83 research outputs found

    Error Detecting Dual Basis Bit Parallel Systolic Multiplication Architecture over GF(2m)

    Get PDF
    An error tolerant hardware efficient very large scale integration (VLSI) architecture for bit parallel systolic multiplication over dual base, which can be pipelined, is presented. Since this architecture has the features of regularity, modularity and unidirectional data flow, this structure is well suited to VLSI implementations. The length of the largest delay path and area of this architecture are less compared to the bit parallel systolic multiplication architectures reported earlier. The architecture is implemented using Austria Micro System's 0.35 m CMOS (complementary metal oxide semiconductor) technology. This architecture can also operate over both the dual-base and polynomial base

    A VLSI synthesis of a Reed-Solomon processor for digital communication systems

    Get PDF
    The Reed-Solomon codes have been widely used in digital communication systems such as computer networks, satellites, VCRs, mobile communications and high- definition television (HDTV), in order to protect digital data against erasures, random and burst errors during transmission. Since the encoding and decoding algorithms for such codes are computationally intensive, special purpose hardware implementations are often required to meet the real time requirements. -- One motivation for this thesis is to investigate and introduce reconfigurable Galois field arithmetic structures which exploit the symmetric properties of available architectures. Another is to design and implement an RS encoder/decoder ASIC which can support a wide family of RS codes. -- An m-programmable Galois field multiplier which uses the standard basis representation of the elements is first introduced. It is then demonstrated that the exponentiator can be used to implement a fast inverter which outperforms the available inverters in GF(2m). Using these basic structures, an ASIC design and synthesis of a reconfigurable Reed-Solomon encoder/decoder processor which implements a large family of RS codes is proposed. The design is parameterized in terms of the block length n, Galois field symbol size m, and error correction capability t for the various RS codes. The design has been captured using the VHDL hardware description language and mapped onto CMOS standard cells available in the 0.8-µm BiCMOS design kits for Cadence and Synopsys tools. The experimental chip contains 218,206 logic gates and supports values of the Galois field symbol size m = 3,4,5,6,7,8 and error correction capability t = 1,2,3, ..., 16. Thus, the block length n is variable from 7 to 255. Error correction t and Galois field symbol size m are pin-selectable. -- Since low design complexity and high throughput are desired in the VLSI chip, the algebraic decoding technique has been investigated instead of the time or transform domain. The encoder uses a self-reciprocal generator polynomial which structures the codewords in a systematic form. At the beginning of the decoding process, received words are initially stored in the first-in-first-out (FIFO) buffer as they enter the syndrome module. The Berlekemp-Massey algorithm is used to determine both the error locator and error evaluator polynomials. The Chien Search and Forney's algorithms operate sequentially to solve for the error locations and error values respectively. The error values are exclusive or-ed with the buffered messages in order to correct the errors, as the processed data leave the chip

    Arithmetic Operations in Multi-Valued Logic

    Full text link
    This paper presents arithmetic operations like addition, subtraction and multiplications in Modulo-4 arithmetic, and also addition, multiplication in Galois field, using multi-valued logic (MVL). Quaternary to binary and binary to quaternary converters are designed using down literal circuits. Negation in modular arithmetic is designed with only one gate. Logic design of each operation is achieved by reducing the terms using Karnaugh diagrams, keeping minimum number of gates and depth of net in to consideration. Quaternary multiplier circuit is proposed to achieve required optimization. Simulation result of each operation is shown separately using Hspice.Comment: 12 Pages, VLSICS Journal 201

    Throughput/Area-efficient ECC Processor Using Montgomery Point Multiplication on FPGA

    Get PDF
    High throughput while maintaining low resource is a key issue for elliptic curve cryptography (ECC) hardware implementations in many applications. In this brief, an ECC processor architecture over Galois fields is presented, which achieves the best reported throughput/area performance on field-programmable gate array (FPGA) to date. A novel segmented pipelining digit serial multiplier is developed to speed up ECC point multiplication. To achieve low latency, a new combined algorithm is developed for point addition and point doubling with careful scheduling. A compact and flexible distributed-RAM-based memory unit design is developed to increase speed while keeping area low. Further optimizations were made via timing constraints and logic level modifications at the implementation level. The proposed architecture is implemented on Virtex4 (V4), Virtex5 (V5), and Virtex7 (V7) FPGA technologies and, respectively, achieved throughout/slice figures of 19.65, 65.30, and 64.48 (106/(Seconds Ă— Slices))

    Complexity Analysis of Reed-Solomon Decoding over GF(2^m) Without Using Syndromes

