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Abgract. This paper presents two low-energy, highly regular, VLS architectures performing a
large prime GF(2™ multiplication. The first one is aeadfident digit-serid architecture, when
fiedd-generating polynomid p(x) is a trinomid. The second architecture is digit-serid,
progranmable on p(Y. Both architectures are suitable for computing large prime GF(2")
exponentiation for DL based schemes. The pardld dgorithm indde of each digit cel reduces both
the global cycle time for the first architecture and he switching activity in the second one. An
andysis of the performance comparison is described as function of the digit-size. A comparison is
mede with the bit serid architecture based on the performance improvement with respect to
computetion delay and energy consumption of one multiplication operation. Thus, the factor of
merit for performance measurement is defined as the product of energy times the dday and it is
computed. The smulaion results on gate levd implementations shows that the energy deay
products ae highly reduced for both architectures. Therefore, the proposed architectures are
attractive for low -power applications.

Key words. Finite Field multiplier, Trinomias, Digit-serid architecture, Low-power design, Low-
energy design, Energy-Delay product, Switching Activity, Bitdevel Pipdining, Long Heavily
Loaded Lines.

1. INTRODUCTION

Finite fidd aithmetic architectures are the badc building blocks in many
goplications involving ayptogrgphy. Many  popular  public-key dgorithms  require
exponentiion in lage Gdois Fdd GF(2M), induding in paticular schemes
based on the intractable discrete logarithm in finite fidds [1].
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This operation can be computed by repested sguare-andtmultiply (S & M)
dgorithm [7] as a series of modular multiplications over GF(Z"). Although,
hardware integration of large prime fidd GF(2™) multipliers present a high degree
of complexity rdaed to the fiddsze and fidd-geneaing polynomid.
Furthermore, the long aithmetic operators exhibit in generd a great activity and
disspate consequent shares of the power supply.

Reducing power consumption is equdly important for non-porteble systems as it
reduces cooling and packaging costs and increases system rdiability. Thus, the
desgn of efficient dedicated, low energy, finite fidd multiplie's can lead to
dramaic improvement on the overdl sysem peformance of GF(2")
exponentiator.

The usud agpproach to reduce the time complexity and improve the performance
is to use padld multipliers However, the hardware complexity of a bit-pardld
multiplier is proporiond to n? Its area and energy consumption increase

dramaticdly as the fidd order m increase since large number of gates and registers
are mapped.

Digt-serid technique an dterndive to the bit-pardld gpproach, process multiple
bits “digit” of an entire word, referred to as the digit-size, in one clock-cycle. This
technique is suitable for the implementation of moderate sample rae systems
where, the area and power consumption are criticd. It was first used for the
implementation of Gadois Fdd multiplier in [15]. However, the architecture of
the multiplier is based on semi-sysdlic 2-D aray multiplier architecture [10] in
which, a large amount of gates and regiders have to be mapped yidding to
increee both the area and the power consumption for large fidd-gze In this
paper a new digit-sarid, high performance GF(2™) multipliers are developed and
implemented. The proposed architectures are mapped on low-power/low-voltage
technology. A technique such as gating the dock is usad to andyze the amount of
power savings using different digit-gze.

The outline of the paper is as follows Section 2 provides Knowledge of basc
Finite Fedd concepts and properties, then some condderations ae discussed
concerning the Primitive polynomids and fidd-size for DL based Finite Fied
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based cryptosystems and a brief overview of the exising VLS architectures for
pefooming multiplication in GF(2™). Two sdected architectures are briefly
exposed. In section 3, the corresponding theoretical basis for our proposed digit-
serid multiplication dgorithms are devdoped and specid purpose  architectures
for implementing the proposed dgorithms ae described. The implementation
results and compaison ae oOdaled in Section 4 and some conclusons are
provided in Section 5.

2. Finite Field GF(2™) Survey

2.1. Mathematical Background

Knowledge of basc Finite Fied concepts and propeties is assumed, as
covered in[4], [16].
Finite Feld GF(2™) contains 2™ dements. It is an extenson fidd of GF(2), which
contains two dements {0,1}. The dement of GF(2") can be represented in severa
equivdent forms. Mainly, there are three common types of bases, Standard or
Polynomial Basis (SD/PB), Normal Basis(NB) and Dual basis (DB). There are
many polynomid bases and norma bases from which to choose For efficient
computation of the fidd arithmetic we generdly use an optimal normal basis

representation or a polynomial basis representation.

