labels, this label system is smaller
than any other in M with respect to <.

The set U contains for each point in time the label systems which have not yet
been used. Since it does not make sense to start a path search with the same label
system twice, we always choose label systems from .

The path search is called in a loop, starting with as little restrictions as pos-
sible, the standard path search (see line |5| and line . Later the found path is
post-processed (line , and if there are still DRC-errors left (for example due to
missing space for local fixes), then we choose a label system in & which avoids as
many remaining DRC-error types as possible and which is least restrictive with this
property (that means smallest with respect to <), see line , and start a new path
search using this label system. If P is DRC-clean, then we return P (line . We
iterate this as long as there are DRC-errors that are fixable by any label system in U
left. The set D collects all DRC-error types which have been left in post-processed
paths over all previous iterations. The decisions when to change the path (line
and which label system to choose next (line may be based on more complex
criteria than just counting DRC-errors, of course. Also, in lines 23| and 25| one could
take the path before post-processing into account instead of P. All these choices are
only made heuristically and may be tuned in practice.

If we do not find any path at some point, we start a new search with mode =
colored which means that we now compute a shortest feasible multi-label sequence
where we allow color deviations from the preferred track colors. This can be done
by a modified label system which respects all design rules types in drt(L£) as well
as all constraints and costs for possible color changes (stitches). This is exactly

90



5.4 Multiple Patterning in BonnRoute

Algorithm 7: DRC-aware path search framework.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Input : A search instance (G, ¢, S,T) and a partially ordered set of
well-defined label systems (M, <) containing the standard label
system as smallest element, as described.

Output: A path P in (G,¢, S,T), preferably short and DRC-clean, or () if no
path exists.

UM
P+
D+ 0
mode < uncolored
L « standard label system (the smallest in U w.r.t. <)
repeat
if mode = uncolored then
L'+ L
else
L+ L x 'Ccolor
Compute a shortest feasible multi-label sequence P’ in (G,¢,S,T) w.r.t. L
if no such sequence found then
if mode = uncolored then
mode < colored
goto line
else
return P
U—U\{L}
Remove possible cycles in P’
Post-process P’
if P’ has fewer DRC-errors than P or P = () then
P+ P
D <+ D Udrt(P)
L+ L" € Y with |drt(L"”) N D| maximal, and smallest w.r.t. <
if drt(£) Ndrt(P) =0 then
return P

27 until false

91



5 VLSI Routing for Multiple Patterning Technology

what the label system £ x L. does which is set in line Here Lo is a label
system encoding allowed color changes and stitch costs, if needed, as described in
Section [5.4.2.2] Note that by Corollary L %X Leoor is well-defined, hence we can
compute a shortest feasible multi-label sequence w.r.t. £ X L.y, efficiently. To keep
packing density for later connections as high as possible, we include penalty costs
for deviations from the preferred colors. These penalty costs are paid whenever we
enter an interval with non-preferred color in the path search.

If in this mode still no path can be found, then we take the path from the last
round, if there is any. Otherwise we know that there exists no path, even when
using the least restrictive standard path search and allowing color deviations. In
such a case we start the whole framework again, this time allowing rip-up of other
nets and/or allowing wires to leave the restricted routing corridor by some specified
margin. We may also start a rip-up loop if we already found a path which is bad
with respect to DRC-errors, netlength, or other metrics, depending on the criticality
of the path. We do not go into more details here.

How to choose the label systems in M very much depends on the design rules
and the post-processing routines used in the framework. Defining all label systems
used in BonnRoute in detail is out of the scope of this section. The most important
DRC-error types avoided by label systems in BonnRoute are minarea, minedge, and
via same-net-mindist errors. Here via same-net-mindist errors are of special interest
for via layers where on neighboring wiring layers no jogs are allowed. Then the
standard path search often finds paths where jogs are simulated by so-called via
bridges (see Figure on page [85| for an example) involving via same-net-mindist
errors which are hard to fix afterwards. By multi-labeling, we are prepared to avoid
these errors and are thus able to produce high-quality routings even if no jogs are
allowed on certain layers, for example due to manufacturing reasons.

We also incorporate threshold values for line-end depending mindist rules, that
means we avoid short edges forcing bigger spacings to other shapes. Moreover, we
use a label system managing wire type changes within a path, avoiding electrically
bad configurations and minedge errors caused by a wire type change. This label
system is similar to L., and can also be used in combination with other DRC-
aware label systems by using the cross product.

It is often not the best choice to let M only contain the standard label system and
one label system avoiding all above error types. In many cases only few error types
are left in the post-processed path, and then the label system avoiding all errors
might be too restrictive to find a path at all. See also Section for experimental
results confirming this. Also a less restrictive label system speeds up the multi-label
path search call substantially.

We note that even with multi-labeling we do not model complex design rules
exactly, but rather conservatively. For example, a label system avoiding minarea
errors typically forces each single pref wire or jog to be long enough to cover the
minimum required area, instead of tracking the area of a connected component under

92



5.4 Multiple Patterning in BonnRoute

construction which would lead to a much more complex label system.
In Section we present results for different variants of the DRC-aware path
search framework described in this section.

5.4.3 Implementation Details

We now give some details on the implementation of the main data structures in-
volved in computing long connections. One major data structure in BonnRoute is
the detailed grid. It stores all shapes on the chip which are relevant for routing
(wires, pins, and blockages) and allows layerwise rectangular intersection queries for
these shapes. More exactly, it is able to report for any given shape S all currently
present shapes on the chip intersecting S. The detailed grid is updated immediately
when a new connection is routed. It is implemented similar to the shape tree as pro-
posed by |Schulte| [2012]. The basic idea is to utilize that most shapes on a routing
layer have only small extension in non-preferred routing dimension. Each layer is
partitioned into stripes in preferred routing dimension, each stripe covering exactly
one track and storing all shapes intersecting the stripe. Typically most shapes only
intersect one stripe in practice. [Schulte [2012] proposed a balanced search tree as
the data structure managing the shapes within a stripe, and showed how rectangular
intersection queries can be answered efficiently in practice. Recently, we achieved a
considerable speed-up and memory saving by exchanging the balanced binary search
tree inside of each stripe by an array.

To check if a new (colored) wire w to be routed is legal with respect to other
present shapes, first an influence region R, is computed, that is a (preferably small)
three-dimenional area around the wire such that it is guaranteed that shapes not
intersecting R,, do not influence the legality of w. Then all shapes intersecting R,,
are collected by layerwise queries to the detailed grid, resulting in a shape set S.
Finally, the colored checking oracle reports if 1.(S U {shape(w)}, ) = 1, where «
is the coloring for S and shape(w). The implementation of the checking oracle is
completely seperated from the detailed grid, it operates only on shapes (which were
usually collected using the detailed grid before). We omit implementation details of
the checking oracle here.

The procedure to first collect shapes in an influence region and then check these
shapes against the wire w can be speeded up drastically for the most common
queries as [Miiller| [2009] proposed. He developed the fast grid structure which stores
for each track which positions are currently legal and which are not for the mostly
used wire types. This information is stored as intervals in balanced binary search
trees (one per track), including some special speed-up techniques, and can be queried
very efficiently. The fast grid is updated continuously in synchronisation with the
detailed grid. Hence the fast grid can be viewn as a cache for the most common and
probable checking queries.

For rip-up and reroute, path search intervals store costs corresponding to wires

93



5 VLSI Routing for Multiple Patterning Technology

which need to be ripped out when using the interval (see Hetzel [1998] for details).
The costs shall reflect the criticality of connections to be ripped-up. For example,
a connection where signals are allowed to run only a small detour to guarantee a
certain cycle time on the chip is less likely to be ripped-up than a connection where
a larger detour is allowed. There are many other criterions for the criticality in
practice, we leave out the details here.

94



Figure 5.16: Section of a multiple patterning routing computed by BonnRoute on a real-world 14 nm design.
All z- and y-coordinates are true to scale, z-extensions were adapted for the sake of clarity. Gray
shapes are vias on a single patterning via layer.




5 VLSI Routing for Multiple Patterning Technology

5.4.4 Experimental Results

In this section we compare versions of BonnRoute with different variants for com-
puting long connections. Furthermore, we present results comparing an industry
standard router (ISR) with a combined BonnRoute flow (BR+ISR) and demonstrate
that BR+ISR produces far superior routings in less runtime on real-world multiple
patterning designs. We first compile the criteria which we use for evaluating routing
quality.

The wiring length is the sum over all lengths of plane wire sticks on the whole
chip. Wiring length is one of the core routing metrics since it determines power
consumption and signal delay to a great extent.