    Get PDF
    For the majority of the applications of Reed-Solomon (RS) codes, hard decision decoding is based on syndromes. Recently, there has been renewed interest in decoding RS codes without using syndromes. In this paper, we investigate the complexity of syndromeless decoding for RS codes, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis differs in several aspects from existing asymptotic complexity analysis, which is typically based on multiplicative fast Fourier transform (FFT) techniques and is usually in big O notation. First, we focus on RS codes over characteristic-2 fields, over which some multiplicative FFT techniques are not applicable. Secondly, due to moderate block lengths of RS codes in practice, our analysis is complete since all terms in the complexities are accounted for. Finally, in addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. Comparing the complexities of both syndromeless and syndrome-based decoding algorithms based on direct and fast implementations, we show that syndromeless decoding algorithms have higher complexities than syndrome-based ones for high rate RS codes regardless of the implementation. Both errors-only and errors-and-erasures decoding are considered in this paper. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.Comment: 11 pages, submitted to EURASIP Journal on Wireless Communications and Networkin

    Hardware implementation of elliptic curve Diffie-Hellman key agreement scheme in GF(p)

    Get PDF
    With the advent of technology there are many applications that require secure communication. Elliptic Curve Public-key Cryptosystems are increasingly becoming popular due to their small key size and efficient algorithm. Elliptic curves are widely used in various key exchange techniques including Diffie-Hellman Key Agreement scheme. Modular multiplication and modular division are one of the basic operations in elliptic curve cryptography. Much effort has been made in developing efficient modular multiplication designs, however few works has been proposed for the modular division. Nevertheless, these operations are needed in various cryptographic systems. This thesis examines various scalable implementations of elliptic curve scalar multiplication employing multiplicative inverse or field division in GF(p) focussing mainly on modular divison architectures. Next, this thesis presents a new architecture for modular division based on the variant of Extended Binary GCD algorithm. The main contribution at system level architecture to the modular division unit is use of counters in place of shift registers that are basis of the algorithm and modifying the algorithm to introduce a modular correction unit for the output logic. This results in 62% increase in speed with respect to a prototype design. Finally, using the modular division architecture an Elliptic Curve ALU in GF(p) was implemented which can be used as the core arithmetic unit of an elliptic curve processor. The resulting architecture was targeted to Xilinx Vertex2v6000-bf957 FPGA device and can be implemented for different elliptic curves for almost all practical values of field p. The frequency of the ALU is 58.8 MHz for 128-bits utilizing 20% of the device at 27712 gates which is 30% faster than a prototype implementation with a 2% increase in area utilization. The ALU was tested to perform Diffie-Hellman Key Agreement Scheme and is suitable for other public-key cryptographic algorithms

    Area- Efficient VLSI Implementation of Serial-In Parallel-Out Multiplier Using Polynomial Representation in Finite Field GF(2m)

    Full text link
    Finite field multiplier is mainly used in elliptic curve cryptography, error-correcting codes and signal processing. Finite field multiplier is regarded as the bottleneck arithmetic unit for such applications and it is the most complicated operation over finite field GF(2m) which requires a huge amount of logic resources. In this paper, a new modified serial-in parallel-out multiplication algorithm with interleaved modular reduction is suggested. The proposed method offers efficient area architecture as compared to proposed algorithms in the literature. The reduced finite field multiplier complexity is achieved by means of utilizing logic NAND gate in a particular architecture. The efficiency of the proposed architecture is evaluated based on criteria such as time (latency, critical path) and space (gate-latch number) complexity. A detailed comparative analysis indicates that, the proposed finite field multiplier based on logic NAND gate outperforms previously known resultsComment: 19 pages, 4 figure

    Novel Single and Hybrid Finite Field Multipliers over GF(2m) for Emerging Cryptographic Systems

    Get PDF
    With the rapid development of economic and technical progress, designers and users of various kinds of ICs and emerging embedded systems like body-embedded chips and wearable devices are increasingly facing security issues. All of these demands from customers push the cryptographic systems to be faster, more efficient, more reliable and safer. On the other hand, multiplier over GF(2m) as the most important part of these emerging cryptographic systems, is expected to be high-throughput, low-complexity, and low-latency. Fortunately, very large scale integration (VLSI) digital signal processing techniques offer great facilities to design efficient multipliers over GF(2m). This dissertation focuses on designing novel VLSI implementation of high-throughput low-latency and low-complexity single and hybrid finite field multipliers over GF(2m) for emerging cryptographic systems. Low-latency (latency can be chosen without any restriction) high-speed pentanomial basis multipliers are presented. For the first time, the dissertation also develops three high-throughput digit-serial multipliers based on pentanomials. Then a novel realization of digit-level implementation of multipliers based on redundant basis is introduced. Finally, single and hybrid reordered normal basis bit-level and digit-level high-throughput multipliers are presented. To the authors knowledge, this is the first time ever reported on multipliers with multiple throughput rate choices. All the proposed designs are simple and modular, therefore suitable for VLSI implementation for various emerging cryptographic systems
    • …
    corecore