If a standard basis {Lal,...,aml} is used, where the primitive dement a is a root

of an irreducible polynomid of degree m p(x) = X" + Py X" M +...+ pX + p,over
GK(2), then

am=3 pa’ ®
i=0

Each dement can be represented as apolynomid ina  with adegreelessthenm,

a

GFM=|AA=5 aa’ 4l GF(2), 0LiEm- 1§ ©
|

i=0



In addition, the operation results of additions multiplications and exponentiaion
of dement a ae dill polynomids of a with degree less than m In this base,
addition is defined as integer addition modulo-2 (logicd XOR) and multiplication
is defined as integer multiplication modulo-2 (logicadl AND). Element of the fied

ml

represented by a norma basis {a,az,a“,...,a2 } are expressed as polynomids

of degree 2™ or less, or

Y ml X e

GF(2M={AA=g aa’, a1 GF(2), O£i£m—1§ )
| i=0

Since dements in one representation can be efficiently converted to dements in

the other representation by usng an appropriate change-of-bass matrix, the

intractability of the DLP isn't affected by the choice of representation.

2.2. Primitive Polynomials and Field Size for Finite
Field based Cryptosystems

When firg introduced as underlying Finite Fidd, GF(Z") was the preferred
implementation, basicdly because it is esser to implement in hardware [2], [3]
usng LFSRs. Although, al practicd DL based public-key schemes require
opeations in reaivey large Finite Feds eg, m>500 bits [3][19]. Further, for
security ressons, the fidd-size m is sdected so that 2™1 is a lage prime (a
“Mersenne’ prime). There are certain values of fidd-sze for which the period of
the LFSR is the maximum, namely 21, which is dl the possible states of m bits,
exduding the dl-zero dsate. A maximum length sequence will occur if the
reduction polynomids for condructing extenson fidd corresponding to the
LFSRs are prime elements of GF(2") [4].

In addition, aithmetic in GF(Z") can usudly be implemented more efficiently if
the chosen irreducible polynomid has few nonzero tems. Since, the least
gonficant coefficent of any prime polynomid must dways be nonzero
(otherwise the polynomid has O as a root), the hamming weght of the prime
polynomias of degree & least 2 with few nonzero coefficients, must be odd and
have a least 3 coefficients (prime polynomids of low hamming weigh).

Polynomiads of hamming weight 2, 3, 4 ae cdled trinomials quadrinomials and
4



pentanomials respectively. An irreducible trinomia of degree m mugt be of the
form x™X+1, where 1£KE m- 1. In fact, both the complexity and energy
consumption of mod p(x) operation could be sgnificantly reduced by sdecting k
with amdler vdue and less Hamming weight [5]. Table 1., gives some practicd
vaues for parameter k and, the fiedd-9ze m for which an irreducible trinomia of
degree min Finite Feld exigts.

Table1 Most ussful irreducible trinomials X™+ xk+ 1, for each large Mersenne primem, 512£ m
£4423

Table 1

2.3. Architectures for GF(2™) Multiplication

Various architectures have been proposed to perform moduar multiplication
operation effidency in GF(2"). Different basis representation, have been used to
obtan some interesting redizations [4][8][9][10][11]. The pardld approaches,
aen't to be enumerate here, snce for large m the multiplier has to be of serid
type. In fact for an arbitrary GF(2™) the gate count for a bit-pardld multiplier
usng either a PD or NB is proportiond to nf. In that case, area complexity
increases draméticdly for largefield sze.

A synthess comparison among DB, NB and SB is given in [12)[13]. There, the
gate count is a gquiddine for the implementaion complexity. It shows that,
multipliers based on NB and DB requires basis converson. Moreover, the area of
NB multiplier grows dramaticdly as the order of the fidd goes up when optima
norma bass doesn't exis. Even when an optimd norma bads is chosen, the size
complexity is proportiond to 3m Also, both DB and NB ae not highly modular
or expandable [14]. Ingtead, the SD multiplier does not require basis conversion,
its 9ze and time complexity are proportiond to m and it is reaedily matched to any
input or output sysem [12]. The polynomid bass multiplier can be implemented
usng different architectures. The systolic and/or semisygtolic multipliers are
described in [9][10]. These architectures are pipdined and regular 2-D systalic
arays based on approach smilar to the bit-serid one (MSR) [4]. Their hardware
implementations use m bit-serid  padld multipliers resulting in - expensve
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hardware offering a high bit rate. The systolic multiplier described in [9] and [10]
isthus not very attrective for large Finite Fed.