The number of vias is important since vias have a high failing probability in
manufacturing and a high resistance which impacts signal delays.

Nets connected with a large detour are problematic because signals may take
longer than the cycle time of the chip allows. We call a net scenic with respect
to a percentage x if the sum over all plane wire sticks of the net is at least
25 pm and if this length is at least % over the length of a minimum two-
dimensional Steiner tree connecting all components of the net projected to
one layer (ignoring blockages). Our results show the number of scenics w.r.t.
25%, 50%, and 100%.

The number of DRC-errors is critical for the producibility of a chip. Our re-
sults show DRC-errors as reported from an external industry standard checking
tool which uses conservative design rules which are manageable for routing.
These rules are also used by BonnRoute and ISR. We also show detailed num-
bers for some selected error classes which are shorts (overlaps of connections of
two different nets), stitch errors (overlaps of shapes colored differently), diff-
net mindist, same-net mindist, minedge, and minarea errors (see Chapter (3)).
We note that on our testbed stitches are not allowed at all.

An open is a missing connection between two components which are to be
connected. Clearly it is essential for a properly working chip that there are no
remaining opens.

Last but not least, runtime is extremely important since routing is a major
step in the overall physical design flow of a chip, and it is iterated together
with other design steps. Our results also include the memory consumption.

The sum of all opens and DRC-errors is a very rough measure for the quality of

results (in short QOR) in terms of logical and manufacturing errors which we also
list in our result tables.

96



5.4 Multiple Patterning in BonnRoute

Chip Nets Image Size  Wires  Vias DRC Opens

(mm X mm) (m) Errors
A 191  0.25 x 0.25 0.0003 106 6 228
B 2,212 0.08 x 0.08  0.001 1,163 1 2,630
C 2,432 0.03 x 0.05 0.0002 281 0 4,794
D 3,065  0.03 x 0.09 0.0003 282 0 6,431
E 3,241  0.04 x 0.08 0.0004 466 0 6,109
F 3,977  0.08 x 0.07  0.001 1,881 0 5,979
G 4,470  0.10 x 0.10 0.0003 343 0 8,600
H 5,950  0.10 x 0.06  0.002 3,168 186 10,490
I 10,801  0.05 x 0.27 0 0 0 21,951
J 10,986  0.15 x 0.08  0.003 3,874 0 20,168
K 12,798  0.17 x 0.09  0.003 4,554 0 22,744
L 13,472 0.35 x 0.22  0.003 3,233 0 23,559
M 14,715 010 x 0.14  0.002 2,005 1,552  27.818
N 16,423  0.10 x 0.16 0.01 8,996 0 26,204
O 17,049  0.27 x 0.21 0.01 7,561 0 29,844
P 37,360  0.23 x 0.30 0.01 12,857 0 63,360
Q 42542 0.39 x 0.11 0.02 3,853 2 73,092
R 42,637  0.36 x 0.10 0.02 3,859 795 73,242
S 50,133  0.14 x 0.28 0.02 22,455 0 90,819
T 50,792  0.30 x 0.21 0.02 3,435 2 83,577
U 82,748  0.25 x 0.25 0.01 7,391 0 159,460
\% 102,995  0.33 x 0.32 0.03 36,193 1,029 183,580
W 107,475 0.30 x 0.30 0.02 25,947 0 188,705
X 190,550  0.46 x 0.46 0.06 83,328 0 339,490
Y 338,092 0.53 x 0.65 0.14 187,254 31,205 634,375
Z 516,197  0.76 x 0.75 0.12 152,659 104 971,613
>, 1,683,303 0.51 577,144 34,882 3,078,862

Table 5.1: Testbed consisting of 26 real-world 14 nm designs.

All following results were produced on a machine with 512 GB main memory and
two Intel® Xeon® E5-2687W v3 CPUs, each having ten cores running at 3.10 GHz.
Both tools, BonnRoute and ISR, were run using 20 threads. Our testbed consists
of 26 real-world 14 nm designs, see Table The instance size ranges from less
than two hundred nets up to more than half a million nets. Most designs already
contain some prerouted special nets, and some of these even contain scenics or severe
DRC-errors such as shorts. It is typical in practice that a routing tool is also used
for evaluating such unclean designs with respect to important metrics. The opens
in Table correspond to connections which have to be routed with individual,

97



5 VLSI Routing for Multiple Patterning Technology

prescribed wire widths, via sizes, and routing layers based on timing requirements.
This is the task of the routing tools we compare.

For the different versions for computing long connections we use the following basic
label systems (sorted according to the partial order < defined in Section [5.4.2.4)):

o STD: A label system which just calls the standard path search without multi-
labels.

o LS1: A label system which respects via same-net-mindist rules.

o LS2: A label system which respects the most important same-net rules (min-
area, minedge, via same-net-mindist rules) and avoids short edges that force
bigger same- and diff-net-distances (line-end rules) by choosing segment lengths
large enough.

o LS3: Same as LS2, but using more conservative access area objects which
make DRC-errors at the end segments of a connection less likely.

We compare the following versions for computing long connections (see Algo-
rithm [7] on page [91)):

o NOML: The DRC-aware path search framework is not run at all, instead the
standard path search is run, followed by a post-processing step. This variant
was default in BonnRoute up to 22 nm single patterning technology. Same-net
rules are not respected at all in the standard path search.

e 1STAGE: The DRC-aware path search framework is used with M containing
only the label system LS3, i.e. here no standard label system is used. The most
important same-net rules are respected correct-by-construction in this mode.

o« 2STAGE The DRC-aware path search framework is used with M containing
the label systems STD and LS3.

o« 4STAGE: The DRC-aware path search framework is used with M containing
the label systems STD, LS1, LS2, and LS3.

The versions 2STAGE and 4STAGE can be viewed as intermediate steps between
the (nearly) correct-by-construction version 1STAGE and the NOML version not
taking same-net errors into account at all in the path search. The motivation for
these intermediate steps is that in most cases same-net errors can be fixed in the
post-processing step, but in some cases sophisticated label systems are needed.

Note that 1STAGE, 2STAGE, and 4STAGE use the DRC-aware path search
framework and are thus able to color paths non-trivially. This is of special im-
portance if input pins or wires which are to be connected do not have the preferred
color since such pins cannot be legally connected with the standard path search
using automatic coloring.

98



5.4 Multiple Patterning in BonnRoute

Run Time Mem. Wires Vias Scenics QOR DRC  Opens
(hh:mm:ss)  (MB) (m) 25% Errors

NOML 1:41:12 124,955 23.11 12,836,257 4,054 283,887 281,657 2,230

1STAGE 21:09:06 455,649 24.07 13,051,831 16,688 101,435 62,721 38,714

2STAGE 2:11:37 157,971 23.20 12,864,905 4,543 98,921 96,904 2,017

4STAGE 2:07:07 149,574 23.17 12,852,558 4,316 90,078 88,084 1,994

Table 5.2: Comparison of BonnRoute run with NOML, 1STAGE, 2STAGE,
and 4STAGE.

We now compare results on our testbed produced by running BonnRoute with
the four different versions for computing long connections. See Table for a
comparison table showing for each of the four versions one line containing results
summed up over all 26 testcases. Detailed results for single testcases including
selected DRC-error types can be found in Tables to on pages 103 to 106.

The run with NOML is fastest and consumes least memory, but it also has by
far the most DRC-errors. The run with 1STAGE has fewest DRC-errors, but the
runtime is unacceptable in practice. Also this run leaves by far the most opens which
has one global and one local reason. The global reason is that always using the most
conservative multi-label system wastes much routing space. This can also be seen
at the wiring length and via and scenic numbers which are all considerably higher
than in the other runs, although much fewer nets were connected. The local reason
is the restricted flexibility for accessing pins or wires which may lead to situations
where no legal access segment can be routed. The overall memory consumption is
also drastically higher compared to the other runs. Alltogether, the results show
that multi-labeling should be used only selectively. The runs using 2STAGE and
4STAGE follow this selective approach and provide a reasonable tradeoff between
runtime and routing quality. The 4STAGE run is preferable since it has substantially
fewer DRC-errors and is also slightly better in all other metrics. See Table for
statistics on the usage of all label systems in the 4STAGE run. Multi-label path
searches consume only 40% of the total path search runtime. We note that among
9,141,233 shapes to be colored on the whole testbed 31,474 (0.34%) were colored
with non-preferred color.