The MSR architecture described in [4] is a smple and area efficient way of
implementing SB multiplication over large Gdois Fdd. It is a LFSR basd
multiplier. The nice bit-dice depicted in Figure. 1, smplifies the VLS desgn for
large fidd aithmetic. The input dements A(x) and B(X) and the output product
C(X) ae hit sid and the computaion proceeds in hit-pardld fashion by
convolution and reduction modulo an irreducible polynomia p(X) of degree m
For more detalls about the dgorithm, see [4].

The multiplication is performed with order O(m) in both computation time and
implementation area. 2m time units are required between the fird-in and firg-out
of computation and two-bits control sgnd is required. The MSR architecture is
programmable with respect to the primitive polynomid p(x) and fidd order m
usng extra gaes in each multiplier cdl [4]. The complexity can be further
reduced for implementations that use irreducible polynomids with few

coefficients such astrinomialsor pentanomials.

Figure 1

Fig. 1 MSR m-bit multiplier architecture.

In addition, it is easy to make the multiplier work as squarer since squarer can be
redized as a bit-sarid multiplier [4]. This amplify the design of the MSR based
exponentiator in which, sguaring can be caried out concurrently with the
multiplication.

Another architecture LSA performing SD multiplication in GF(2™) is described
in [11]; this architecture is linear sysdlic aray, bit-levd pipdined Fg2. It is ds0
highly regular and expandeble and performs the SD multiplication operation over
GF(2™ in bit serid manner using the recursive adgorithm in (4). It dlows the
input dements to enter a linear systalic aray in the same order and the system
only requires one bhit pipdined control dgnd. For more detals about the
dgorithm, see[3].




s (kD) k-1) i :
¢ =1le R +aibm-1-k +c, 7, O<ifEm- 1]

d | (k-1) . (4)
TCm1 Potab, ., 1=0

c’?=0for0O£i£m-1

Where ¢™* for 0£i £m- 1 (output of the last cdll-k) are the coefficients of the
product C(x) = A(x) :B(x) mod p(x) and p, for 0£i £ m- 1 arethe coefficients
of the polynomid generator.

Figure 2

Fig. 2 Linear systolic array multiplier.

The circuit diagram of CELL-k is shown in Fig.3. Two internd regigers band
c ae used to hold the bit coefficients b,,,, ad c{,Y dong the operation usng
the s, sgnd which mark the start of the multiplication. These coefficients are
then used to compute the CELL-k output (4) & the next clock cycle when s, = 0.
Thus, three registers a, p ad s ae used to give one time unit delay to the input
bit coefficients a,,p and s at each CELL-k. The outputs are then triggered using

anext register output stage in master dave manner as shown in Fig. 3.
The mbit multiplication time takes 31 clock cycles. At 2n clock cycles after
a,,; ad b, , enter the leftmost cdl; the results will start coming out from the

rightmost cdll at the rate of one coefficient every clock cycle.

Figure 3

Fig. 3 LSA basic processing cdl and its dgorithm.

This multiplier is programmable with respect to the primitive polynomid p(X).
The dgorithm is often advantageous because of its efficient implementation time.
The citicdl path in this architecture is just the sum of one full-adder and one
NAND geate delay.

In contrast with the MSR architecture, LSA multiplier can achieve consecutive
overlgpped multiplication operations without waiting for the result to start a new
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computation. Hence, with a smple multiplier and minor modification we can
implement the exponentigtion based on repeated sguare-and-multiply  agorithm
yieding to decrease the exponentiator area when large field-sze is used.

3. Architecture Level Transformation

Power consumption in standard CM OS technology originates from two

different sources.
Static power is disspated in severd ways. The largest percentage of datic
power results from sourceto-dran sub threshold leskage, which is caused
by reduced threshold voltages that prevent the gate from completey
turning off. Static power is dso disspated when current lesks between the
diffuson layers and the subdrate. For this reason, ddic power is often
called |eakage power.
Dynamic power caused by chaging and discharging capacitors during
dgnd computation (Switching power). Short circuits (internd  power)
occurs dso in the dynamic phase where both the nMOS and pMOS
tranggtors are conducting, and

Hence, the totd power disspated in a CMOS gae with a capacitive load Cioag IS

givenby

1

P= E>C Néof xN +Qsc NDD xf xN + Ileak >e‘/DD (5)

load

Where Vop denotes the voltage swing, and f is the frequency of operation, N the
activity factor, i.e, the number of gate output trangtions per clock cycle. The
factor Qg represents the quantity of charge carried by the short circuit current per
trangtion and lieak IS the leskage current.

In traditiona desgn the average power consumption of a CMOS gate is
dominated by the switching activity (dynamic power) and contributes to more
than 90% of the totd power consumption [17]. For recent technologies (degp sub-
micron) short circuit current and |eakage current may be neglected, but this may
change for future devdopments of high scaed integration [20]. As the device Size
and threshold voltage continue to decrease, the short circuit power disspdtion is
no longer a negligible factor. Reducing the power consumption amounts to the
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reduction of one or more of these factors. In energy-efficient desgn, we seek to
minimize the energy consumed per operation or the power-dday product of the
circuit, which is the factor of merit for high performance architectures.

Lower supply voltages can achieve extremey low power consumption (5).
However, lowering supply voltage leads to peformance degradation. Deays
dradticaly increase as Vpp gpproaches the threshold voltages V; of the device (6).

Since the ddlay time is proportiond to 1NV, the supply voltage can be reduced to
a catan vaue, s0 that the chosen frequency maiches with the longest critica
path. The propagation dday equation of a CMOS circuit is given by [21],

— d )VDD
T., =_oad""DD _ Cloa (%)
delay k >(VDD _ Vt)z ( )

Where k depends on the trandstors aspect ratio (W/L) and other device
parameters, V:isthe trangstor threshold voltage.

When the propagetion delay is less than the clock period by a factor d, we can

reduce the supply voltege by afactor b suchthat T, isequd to T, . Hence,
Coma ¥,
Ty =d Toetay (Vop) = Tdday( b Wpp) = kX(IBadNDD N E\)Z)Z )

Paralldism and pipdining can be exploited to improve the peformance (to
compensate for the increased gate delays) of low-voltage drcuits [17] [18]. Also,
much higher reductions in power consumption ae possble when using clock
gating technique in order to reduce the activity factor N in (4). Further, increasng
the concurrency of internad operations, and rearanging the gae topology from
array-type to treetype reduces the switching power [15].

In this section, we demondrate that highest gan can be achieved on the
behaviourd and architecturd levels (up to 90% of power saving) usng digit-serid
technique to implement patidly pardld architecture. We extend the MSR and
LSA hbit serid multipliers to a generdized digit-serid architecture, which is array-
type a the digit-levd usng padld multiplication dgorithm indde of each digit
cdls. Thexe achitectures are obtained by unfolding the hit-serid multipliers.
Indead of the LSA multiplier, the MSR digit-serid architecture cannot be
pipdined bdow digit-level because of the presence of the feedback loops in the



MSR bit-serid architecture. The linear dependency in mod p(x) degree reduction
operation can be broken by using the trinomids as fid d-generating polynomids.

3.1. Digit-Serial MSR Multiplier

The architecture presented in Fg. 1 is not pipdined beow bit-level. The
presence of long loaded lines for large m affects directly the maximum clock
frequency and consequently the system performance. In order to overcome this
disbility, a dgt-serid technique can be goplied by unfolding the bit-serid MSR

architecture.

The trandformation approach involves tregting the multiplier operands as digits
the m bits of data operands are processed in units (digits) of digit Sze D usng
d =@n/ Dy dices Let

(o

rg—l -1 )
A= B x”', where

Qo

ax,B=

i=0 i

0

y o D-1 i .