At first sight, it might be surprising that the run with 2STAGE has a higher DRC-
error count than the run with 4STAGE. However, this is easily explainable by the
way the DRC-aware path search framework works. We illustrate this at an example:
Suppose we compute a path with the label system STD which contains DRC-errors
after post-processing, and we cannot find a path using the label system LS3 for the
same connection. Then in the case of 2STAGE this means that the best path found
is the post-processed path containing DRC-errors, while in the case of 4STAGE we
may find a path without any DRC-errors using the label system LS1 which is less

99



5 VLSI Routing for Multiple Patterning Technology

Label System  Time (hh:mm:ss) Calls Best Path

STD  9:05:34  (59.74%) 2,625,145  (93.67%) 2,452,514  (93.87%
LS1 40:07 (4.39% 70,448 (2.51% 65,213 (2.50%

) ) )

) ) )

LS2  3:00:14 (19.74%) 41,810  (1.49%) 34,070  (1.30%)

LS3 552 (0.64%) 2,492 (0.09%) 1,666 (0.06%)

Col. STD  1:18:37  (8.61%) 57,516  (2.05%) 55,105  (2.11%)
Col. LS1  19:33  (2.14%) 2,505  (0.09%) 2,070 (0.08%)
Col. LS2 4147  (4.58%) 2,472 (0.09%) 2,027 (0.08%)
Col. LS3 1:31 (0.17%) 276 (0.01%) 64 (0.00%)
) ) )

S 15:13:15  (100.00%) 2,802,664 (100.00%) 2,612,729 (100.00%

Table 5.3: Statistics for all (colored) label systems used in BonnRoute run with
4STAGE (see Table , summed up over all 26 testcases. In the
second and third column the total runtime and the number of calls
for a label system are given, respectively. In the fourth column the
number of calls for which the found path was chosen as best path
in the DRC-aware path search framework is given.

restrictive than L.S3. This is actually one of the main ideas behind the framework,
to be only as restrictive as necessary to avoid DRC-errors. Being conservative for all
connections is bad (1STAGE), as is being optimistic for all connections (NOML).

We think that the best version 4STAGE (which is currently default for Bonn-
Route) can be further enhanced by adding additional intermediate label systems.
As mentioned in Section [5.4.2.4] we also use a label system managing wire type
changes which could be worth to be integrated into our default framework.

We now compare BonnRoute using 4STAGE with an industry standard router
(ISR). The focus of BonnRoute is near optimum packing of wires with respect to
wiring length, detours, power, timing, and manufacturing yield. Since the design
rule complexity has continuously increased with each new technology, we aim at
avoiding only the most important types of DRC-errors in BonnRoute. Therefore,
we do not compare ISR to BonnRoute standalone, but to a combined BR+ISR
tool where ISR is used as external post-processing step after BonnRoute to resolve
remaining DRC-errors locally. For our experiments both tools, BR4+ISR and ISR,
were driven in default modes as used by designers at our industry partner IBM.

Table |5.4] shows results for BR+ISR and ISR run on selected chips of our testbed.
Here we excluded the smallest chips and unclean chips containing many DRC-errors
in the input (see Table [5.1]). The results demonstrate that BR+ISR is far superior
in every aspect. It runs more than twice as fast, consumes less memory, and con-
siderably improves on all important routing metrics measured. The number of vias
is reduced by more than 20% and the wiring length by more than 10%, positively
affecting timing, power consumption, and manufacturing yield. BR+ISR produces

100



5.4 Multiple Patterning in BonnRoute

significantly less scenics which also improves timing and shows that global routing
and detailed routing are perfectly in tune with each other. Last but not least, the
number of DRC-errors reduces by more than 60%, avoiding manual fixing and risk
of manufacturing failures.

Interestingly, the main runtime of BR+ISR is consumed by the ISR step where
only local DRC-error fixing is done. Hence we are confident to further improve the
results of BR+ISR by reducing the need for fixing errors after BonnRoute by means
of multi-labeling.

Alltogether, the results confirm that BR+ISR is able to route real-world multi-
ple patterning designs without stitches almost DRC-clean, achieving high routing
quality. We point out that the lead of BR4+ISR over ISR in terms of runtime and
routing quality has become even larger since our last similar comparison for single
patterning technology (Gester et al.| [2013]).

We finally note that BR+ISR is the default tool for signal routing at IBM, used
for designing ASIC chips as well as server chips for several chip technologies.

101



Chip Tool Time (hh:mm:ss) Mem. Wires Vias Scenic Nets QOR DRC Opens Shorts  Stitch Diff Same Min Min
BR Total (MB) (m) 25% 50% 100% Errors Errors Mindist Mindist Edge Area

I ISR 7:16 5,081 0.24 139,259 1,075 470 6 8 8 0 0 0 5 1 0 0
BR+ISR 1:50 3:52 3,656 0.20 99,351 168 53 5 4 4 0 0 0 4 0 0 0

3 ISR 4:31 4,009 0.16 114,377 980 512 8 4 4 0 0 0 3 1 0 0
BR+ISR 50 2:43 3,815 0.14 82,768 24 1 0 3 3 0 0 0 1 2 0 0

K ISR 4:29 4,500 0.13 118,910 356 135 2 5 5 0 0 0 4 1 0 0
BR+ISR 1:45 3:42 4,494 0.12 84,809 8 0 0 0 0 0 0 0 0 0 0 0

L ISR 6:09 17,250 0.20 111,699 893 457 34 9 9 0 0 0 2 3 0 0
BR+ISR 1:48 4:48 17,241 0.18 87,294 61 0 0 1 1 0 0 0 1 0 0 0

N ISR 7:12 4,695 0.24 147,425 1,364 766 110 8 8 0 0 0 7 1 0 0
BR+ISR 1:24 3:17 4,627 0.20 109,782 17 4 2 0 0 0 0 0 0 0 0 0

o ISR 6:18 8,447 0.18 152,361 126 25 0 16 13 3 0 0 13 0 0 0
BR+ISR 1:39 4:36 8,360 0.18 115,160 28 1 0 2 0 2 0 0 0 0 0 0

P ISR 28:39 43,734 0.59 332,117 1,813 893 21 54 52 2 3 0 37 1 0 5
BR+ISR 2:31 19:40 26,131 0.53 253,199 44 3 0 100 100 0 0 0 57 3 14 4

Q ISR 25:49 11,442 0.79 481,519 5,476 3,265 699 12 12 0 0 0 9 1 0 0
BR+ISR 4:16 9:32 11,096 0.61 332,020 415 106 7 13 13 0 0 0 1 0 0 0

S ISR 19:50 11,561 0.70 515,523 2,309 972 38 11 11 0 0 0 4 7 0 0
BR+ISR 3:26 9:10 11,135 0.62 389,290 81 3 1 10 10 0 0 0 0 9 0 0

T ISR 14:35 16,012 0.52 456,011 1,348 438 7 7 7 0 0 0 4 1 0 0
BR+ISR 2:29 8:04 16,022 0.47 324,304 149 4 0 4 4 0 0 0 2 0 0 0

U ISR 41:20 17,447 1.15 799,298 3,600 1,335 49 72 72 0 0 0 59 6 0 4
BR+ISR 8:10 18:58 17,361 1.04 598,830 46 0 0 18 18 0 0 0 16 0 0 1

W ISR 39:30 24,532 1.45 874,683 6,679 3,910 927 50 45 5 0 0 29 4 0 2
BR+ISR 4:18 13:00 24,437 1.20 714,891 522 122 10 6 6 0 0 0 4 2 0 0

X ISR 1:58:44 51,112 3.91 1,763,759 12,768 6,659 786 45 45 0 0 0 30 11 0 1
BR+ISR 11:17 29:40 51,546 3.29 1,518,763 251 6 1 15 15 0 0 0 5 10 0 0

7 ISR 3:53:52 139,445 6.31 5,153,140 5,632 2,004 120 269 269 0 105 0 96 33 0 3
BR+ISR 31:52 1:44:30 139,648 6.08 3,930,406 875 52 5 46 46 0 0 0 27 6 0 3

Z 9:18:14 359,267 16.57 11,160,081 44,419 21,841 2,807 570 560 10 108 0 302 71 0 15
1:17:35 3:55:32 339,569 14.86 8,640,867 2,689 355 31 222 220 2 0 0 118 32 14 8

-57.81% -5.5% -10.3% -22.6% -93.9% -98.4% -98.9% -61.1% -60.71% -80% —o0 0% -60.9% -54.9% +oo -46.7%

Table 5.4: Comparison of ISR and BR+ISR on selected chips of our testbed.