Jl-ajzobDHjX,OEjEd-Z 0
m-1- D(d- 1)

B=i, -
fa,  heuxj=d-1

Then
G i
C = AxBmod p(x) = Axg B x" mod p(x) ©®
i=0
This result on array-type multiplication, which can be performed in the following
way:

C =[B,A(x) mod p(x)] + €B,(A(X) " mod p(x)
+6B, X5 (A(X) % mod p(x)))f+ ©
+B, ,(x°? (A() %< mod p(x)§

We define now the polynomids Z_ (x) as:



Z,(0=82,0°) =(€) A mod p(x),j=0L..m-1 (10)

i=0
where ;T GF(2).Then
do-l
C(x)=a BZ (¥ (11)
=0

And in matrix notation

&G O &®%o 21 - - - Zg1 0
g G . g Z, Z; - - . Zg; -
C=¢ . +=¢ , . . .- B=Z-B (12)
¢ + ¢ -
%Cd.lfa gzd-l,o Zy11 - - - Lada g

Where Z isa d by d digit matrix. The columns of Z are the d consecutive Sates of
a Gdoistype pardld LFSR with feedback polynomid p(x) that has been initidly
loaded with A (=Z.0). The product is therefore obtained by firgt loading the LFSR
with A, computing BoZ o and doring the result in d stage register of D-bits Sze.
Next we clock the LFSR, compute BiZ.3, add it to BoZ o, and store the result and
so forth. After d dock cycles the product is avalable in the lower register. The
genard form of the drcuit is shown in Fg. 4., for large “Mersenng’ prime usng
trinomid primitive polynomid, with gppropriate choice of parameter k (m, k are
sdected from Table 1.). The structure is kept smple and highly regular.

The explanatory notes for the itdic line / across the sgnd lines denote the weights
of the corresponding dgnds ie, <D- X, > means tha the corresponding
line carries the D-X; least sgnificant bits of the corresponding signd. The vaues
of X1 and X, are reported in Table 2, with respect to the vaue of parameter k, the
fidd-szemand digit-sizeD .

Figure 4

Fig. 4 Digit-serial MSR multiplier for field-generating polynomia p(x)= 1+X4 X™

The LFSR peforms the computation (11), i.e, A(X) multiplied by x° followed by
mod p(X). The partid product generator denoted by A computes BiZ ; in (12). The
accumulator is denoted by A and performs the sum operation in (12); it considts

n




of XOR gates rearranged from array-type to treetype and storage elements, where
the patia product BiZ; and the intermediate result are accumulated using the
binary-tree of XOR gates. At each cdl, only the D L SB-bits of the partiad product
are computed. At the last cdl, a correction must be done in order to reduce the
degree of the result from m+D-2 to m1. This can be done efficiently in one gep.
The polynomia degree is reduced usng AND and XOR gaes (1). The totd
computation time takes 3d clock cycles between the firg-in digit and the lag-out
dgt.

Table 2x, and x; vauesfor digit szeD =816,32

Table 2

3.2. Linear Digit-Serial Systolic Array Multiplier

The architecture shown in Fg. 4, is not programmable on p(x), which is
hardwired. We propose here a methodology to design a programmable digit-serid
Finite FHeld multiplier with respect to the primitive polynomid. The multiplier is
based on the architecture shown in Fig.2. The digit-serid architecture is obtained
by fdlding the bit-serid architecture implementing (6).

Condder the dructure of the bit-serid multiplier shown in Fg. 2. The
trandformation gpproach involves tredting the hits in this multiplier as digits.
Therefore, the inputs bit a; , b, gand p; for O£i £m- 1 to CELL-k in Fg. 3, ae
replaced by digitsforms A, B;, C;, Pi for 0£i £d - 1 where

N

I'é- I13=_ol<"""°'(‘o P>y, X, 0£i£d- 2

<ABGP>={ 0 - (13
fa - <abgp>y,,; x,i=d-1
and
mo-l i ddl Di rg—l i %—1 Di
AX)=a ax =g Ax", B(x)=g hx =g Bx
i=0 i=0 i=0 i=0
B S Bt _%t 9
C(x)=gqcx =g Cx”, Px)=q px =g Px”
i=0 i=0 i=0 i=0




where, D denotes the digit-size and d the total number of digits d = gm/ dy.

Suppose that the resulting architecture can be implemented on a linear digit-serid
sysolic aray, as shown in Fg5. The inputs digit-words A, Bi, G, P, are fed into
the multiplier in the same order for i deceasing and from the MSB to the LSB. If
m is nat divisble per D, the zero padding is performed at the LSB podtions for
i =0.

Figure 5

Fig. 5 Digit-serid, linear systolic array multiplier.

The sysem now consgsts of d identicd cdls for D>d-bit multiplication in
GF(2M. It inputs the data at the leftmost cedl and outputs the results a the
rightmast cdll at the rate of one digit every clock cycle.

The basc processng dement CELL-K of the multiplier is shown in Fg. 6. Two
D-hit regigers A, P and 1-bit s regiders are used to give one time unit dday to the
input data Ay, P; and 5§ at each CELL-k. The ssgnd is used to denote the start of a
multiplication.

Figure 6

Fig. 6 LSA digit-serid basic processng cdll and its dgorithm.

The corresponding dgorithm is obtained by grouping each st of D cdls from the
LSA multiplier in Fig. 2, then computing the outputs of each of these grouped
cdls after D geps (clock cycles). These are the outputs of the resulting digit cdl.
Thisisillugrated in the example bellow.

Example 1.

Consider the computation of C(x) = A(X).B(x) mod p(x) over GF(2) where

A(x)=1+x" +x* +x7and B(x)=x'+x*+x* andp(x) =1+ x* + X’




Consider now the basic processing eement CELL-k and itsdgorithm given in
Fig. 3. Let each CELL-k be represented using the 1/0 signas and the State of its
internd registers as shown in Fg. 6.

Figure 7

Fig. 7 LSA CELL-K multiplier representation.

The /O dgnds and the date of internd regisers a each CELL-k for each
computation sep are reported in Fig. 7. The steps represented at the right sde of
each CELL6 represents the seps corresponding to the digit-serid architecture for
D=3

Theefore, by folding the hit-serid computations in Fg. 7., and after 3d-1 deps
the output of the multiplier expressad in digit form isasfollows

Cax = 000 000 000 000 000 011 001 000

Thus, the C interna register of each CELL-k in the digit-serid multiplier are
expressed asfollows:

LSA multiplier cell LSA multiplier time step

cO-= Q>01(4) = C(0)=Cind

C(1) = cn(L.2) =Cax(01)= Gn(0.) . 5. (02 + 6(00) . p(0.0) +b(00) .a(00)
=¢in(0,1) . 5.(0) + c(0) . p(0,0) + b(0) . a(00)

2 C(1) = Cin(2) +(Cin(2 . Pin(2)) + Bin(2) - Air(2)

C(2) = cin(24) =cax(1,3)=an(1,3) . 5,13 + c(1,2) . p(1,2) +b(1,2) .a(1,2)
=on(L3). 5,13 +o(l) . p(12) +b(1) . a(L2)

where, cin(1,3) = cout(0,2) =cin(0,2) . sn(0,2) +c(0) . p(0,2) + b(0) . a(0,2)

2 C(2) =(Cin(0) + (Cin(?) - Pin(2)) + Bin(2) - Ain(2))) + [(Cin(D)+ Cin(2) - Pin(2))

+(Bin(2) - Ain(2))) - Pi2)] + Bin(2) - Ain(2))
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Figure 8

Fig. 8 Folding bit-serid computations.

Note that al the states of C registers must be computed during one clock cycle.
The Cot register at the output of each CELL-k, are then expressed asfollows :

Coul2) = (Cin(D+(C(0) - P(0))+(B(0) - A0))+(C(D) . P(D))
+(B1) . AD)) - 5,)+CQ) - P(2)+(B2) . AQ));

Cou(1) = ((Cin(D)+(C(Q) . Pin(2)+(B(0) . Ain(2))) +(C(2) . P(0))
+B(1) - A0) - 5,)+CQ2) . P(D)) +(B(2) . A());

Cout(0) = (((Cin(Q)+(C(0) . Pin(1))+(B(0) . Ain(1))) +(C(2) . Pin(2))
+BD) . An(2) - §,)+C(2) . P(0) + (B(2) . A0)));

Hence, we can extend these expressons to a D-bits digit words and drive a
generdized dgorithm described bellow, by computing the expresson of F and G
functions reported in FHg. 9 and 10.

Figure 9

Fig.9 Circuit diagram of the Ffunction.

InFg. 5, F denotes the function processing the state of the C internd regigter. The
circuit diagram of F function isshown in Fg. 9., where FF denotes a flip-flop.
Note thet the critica path is (D-1)(Txorat Tnanp2)-

Figure 10

Fig. 10 Circuit diagram of the G function for one bit output.