Chip Time Mem. Wires Vias Scenic Nets QOR DRC  Opens Shorts Stitch Diff Same Min Min
(h:mm:ss) (MB) (m) 25% 50% 100% Errors Errors Mindist Mindist Edge Area

A 33 2,362 0.01 1,374 0 0 0 29 28 1 0 0 13 5 4 0
B 1:37 2,098 0.04 12,819 20 5 2 1,045 993 52 0 42 141 172 48 6
C 19 1,512 0.02 16,089 3 1 0 219 213 6 0 0 21 120 15 6
D 17 1,177 0.03 22,339 6 0 0 346 344 2 0 0 90 153 18 4
E 21 1,485 0.03 21,546 1 0 0 554 553 1 0 0 169 115 23 8
F 25 1,394 0.04 22,879 0 0 0 798 730 68 0 4 65 145 230 5
G 23 1,527  0.03 28,459 6 0 0 504 456 48 0 0 37 216 59 13
H 1:19 2,010 0.07 41,706 16 2 0 1,315 1,162 153 0 27 610 323 41 9
I 1:04 1,964  0.20 97,748 132 38 1 4,062 4,055 7 0 12 1,089 772 1,566 54
J 44 2,349 0.14 81,774 28 1 0 1,384 1,372 12 0 0 247 426 281 23
K 1:03 2,264 0.12 84,281 8 0 0 1,075 1,061 14 0 5 113 453 176 14
L 1:27 3,419 0.18 86,753 61 0 0 1,409 1,304 105 0 6 474 621 24 23
M 1:25 2,474 0.17 111,605 61 10 0 5,847 5,847 0 0 20 545 996 1,024 40
N 55 2,263 0.20 109,149 16 3 0 1,745 1,743 2 0 35 448 661 106 34
O 1:28 3,600 0.16 112,783 27 1 0 1,784 1,470 314 0 20 134 604 309 18
P 1:57 4,693 0.50 247,818 34 0 0 3,511 3,430 81 0 39 699 1,519 267 72
Q 2:19 3,833 0.61 328,683 398 96 4 5,733 5,723 10 0 464 1,087 1,845 802 55
R 2:53 3,675 0.55 327,368 235 39 1 7,635 7,631 4 0 410 1,622 1,808 1,332 88
S 2:46 6,282 0.61 386,427 69 1 0 6,179 6,145 34 0 0 907 1,970 1,314 117
T 2:18 4,122 0.47 322,199 146 4 0 4,499 4,474 25 0 803 597 1,796 436 75
U 5:57 6,648 1.04 594,130 40 0 0 8,846 8,597 249 0 19 824 4,202 766 232
A% 5:21 6,535 1.28 762,918 132 3 0 14,391 14,344 47 0 56 2,849 3,818 3,744 125
W 3:44 5,890 1.20 711,843 515 115 2 8,103 8,054 49 0 63 708 4,812 370 171
X 8:45 11,296 3.28 1,510,787 236 1 0 23,114 23,063 51 0 134 4,101 7,244 5,132 306
Y 22:29 18,426 6.08 2,886,576 1,242 18 0 92,277 92,025 252 2,293 4,405 27,473 18,683 13,239 1,658
Z 29:23 21,657  6.05 3,906,204 622 36 3 87,483 86,840 643 104 94 8,855 21,202 35,436 881
Z 1:41:12 124,955 23.11 12,836,257 4,054 374 13 283,887 281,657 2,230 2,397 6,658 53,918 74,681 66,762 4,037

€0t

Table 5.5: BonnRoute run using NOML.

ajnoyuuog ur Suruiegje o[dimi '



V0T

Chip Time Mem. Wires Vias Scenic Nets QOR DRC Opens Shorts Stitch Diff Same Min  Min
(hh:mm:ss) (MB) (m) 25%  50% 100% Errors Errors Mindist Mindist Edge Area

A 38 3,215  0.01 1,413 0 0 0 11 9 2 0 0 0 2 0 0
B 2:53 7,111 0.04 12,201 17 0 0 674 513 161 0 8 12 14 9 1
C 36:52 5,930  0.02 16,722 19 2 0 78 39 39 0 0 7 7 0 3
D 1:37 3,163  0.03 23,039 28 1 0 82 50 32 0 0 4 6 0 1
E 2:07 5,392  0.04 22,104 20 1 0 260 210 50 0 0 13 9 5 4
F 2:19 4,453 0.04 23,414 7 0 0 554 468 86 0 0 27 5 142 2
G 4:15 6,884  0.03 29,674 28 1 0 197 127 70 0 11 11 20 31 4
H 2:45 5,492 0.07 42,487 66 4 1 587 340 247 0 0 204 18 24 8
I 16:01 12,800  0.21 98,441 393 60 0 1,448 1,098 350 0 0 34 37 831 22
J 8:31 9,742 0.14 83,389 93 4 0 307 186 121 0 6 12 25 14 11
K 5:10 12,138  0.12 86,431 89 8 0 234 131 103 0 3 16 12 6 5
L 35:32 21,225  0.18 88,427 103 2 0 380 157 223 0 3 36 13 18 8
M 9:49 9,203 0.18 116,491 316 25 1 4,078 3,938 140 0 5 582 264 527 24
N 5:04 8,334  0.21 111,874 59 4 0 390 256 134 0 0 29 20 32 12
O 8:17 14,651 0.17 113,981 83 2 0 584 136 448 0 8 9 42 7 9
P 35:34 18,182  0.52 256,890 215 21 1 875 428 447 0 5 22 90 10 29
Q 22:46 18,598  0.64 338,838 988 420 13 2,851 2,518 333 0 0 310 134 487 34
R 22:51 15,079  0.58 338,108 901 357 5 4,019 3,597 422 0 8 319 177 709 36
S 23:31 19,005  0.64 395,393 387 33 0 1,548 919 629 0 10 38 164 21 68
T 10:40 15,210 0.50 331,811 685 464 11 2,337 2,011 326 0 0 221 119 447 34
U 1:07:13 27,919 1.08 609,122 517 19 0 4,464 1,613 2,851 0 18 110 343 29 160
A% 23:46 15,776 1.35 782,744 657 27 1 3,098 2,442 656 0 10 223 148 364 68
A\ 17:17 20,722 1.25 736,179 895 146 6 1,620 1,119 501 0 4 83 279 10 72
X 46:19 26,816 3.40 1,544,291 760 23 1 3,871 2,816 1,055 0 27 345 442 138 166
Y 9:27:02 85,922 6.22 2,866,708 4,007 239 2 49,858 29,769 20,089 2,292 71 10,627 1,891 2,351 826
Z 4:50:17 62,687  6.40 3,981,659 5,355 653 22 17,030 7,831 9,199 104 89 601 1,331 338 623
Z 21:09:06 455,649 24.07 13,051,831 16,688 2,516 64 101,435 62,721 38,714 2,396 286 13,895 5,612 6,550 2,230

Table 5.6: BonnRoute run using 1STAGE.

ASojouay, Sururoyyeg ofdpmyy 1oy Sunnoy [STA 6



Chip Time Mem. Wires Vias Scenic Nets QOR DRC Opens Shorts Stitch Diff Same Min Min

(h:mm:ss) (MB) (m) 25% 50% 100% Errors Errors Mindist Mindist Edge Area

A 33 2,389 0.01 1,383 0 0 0 11 11 0 0 0 4 1 0 0
B 3:11 5,162 0.04 12,770 18 4 1 813 759 54 0 63 50 92 27 3
C 25 1,872 0.02 16,096 5 1 0 46 40 6 0 0 6 11 0 4
D 22 1,360 0.03 22,313 7 0 0 69 67 2 0 10 0 10 6 1
E 26 1,685 0.03 21,514 6 0 0 250 249 1 0 0 16 13 22 3
F 26 1,669 0.04 22,973 0 0 0 474 407 67 0 0 14 12 117 3
G 28 1,868 0.03 28,431 8 0 0 127 79 48 0 0 15 18 9 3
H 2:51 3,118 0.07 41,837 23 4 0 542 388 154 0 20 220 37 18 4
I 2:03 3,477 0.20 98,075 141 35 0 1,515 1,508 7 0 0 291 87 914 35