The G function process the dtate of the output register Coy. The corresponding
circuit diagram for one output coefficient is shown in Fg. 10. The criticd path in
this architecture isincreased to D Txor-at Txor2+ 2T NanD2

The d-bit multiplication implemented within architecture shown in Fig. 5., takes

3d-1 clock cycles. At 2 clock cycles after Ag¢1and Bg1 enter the leftmogt cdl, the
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results will start coming out from the rightmost cell a the rate of one digit every
clock cycle.

4. Implementation Issues and Comparison

Clock gating technique can be used for power-efficient implementation of

regigers that are disabled during some clock cycles, when such registers maintan
the same vaue through multiple cydes such as the internd dave regigers c and b
in Hg. 3 and C and B in the LSA architecture shown in Fig. 6. These regiders
have their own load controlled by s, sgnd. This technique works well for data
flow logic, where clocking requirements can be predetermined & least one cycle
aheed. Thus, the dock gating endble sgnd sn mugt be vdid hdfway into the
cycle to gate off the cgpture clock. To overcome this problem, we require that
these internal registers be triggered fadter than the master registers By and Coy
usng different dock edges that is pipeining within the dock cyde This requires
one more dlock pulse, resulting in 2-phase non-overlgpping docking scheme.
The MSR, LSA and clock gated LSA architectures have been implemented at the
gae levd uang different digit-sze D=14816 in oder to peform a comparison
in tems of speed, area and energy consumption for GF(?®) muitiplier with
P(X)= 13X as primitive polynomia. We mapped our design into a deep sub-
micron (0.18n) target library from XEMICS (COOLIB) that contains rich logic-
gates optimised for low-power/low-voltage, operating & two different power
supply 18v and 09v. A low powe desgnflov has been vdidaed usng
Synopsys tools for power andysis and optimization.

Different types of power disspation components are edimated usng gae leve
gmulations on a st of random dimulus. Since lowenergy design is more
important  then low-power desgn, the energy and energy-dday product is
computed. The performance characterigtics including totd delay, area in term of
gaes and energy-dday product and ae reported in Fg 11, 12 and 13

respectively.

Figure 11

Fig. 11 Tota ddlay comparison as function of the digit-size for one GF(2*") multiplication.




Note thet, the long Sgnds that are distributed to dl dices in Fg. 1 are susceptible
to degradation due to the large capacitive loads For example, the serid input
multiplier bit b; is a long line that has to drive m AND gate. This signd must drive
up to 11.76pF capacitive load. The source of this line will be trying to push
current into the entire load and experiencing a very subdantid RC deday, which,
increase congderably the critical path and then the totd ddlay as shown in Fg. 11.
Hence, for large m a number of refresh amplifiers is clearly needed to manage
such a heavy load. We can condder using fast buffers to isolate heavy loads.
However buffering the architecture can severdly degrade system performance, it
increases the criticd path and crestes the problem of skewed signds. Thus, when
usng a buffer, trace lengths should be bdanced to minimize sgnd skew. The
padldism indde eech digit-cdl in Fg. 4 contribute to reduce the load on such
long heavily loaded Sgnds, i.e, when the chosen digit-Sze is 8 the cgpacitive
load is sgnificantly reduced to 1,350F per bit-line for the most heavily loaded line
(input multiplier digitword B;), experiencing over 72% improvement in crcuit
speed when operating a 1.8v and 96% when operating a 0.9v.

Figure 12

Fig. 12 Areain gates of the MSR, LSA and clock gating LSA digit-seridd GF(Z™") multipliers as
function of the digit Sze.

The bit-level pipdining approach makes the LSA multiplier architecture more
advantageous in term of clock frequency and computation time. Both the tota
dday and the energy consumption are reduced. On the one hand, the latency
decrease linearly with the digit-9ze but the criticd path increases linearly in
dmog the same rae (Fig. 11.), resulting in a condant totd deay for digit-Sze
equa or larger then 4. On the other hand, te area increases dramaticaly due to
the large number of laiches used to temporary hold the internd and the output data
in mager-dave manner (Fg. 13). This means that the levd of padldian is
limited by the area condraints.