J 51 3,034 0.14 81,898 27 0 0 291 281 10 0 6 18 37 46 7

K 1:46 2,769 0.12 84,517 9 1 0 241 230 11 0 0 11 24 30 2
L 1:42 4,038 0.18 87,178 63 0 0 221 121 100 0 3 19 18 2 3
M 2:21 3,963 0.17 112,529 88 15 0 3,507 3,507 0 0 20 308 171 473 11
N 1:08 2,759 0.20 109,112 21 1 0 258 257 1 0 2 30 43 14 1
O 1:40 4,403 0.16 112,964 26 1 0 567 253 314 0 5 10 65 27 3
P 2:44 5,500 0.50 249,061 32 0 0 626 561 65 0 13 26 104 41 10
Q 3:10 4,780 0.61 329,158 418 100 3 971 964 7 0 4 64 124 125 14
R 3:08 4,588 0.55 328,234 252 43 1 2,023 2,021 2 0 9 102 128 383 17
S 3:46 7,626 0.62 387,025 86 0 0 1,386 1,355 31 0 10 61 237 116 49

T 2:22 5,004 0.47 322,969 148 5 0 592 580 12 0 0 42 111 90 17
U 6:31 7,195 1.04 596,460 73 2 0 2,204 1,958 246 0 11 90 535 174 63
\% 7:06 7,581 1.29 765,403 140 3 0 2,692 2,678 14 0 10 296 160 562 8
W% 4:16 6,159 1.20 713,303 542 107 3 1,303 1,278 25 0 39 67 319 64 22
X 12:09 13,382 3.29 1,513,965 271 0 0 3,358 3,354 4 0 54 346 489 399 56
Y 34:14 29,497 6.10 2,892,343 1,319 21 0 45,067 44,833 234 2,284 68 14,109 3,004 6,180 861
Z 31:58 23,093 6.09 3,913,394 820 44 4 29,767 29,165 602 104 53 727 2,809 16,855 224

Z 2:11:37 157,971 23.20 12,864,905 4,543 387 12 98,921 96,904 2,017 2,388 400 16,942 8,659 26,694 1,424

G0t

Table 5.7: BonnRoute run using 2STAGE.

ajnoyuuog ur Suruiegje o[dimi '



90T

Chip Time Mem. Wires Vias Scenic Nets QOR DRC Opens Shorts Stitch Diff Same Min Min
(h:mm:ss) (MB) (m) 25% 50% 100% Errors Errors Mindist Mindist Edge Area

A 29 2,427  0.01 1,381 0 0 0 11 11 0 0 0 4 1 0 0
B 3:09 5,531 0.04 12,840 16 2 0 660 600 60 0 19 33 47 11 1
C 31 1,710 0.02 16,032 6 1 0 34 28 6 0 0 0 5 0 4
D 29 1,372 0.03 22,346 7 0 0 49 46 3 0 0 0 12 4 0
E 22 1,669 0.03 21,524 3 1 0 225 224 1 0 0 17 12 9 4
F 26 1,658 0.04 22,938 0 0 0 467 400 67 0 0 17 14 112 3
G 25 1,916 0.03 28,416 7 1 0 118 70 48 0 0 14 13 9 3
H 3:09 2,843 0.07 41,773 16 6 0 463 307 156 0 12 199 12 12 4
I 1:55 3,094  0.20 97,919 145 37 0 1,369 1,362 7 0 0 212 66 866 48
J 48 2,855 0.14 81,939 34 1 0 241 231 10 0 0 14 20 46 7
K 49 2,560 0.12 84,512 8 0 0 190 182 8 0 0 5 17 17 2
L 1:40 3,920 0.18 87,033 63 0 0 247 146 101 0 0 22 25 5 3
M 1:55 3,491 0.17 111,989 72 4 0 3,669 3,669 0 0 20 330 162 587 16
N 1:02 2,692 0.20 109,216 12 2 0 231 231 0 0 0 21 31 8 1
O 1:36 4,192 0.16 112,913 28 1 0 524 210 314 0 5 7 50 14 3
P 2:24 5,631 0.50 248,611 33 2 0 508 443 65 0 2 31 58 46 8
Q 3:01 4,682 0.61 329,533 419 107 1 903 896 7 0 5 83 99 105 7
R 2:58 4,749 0.55 328,124 233 37 1 1973 1,972 1 0 6 107 97 350 19
S 3:16 8,162 0.62 386,436 74 4 0 1,155 1,125 30 0 0 48 159 73 51
T 2:42 5,069 0.47 322,694 151 4 0 529 517 12 0 0 42 71 88 10
U 6:48 6,927 1.04 595,456 50 0 0 1,748 1,501 247 0 0 61 296 115 65
A% 8:28 7,869 1.28 763,921 135 4 0 2,503 2,487 16 0 0 194 138 518 10
w 4:04 6,188 1.20 712,617 526 118 4 1,124 1,099 25 0 0 43 284 44 25
X 10:34 12,860 3.29 1,511,988 250 1 0 2,854 2,850 4 0 31 267 363 227 60
Y 33:24 22,529 6.09 2,889,711 1,249 18 0 40,706 40,478 228 2,293 61 13,765 1,632 4,985 798
Z 30:43 22,978 6.08 3,910,696 779 51 6 27,577 26,999 578 104 22 580 1,314 16,398 195
Z 2:07:07 149,574 23.17 12,852,558 4,316 402 12 90,078 88,084 1,994 2,397 183 16,116 4,998 24,649 1,347

Table 5.8: BonnRoute run using 4STAGE.

ASojouay, Sururoyyeg ofdpmyy 1oy Sunnoy [STA 6



Bibliography

D. Achlioptas and C. Moore. Almost all graphs with average degree 4 are 3-colorable.
Journal of Computer and System Sciences, 67(2):441-471, 2003.

H.-K. Ahn, S. W. Bae, C. Knauer, M. Lee, C.-S. Shin, and A. Vigneron. Realistic
roofs over a rectilinear polygon. Computational Geometry: Theory and Applica-
tions, 46(9):1042-1055, 2013.

M. Ahrens. Ein Farbungsalgorithmus fiir Chipverdrahtung. B.Sc. Thesis, University
of Bonn, Germany, 2012.

M. Ahrens. Pin access in VLSI-routing. M.Sc. Thesis, University of Bonn, Germany,

2014. [13] [I4] [68] [70]

M. Ahrens, M. Gester, N. Klewinghaus, D. Miiller, S. Peyer, C. Schulte, and
G. Tellez. Detailed routing algorithms for advanced technology nodes. IEEFE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015.

To appear. [I3] [70]

O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Géartner. A novel type of
skeleton for polygons. Journal of Universal Computer Science, 1(12):752-761,
1995.

O. Aichholzer, H. Cheng, S. L. Devadoss, T. Hackl, S. Huber, B. Li, and A. Risteski.
What makes a tree a straight skeleton? In CCCG, pages 253-258, 2012.

V. Alekseev, V. Lozin, D. Malyshev, and M. Milani¢. The maximum independent
set problem in planar graphs. Mathematical Foundations of Computer Science
2008, pages 96-107, 2008. [67]

C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, editors. Handbook of Algorithms
for Physical Design Automation. Auerbach Publications, 2008. []

K. Appel, W. Haken, et al. Every planar map is four colorable. Part I: Discharging.
Lllinois Journal of Mathematics, 21(3):429-490, 1977a.

K. Appel, W. Haken, J. Koch, et al. Every planar map is four colorable. Part II:
Reducibility. Illinois Journal of Mathematics, 21(3):491-567, 1977b.

107



BIBLIOGRAPHY

J. Augustine, S. Roy, S. Das, A. Maheshwari, S. Nandy, and S. Sarvattomananda.
Recognizing the largest empty circle and axis-parallel rectangle in a desired loca-
tion. Technical report, 2010.

J. Augustine, S. Das, A. Maheshwari, S. C. Nandy, S. Roy, and S. Sarvattomananda.
Localized geometric query problems. Computational Geometry, 46(3):340-357,
2013.

F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi Diagrams and Delaunay Tri-

angulations. World Scientific, 2013. [30]

A. Bagheri and M. Razzazi. Drawing free trees inside simple polygons using polygon
skeleton. Computing and Informatics, 23(3):239-254, 2012.

M. Baiou and F. Barahona. Maximum weighted induced bipartite subgraphs and
acyclic subgraphs of planar cubic graphs. In Integer Programming and Combina-
torial Optimization, pages 88—101. Springer, 2014.

B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM (JACM), 41(1):153-180, 1994.

S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou. Track assignment: a desirable
intermediate step between global routing and detailed routing. In Proceedings
of the 2002 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 02, pages 59-66, 2002. [12] [72]

R. Beigel and D. Eppstein. 3-coloring in time O(1.3289"). Journal of Algorithms,
54(2):168-204, 2005.

M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 2008. [A9)

P. Berman and B. DasGupta. Approximating the rectilinear polygon cover problems.
In Proceedings of the 4th Canadian Conference on Computational Geometry, pages
229-235, 1992. [I§|

P. Berman and T. Fujito. On approximation properties of the independent set
problem for degree 3 graphs. Algorithms and Data Structures, pages 449-460,
1995.

H. Blum et al. A transformation for extracting new descriptors of shape. Models
for the perception of speech and visual form, 19(5):362-380, 1967.

H. L. Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):
1-21, 1994. 6]

108



BIBLIOGRAPHY

J.-D. Boissonnat, M. Yvinec, and H. Bronnimann. Algorithmic geometry, volume 5.
Cambridge university press, 1998.

J.-D. Boissonnat, J. Czyzowicz, O. Devillers, and M. Yvinec. Circular separability
of polygons. Algorithmica, 30(1):67-82, 2001.

N. Boltyanskii and N. Yaglom. Convez figures. Holt, Rinehart and Winston, 1961.
4

O. V. Borodin. Colorings of plane graphs: A survey. Discrete Mathematics, 313(4):
517-539, 2013. [69]

O. V. Borodin and A. N. Glebov. Planar graphs with neither 5-cycles nor close
3-cycles are 3-colorable. Journal of Graph Theory, 66(1):1-31, 2011.

O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour. Planar graphs
without cycles of length from 4 to 7 are 3-colorable. Journal of Combinatorial
Theory, Series B, 93(2):303-311, 2005.

O. V. Borodin, A. N. Glebov, M. Montassier, and A. Raspaud. Planar graphs
without 5-and 7-cycles and without adjacent triangles are 3-colorable. Journal of

Combinatorial Theory, Series B, 99(4):668-673, 2009.

T. M. Chan. A simple trapezoid sweep algorithm for reporting red/blue segment
intersections. In 6th Canadian Conference on Computational Geometry, pages
263-268, 1994. (A9

C. Chang and J. Cong. Pseudopin assignment with crosstalk noise control. IEFEFE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20
(5):598-611, 2001.

F.-Y. Chang, R.-S. Tsay, W.-K. Mak, and S.-H. Chen. MANA: A shortest path
maze algorithm under separation and minimum length nanometer rules. IFEFE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32
(10):1557-1568, 2013.

B. Chazelle. Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry, 6(1):485-524, 1991. [1§|

H. Chen, C.-K. Cheng, A. Kahng, I. Mandoiu, Q. Wang, and B. Yao. The Y-
architecture for on-chip interconnect: Analysis and methodology. In Proc. DAC,
pages 13-19, 2003. [7]

S. W. Cheng and R. Janardan. Efficient maintenance of the union of intervals on a
line, with applications. Journal of Algorithms, 12(1):57-74, 1991.

109



BIBLIOGRAPHY

N. Chiba, T. Nishizeki, and N. Saito. An approximation algorithm for the maximum
independent set problem on planar graphs. SIAM Journal on Computing, 11(4):
663675, 1982. [60]

F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon
in linear time. Discrete & Computational Geometry, 21(3):405-420, 1999. , ,
42

M. Cho, Y. Ban, and D. Z. Pan. Double patterning technology friendly detailed rout-
ing. In Computer-Aided Design, 2008. ICCAD 2008. IEEE/ACM International
Conference on, pages 506-511. IEEE, 2008. [70]

H.-A. Choi, K. Nakajima, and C. S. Rim. Graph bipartization and via minimization.
SIAM Journal on Discrete Mathematics, 2(1):38-47, 1989. [62]

A. Coja-Oghlan and D. Vilenchik. Chasing the k-colorability threshold. In 5/th
Annual Symposium on Foundations of Computer Science (FOCS), pages 380-389.
IEEE, 2013. [69)

P. Coussy and A. Morawiec. High-level synthesis. Springer, 2010.

J. C. Culberson and R. A. Reckhow. Covering polygons is hard. In Foundations
of Computer Science, 1988., 29th Annual Symposium on, pages 601-611. IEEE,
1988. [I8

D. P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discrete Mathematics, 30(3):289-293, 1980.

E. de Klerk, D. V. Pasechnik, and J. P. Warners. On approximate graph colouring
and max-k-cut algorithms based on the #-function. Journal of Combinatorial
Optimization, 8(3):267-294, 2004.

S. Devadas, A. Ghosh, and K. Keutzer. Logic synthesis. McGraw-Hill, Inc., 1994.

E. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269-271, 1959.

R. Duda and P. Hart. Pattern classification and scene analysis, 1973.

A. Dumitrescu and M. Jiang. Maximal empty boxes amidst random points. In
A. Gupta, K. Jansen, J. Rolim, and R. Servedio, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, volume
7408 of Lecture Notes in Computer Science, pages 529-540. Springer Berlin Hei-
delberg, 2012. 28]

H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete €
Computational Geometry, 1(1):25-44, 1986.

110



BIBLIOGRAPHY

P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci, 5:17-61, 1960.

S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen. A novel layout decomposition algo-
rithm for triple patterning lithography. In Proceedings of the 49th Annual Design
Automation Conference, pages 1185-1190. ACM, 2012. [67]

L. Ferrari, P. Sankar, and J. Sklansky. Minimal rectangular partitions of digitized
blobs. Computer vision, graphics, and image processing, 28(1):58-71, 1984.

J. Finders, M. Dusa, and S. Hsu. Double patterning lithography: The bridge between
low k1 ArF and EUV. Microlithography World, February 2008. [55

S. Fiorini, N. Hardy, B. Reed, and A. Vetta. Planar graph bipartization in linear
time. Discrete Applied Mathematics, 156(7):1175-1180, 2008.

A. Fournier and D. Y. Montuno. Triangulating simple polygons and equivalent
problems. ACM Transactions on Graphics (TOG), 3(2):153-174, 1984.

D. S. Franzblau. Performance guarantees on a sweep-line heuristic for covering
rectilinear polygons with rectangles. SIAM Journal on Discrete Mathematics, 2
(3):307-321, 1989.

G. N. Frederickson. On linear-time algorithms for five-coloring planar graphs. In-
formation Processing Letters, 19(5):219-224, 1984.

R. Fritsch and G. Fritsch. Der Vierfarbensatz. Bl-Wissenschaftsverlag, 1994.

J-R. Gao and D. Z. Pan. Flexible self-aligned double patterning aware detailed
routing with prescribed layout planning. In Proceedings of the 2012 ACM Inter-
national Symposium on Physical Design, pages 25-32. ACM, 2012. [70]

X. Gao and L. Macchiarulo. Enhancing double-patterning detailed routing with lazy
coloring and within-path conflict avoidance. In Proceedings of the Conference
on Design, Automation and Test in Furope, DATE 10, pages 1279-1284, 3001
Leuven, Belgium, Belgium, 2010. European Design and Automation Association.
ISBN 978-3-9810801-6-2.

M. R. Garey and D. S. Johnson. The rectilinearSteiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32(4):826-834, 1977.

M. Gester. Voronoi-Diagramme von Achtecken in der Maximum-Metrik. Diploma

Thesis, University of Bonn, 2009. (7] [48]

111



BIBLIOGRAPHY

M. Gester, D. Miiller, T. Nieberg, C. Panten, C. Schulte, and J. Vygen. BonnRoute:
Algorithms and data structures for fast and good VLSI routing. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), 18(2):32:1-32:24,
2013. Preliminary version in the Proceedings of the 49th Annual Design Automa-

tion Conference, pages 459-464. [3| [71] [86] [87] 89} [L01]

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM (JACM), 42(6):1115-1145, 1995.

M. X. Goemans and D. P. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18(1):37-59, 1998.

H. Grotzsch. Ein Dreifarbensatz fiir dreikreisfreie Netze auf der Kugel. Wiss. Z.
Martin Luther Univ. Halle- Wittenberg, Math. Naturwiss Reihe, 8:109-120, 1959.
09

B. Griinbaum et al. Grotzsch’s theorem on 3-colorings. The Michigan Mathematical

Journal, 10(3):303-310, 1963.

L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi. ACM Transactions on Graphics (TOG), 4(2):74-123,
1985. M1l

H. N. Giirsoy and N. M. Patrikalakis. An automatic coarse and fine surface mesh
generation scheme based on medial axis transform: Part I algorithms. Engineering

with computers, 8(3):121-137, 1992.

F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. STAM
Journal on Computing, 4(3):221-225, 1975.

M. M. Halldérsson. Approximations of weighted independent set and hereditary sub-
set problems. In Computing and Combinatorics, pages 261-270. Springer Berlin
Heidelberg, 1999. [67]

M. M. Halldérsson and J. Radhakrishnan. Greed is good: Approximating inde-
pendent sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145-163,
1997.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEFE Transactions on Systems Science and

Cybernetics SSCY4, 2:100-107, 1968.

S. Held, B. Korte, D. Rautenbach, and J. Vygen. Combinatorial optimization in
VLSI design. In V. Chvatal, editor, Combinatorial Optimization: Methods and
Applications, pages 33-96. IOS Press, Amsterdam, 2011.

112



BIBLIOGRAPHY

S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower
bounds for graph coloring. Mathematical Programming Computation, 4(4):363—
381, 2012. [67]

A. Hetzel. A sequential detailed router for huge grid graphs. In Proc. DATE, pages

332-339, 1998. 14, [36} 87, B8, 04

R. B. Hitchcock. Cellular wiring and the cellular modeling technique. In Proceedings
of the 6th annual Design Automation Conference, DAC 69, pages 25-41, 1969.

T.-Y. Ho, C.-F. Chang, Y.-W. Cheang, and S.-J. Chen. Multilevel full-chip routing
for the X-based architecture. In Proc. DAC, pages 597-602, 2005. [7]

J. E. Hopcroft and R. M. Karp. An ns algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225-231, 1973.

J. E. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM
(JACM), 21(4):549-568, 1974.

F. Hiiffner. Algorithm engineering for optimal graph bipartization. In Experimental
and Efficient Algorithms, pages 240-252. Springer, 2005. [62]

J. Humpola. Schneller Algorithmus fiir kiirzeste Wege in irreguliaren Gittergraphen.
Diploma Thesis, University of Bonn, 2009. [87]

F. K. Hwang. An O(nlogn) algorithm for rectilinear minimal spanning trees. Jour-

nal of the ACM, 26(2):177-182, 1979.

H. Imai and T. Asano. Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. Journal of algorithms, 4(4):
310-323, 1983. [60]

A. Ttai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton paths in grid graphs.
SIAM Journal on Computing, 11(4):676-686, 1982.

R. C. Jaeger. Lithography. Introduction to microelectronic fabrication. Prentice Hall,
2002.

A. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for double-exposure,
bright field alternating phase-shift mask layout. In Design Automation Confer-
ence, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, pages
133-138. IEEE, 2001. [63]

A. B. Kahng, C.-H. Park, X. Xu, and H. Yao. Layout decomposition for dou-
ble patterning lithography. In Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, pages 465-472. IEEE Press, 2008. [67]

113



BIBLIOGRAPHY

A. B. Kahng, C.-H. Park, X. Xu, and H. Yao. Layout decomposition approaches for
double patterning lithography. IEFEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(6):939-952, 2010.

V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of approxi-
mating max k-cut and its dual. Chicago Journal of Theoretical Computer Science,

2, 1997. [4]

H. Kaplan and M. Sharir. Finding the maximal empty disk containing a query
point. In Proceedings of the 2012 Symposium on Computational Geometry, pages
287-292. ACM, 2012.

H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir. Submatrix maximum queries in
monge matrices and monge partial matrices, and their applications. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 12, pages 338-355. STAM, 2012.

A. C. Kaporis, L. M. Kirousis, and Y. C. Stamatiou. A note on the non-colorability
threshold of a random graph. Journal of Combinatorics, 7(1), 2001.

J. M. Keil. Polygon decomposition. Handbook of Computational Geometry, 2:491—
518, 2000. [I7}, [1§

S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. Combinatorica, 20(3):393-415, 2000.

S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing, pages 767-775. ACM,
2002. [64]

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs. SIAM Journal on Computing, 37(1):
319-357, 2007. [64]

S.-M. Kim, S.-Y. Koo, J.-S. Choi, Y.-S. Hwang, J.-W. Park, E.-K. Kang, C.-M.
Lim, S.-C. Moon, and J.-W. Kim. Issues and challenges of double patterning
lithography in DRAM. In Proc. SPIE Conf. on Optical Microlithography, 2006.
15%)

D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,

12(1):28-35, 1983. [25] [42]

N. Klewinghaus. Fast parallelisation for detailed routing in VLSI Design. Diploma
Thesis, University of Bonn, 2013.

114



BIBLIOGRAPHY

D. Kénig. Uber Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. Mathematische Annalen, 77(4):453-465, 1916.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Publishing Company, Incorporated, 2012. [6], [59} [61} [66]

B. Korte, D. Rautenbach, and J. Vygen. BonnTools: Mathematical innovation for
layout and timing closure of systems on a chip. Proceedings of the IEEE, 95(3):
555-572, 2007. [3]

S. Kratsch and M. Wahlstrom. Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 94-103. STAM, 2012. [62]

V. A. Kumar and H. Ramesh. Covering rectilinear polygons with axis-parallel rect-
angles. SIAM Journal on Computing, 32(6):1509-1541, 2003.

D.-T. Lee and C. K. Wong. Voronoi diagrams in L; (L) metrics with 2-dimensional
storage applications. SIAM Journal on Computing, 9(1):200-211, 1980.

D. Leven and M. Sharir. Planning a purely translational motion for a convex ob-
ject in two-dimensional space using generalized Voronoi diagrams. Discrete €
Computational Geometry, 2(1):9-31, 1987.

L. Liebmann, L. Pileggi, J. Hibbeler, V. Rovner, T. Jhaveri, and G. Northrop.
Simplify to survive: prescriptive layouts ensure profitable scaling to 32nm and
beyond. In SPIE Advanced Lithography. International Society for Optics and
Photonics, 2009.

L. W. Liebmann. Layout impact of resolution enhancement techniques: impediment
or opportunity? In Proceedings of the 2003 international symposium on Physical
design, pages 110-117. ACM, 2003.

F. Liers and G. Pardella. Partitioning planar graphs: a fast combinatorial approach
for max-cut. Computational Optimization and Applications, 51(1):323-344, 2012.
04]

Y.-H. Lin and Y .-L. Li. Double patterning lithography aware gridless detailed rout-
ing with innovative conflict graph. In Proceedings of the 47th Annual Design
Automation Conference, pages 398-403. ACM, 2010. [70]

Y.-H. Lin, B. Yu, D. Pan, and Y.-L. Li. Triad: A triple patterning lithography
aware detailed router. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 123-129, Nov 2012.

115



BIBLIOGRAPHY

A. Lingas. The power of non-rectilinear holes. In Automata, Languages and Pro-
gramming, pages 369-383. Springer, 1982.

W. Liou, J. Tan, and R. Lee. Minimum partitioning simple rectilinear polygons in
O(nloglogn)-time. In Proceedings of the fifth annual symposium on Computa-
tional geometry, pages 344-353. ACM, 1989.

W. Lipski, E. Lodi, F. Luccio, C. Mugnai, and L. Pagli. On two dimensional data
organization II. Fundamenta Informaticae, 2(3):245-260, 1979.

Q. Ma, H. Zhang, and M. D. Wong. Triple patterning aware routing and its com-
parison with double patterning aware routing in 14nm technology. In Proceedings
of the 49th Annual Design Automation Conference, pages 591-596. ACM, 2012.
[0

M. Maenhoudt, J. Versluijs, H. Struyf, J. Van Olmen, and M. Van Hove. Double
patterning scheme for sub-0.25 k1 single damascene structures at NA = 0.75, A\ =
193nm. In Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, volume 5754, pages 1508-1518, 2005.

J. MaBberg. Facility location and clock tree synthesis. PhD thesis, Dissertation,
Universitiat Bonn, 2009. (6] [47]

J. Maflberg and T. Nieberg. Rectilinear paths with minimum segment lengths.
Discrete Applied Mathematics, 161(12):1769-1775, 2013. [78]

D. Miiller. Fast resource sharing in VLSI routing. PhD thesis, University of Bonn,

2009. [17] T2} [72], O3]

D. Miiller, K. Radke, and J. Vygen. Faster min—max resource sharing in theory and
practice. Mathematical Programming Computation, 3(1):1-35, 2011. [12]

D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra.
Theoretical Computer Science, 7(2):217-236, 1978.

F. Nohn. Detailed Routing im VLSI-Design unter Beriicksichtigung von Multiple-
Patterning. Diploma Thesis, University of Bonn, 2012. [68] [78]

T. Ohtsuki. Minimum dissection of rectilinear regions. In Proc. 1982 IEEE Symp.
on Circuits and Systems, Rome, pages 1210-1213, 1982.

A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts
and applications of Voronoi diagrams, volume 501. John Wiley & Sons, 2009. [30]

E. Papadopoulou and D.-T. Lee. The L., Voronoi diagram of segments and VLSI
applications. International Journal of Computational Geometry € Applications,

11(05):503-528, 2001. [28] [30], [4T}

116



BIBLIOGRAPHY

G. Peschka. Kotirte Ebenen und deren Anwendung. Verlag Buschak € Irrgang,
Brinn, 1877.

S. Peyer. Shortest Paths and Steiner Trees in VLSI Routing. PhD thesis, University
of Bonn, 2007.

S. Peyer, D. Rautenbach, and J. Vygen. A generalization of Dijkstra’s shortest path
algorithm with applications to VLSI routing. Journal of Discrete Algorithms, 7:
377390, 2009. 87 B

B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299-301, 2004.

N. Robertson and P. D. Seymour. Graph minors. 1. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39-61, 1983.

N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-colour theorem.
Journal of Combinatorial Theory, Series B, 70(1):2—-44, 1997.

A. Rosenfeld. Axial representations of shape. Computer Vision, Graphics, and
Image Processing, 33(2):156-173, 1986.

F. Rubin. The Lee path connection algorithm. IEEFE Transactions on Computers,
100(9):907-914, 1974.

J. S. Salowe. Rip-up and reroute. In C. J. Alpert, D. P. Mehta, and S. S. Sapat-
nekar, editors, Handbook of Algorithms for Physical Design Automation. Auerbach
Publications, 2008.

J. Schneider. Transistor-Level Layout of Integrated Circuits. PhD thesis, University
of Bonn, 2014. [7]

C. Schulte. Design Rules in VLSI Routing. PhD thesis, University of Bonn, 2012.
5] 20, BT, 74} O3]

R. Seidel. A simple and fast incremental randomized algorithm for computing trape-
zoidal decompositions and for triangulating polygons. Computational Geometry,
1(1):51-64, 1991.

R. Seidel. The nature and meaning of perturbations in geometric computing. Dis-
crete & Computational Geometry, 19(1):1-17, 1998.

M. I. Shamos and D. Hoey. Closest-point problems. In 16th Annual Symposium on
Foundations of Computer Science, pages 151-162, 1975.

M. Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge university press, 1995. [44] [45] [46]

117



BIBLIOGRAPHY

V. Soltan and A. Gorpinevich. Minimum dissection of a rectilinear polygon with
arbitrary holes into rectangles. Discrete & Computational Geometry, 9(1):57-79,
1993.

M. Tanase and R. C. Veltkamp. Polygon decomposition based on the straight line
skeleton. In Proceedings of the nineteenth annual symposium on Computational
geometry, pages b8—67. ACM, 2003.

S. Teig. The X architecture: Not your father’s diagonal wiring. In Proc. International
Workshop on System-Level Interconnect Prediction, pages 33-37, 2002. [7]

C. Thomassen. Grotzsch’s 3-color theorem and its counterparts for the torus and
the projective plane. Journal of Combinatorial Theory Series B, 62(2):268-279,
1994.

H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. D. Wong. A polynomial time triple pat-
terning algorithm for cell based row-structure layout. In Computer-Aided Design
(ICCAD), 2012 IEEE/ACM International Conference on, pages 57-64. IEEE,
2012.

P. J. Vermeer. Two-dimensional MAT to boundary conversion. In Proceedings on
the second ACM Symposium on Solid Modeling and Applications, pages 493-494.
ACM, 1993.

W.-f. Wang and M. Chen. Planar graphs without 4, 6, 8-cycles are 3-colorable.
Science in China Series A: Mathematics, 50(11):1552-1562, 2007.

B. Yu and D. Z. Pan. Layout decomposition for quadruple patterning lithography
and beyond. arXiv preprint arXiv:1404.0321, 2014. [67]

B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan. Layout decomposition for triple
patterning lithography. In Computer-Aided Design (ICCAD), 2011 IEEE/ACM
International Conference on, pages 1-8. IEEE, 2011.

K. Yuan, K. Lu, and D. Z. Pan. Double patterning lithography friendly detailed

routing with redundant via consideration. In Design Automation Conference,
2009. DAC’09. 46th ACM/IEEE, pages 63-66. IEEE, 2009.

G. M. Ziegler. Lectures on polytopes, volume 152. Springer, 1995.

118



Summary

Routing is a major step in VLSI design, the design process of complex integrated
circuits (commonly known as chips). The basic task in routing is to connect prede-
termined locations on a chip (pins) with wires which serve as electrical connections.
One main challenge in routing for advanced chip technology is the increasing com-
plexity of design rules which reflect manufacturing requirements. In this thesis we
investigate various aspects of this challenge.

In Chapter 4 we consider polygon decomposition problems in the context of VLSI
design. We introduce two different width notions for polygons which are important
for width-dependent design rules in VLSI routing, and we present efficient algo-
rithms for computing width-preserving decompositions of rectilinear polygons into
rectangles. Such decompositions are used in routing to allow for fast design rule
checking. A main contribution of this thesis is an O(n) time algorithm for com-
puting a decomposition of a simple rectilinear polygon with n vertices into O(n)
rectangles, preseverving two-dimensional width. For rectilinear polygons with holes
the runtime increases to O(nlogn). Here the two-dimensional width at a point of
the polygon is defined as the edge length of the largest square that contains the
point and is contained in the polygon. In order to obtain these results we establish
a connection between such decompositions and L., Voronoi diagrams. In particular,
we associate each Voronoi edge with a corresponding edge rectangle. We prove that
there exists a width-preserving decomposition such that each of its rectangles can be
obtained by performing only four set operations on five edge rectangles. Finally, we
show how to preprocess the Voronoi diagram in linear time such that the involved
edge rectangles can be queried in constant time, implying the desired results. In
Section we consider polygon sets which originate from disjoint polygons which
are all expanded by a fixed zonogon of constant complexity via Minkowski sum. We
describe a simple and efficient O(nlogn) algorithm for decomposing such polygon
sets into O(n) interior-disjoint trapezoids. This algorithm has applications in clock
network design, another important part of VLSI design.

In Chapter [5| we consider implications of multiple patterning and other advanced
design rules for VLSI routing. The main contribution in this context is the detailed
description of a routing approach which is able to manage such advanced design
rules. As a main algorithmic concept we use multi-label shortest paths where cer-
tain path properties (which model design rules) can be enforced by defining labels
assigned to path vertices and allowing only certain label transitions. We prove that
computing multi-label shortest paths is NP-hard for three-dimensional grid graphs,

119



the typical setting in routing. Furthermore, we describe a polynomial time algo-
rithm by relaxing the property that vertices may not be visited more than once for
a path. Possible cycles are simply removed afterwards if necessary. In practice, this
approach is preferable to standard shortest path algorithms since design rules can
be considered earlier and more accurately. This is confirmed by our experimental
results.

The multiple patterning approach described in Chapter 5[ has been implemented
in BonnRoute (Gester et al. [2013]), a routing tool developed at the Research In-
stitute for Discrete Mathematics, University of Bonn, in cooperation with IBM. We
present results confirming that a flow combining BonnRoute and an external cleanup
step produces far superior results compared to an industry standard router. In par-
ticular, our proposed flow runs more than twice as fast, reduces the via count by
more than 20%, the wiring length by more than 10%, and the number of remaining
design rule errors by more than 60%. These results obtained by applying our mul-
tiple patterning approach to real-world chip instances provided by IBM are another
main contribution of this thesis. We note that IBM uses our proposed combined
BonnRoute flow as the default tool for signal routing.

120



	Introduction
	Notation and Definitions
	VLSI Routing Overview
	Polygon Decompositions in VLSI Design
	Unconstrained Polygon Decomposition
	Polygon Decomposition and Design Rule Checking
	One-Dimensional Width Decomposition
	Two-Dimensional Width Decomposition

	Decomposing the Union of Expanded Polygons

	VLSI Routing for Multiple Patterning Technology
	Multiple Patterning Setting
	Coloring Given Layouts
	Color-Symmetric Design Rules
	General Design Rules
	Practical Approaches

	Creating Colorable Layouts
	Multiple Patterning in BonnRoute
	Routing Space and Automatic Coloring
	Computing Long Connections
	Search Space and Problem Formulation
	Multi-Label Shortest Paths
	Multi-Label Interval-Based Path Search
	DRC-Aware Path Search Framework

	Implementation Details
	Experimental Results


	Bibliography
	Summary