Figure 13

Fig. 13 Enagy-Déay product comparison between MSR and LSA digit-serial GF(2607)

multipliers.
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The mogt interesting result is obtained when comparing the Energy-Deay and the
Energy-Delay-Area products. The performance characteridtic reported in Fg. 13,
shows that Energy-Delay products are sgnificantly reduced for both LSA and
MSR architecture when digit-gze increese. High gain is obtaned for D=16 when
operating a 09v and more than 99% reduction is noticed. However, when
compaing the characterisic reported in Fg. 14, the optimum gan for LSA
architecture is obtaned for D=4 when operating a 1.8v due to the dramdic
increese in circuit area for larger digit-sze. This is not the case when operating at
0.9v snce the energy is sgnificantly reduced.

Beside the programmability with respect to the primitive polynomid of the LSA
architecture, the MSR present the best performance characterisic only for digit-
sgzeegud or larger then 8 dueto the large criticd path for smdl digit-sze.

The dock gating technique insated for LSA multiplier achieves a subdantid
reduction in both the Energy-Delay (over 28% a 0.9v and 17% a 1.8v for D=8)
and the Energy-Delay-Area product (over 30% at 0.9v and 20% a 1.8v for D=8)
for only 22% of clock gated regigers. Clock geting reduces the number of gates in
such  architecture (multi-bit regigers) when digit-sze increase. It helps to
diminate the feedback loops and multiplixers used to feedback the output of each
interndl  Storage dements back to the input for synchronous loadenable registers.
Such feedback loops and multiplixers are replaced by only one integrated cel
with latch based clock gating which result in 35% and 4.3% reduction in gate
number a 0.9v and 1.8v respectively when the chosen digit-sizeis8.

Figure 14

Fig. 14 Energy-Dday-Areaproduct comparison between MSR and L SA digit -serid GF(2™)

multipliers.

When reducing the operaing voltage by a factor d=2 the switching power is
reduced by factor d? (5), from (6) assuming that Vpp>>V; the dday is increased
by factor d. If the switching power contribute to more then 90% (dominant factor)
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then, the power saving is counterbaanced by the increased delay since the energy-
delay product is proportiondl to d>.

5. Conclusion

The VLSl architectures presented here are low energy, digit-serid, suitable for
large prime GF(2™ multiplication. The MSR architecture is area efficient LFSR-
based for trinomid polynomid fidd-generator and the LSA architecture is hit-
levd pipdined, liner systolic aray architecture, which is programmable with
respect to the primitive polynomid p(x).

Digt-serid technique when agpplied to the MSR architecture can be exploited
efficiently in order to decrease the criticd peth (totd deay), when buffering the
architecture, and hdps to reduce the switching activity for the LSA architecture.
This reaults in low energy design of large finite-fidd multipliers a the expense of
increesed area. Higher gain in energy-delay product is obtained (over 90%) when
dgt-sze is large. Therefore, a trade-off can be made between the area, energy
consumption and speed. No dgnificat gan on the energy-dday product is
obtained when reducing voltage supply since the dday and power counterbaance
eech other when the switching power dominates. Gating the clock when possble
achieves a grest saving in power consumption and area and has no sgnificant
effect on the circuit speed.
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Figure Captions

Fig. 1 MSR m-bit multiplier architecture.

Fig. 2 Linear sygtolic array multiplier architecture.

Fig. 3 LSA basic processng cdl and its dgorithm.

Fig. 4 Digit-serid Multiplier for fidd-generaing polynomid p(x)=1+xk+xm.
Fig. 5 Digit-serid, linear systolic array multiplier.

Fig. 6 Digit-serid LSA basic processing cdll and its dgorithm.

Fig. 7 LSA CELL-K multiplier representation.

Fig. 8 Falding bit-serid computations.

Fig. 9 Circuit diagram of the F function.

Fig. 10 Circuit diagram of the G function for one bit output.

Fig. 11 Energy-Delay product comparison between MSR and LSA digit-serid
GH2607) multipliers.

Fig.12 Totd delay comparison as function of the digit-sze for one GF(2607 )
multiplication.

Fig. 13 Areain gates of the MSR, LSA and clock gating LSA digit-serid GF(2*)
multipliers asfunction of the digit Sze.

Table Captions

Table 1 Most useful irreducible trinomials X™+x+ 1, for each large Mersenne
prime m 512 £ m £ 4423
Table 2
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Figure 6
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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Table 1

m k
521 32,48, 158, 168, 353, 363, 473, 489
607 105, 147, 273, 334, 460, 502
1279 216, 418, 861, 1063
2281 715, 915, 1029, 1252, 1366, 1566
3217 67, 576, 2641, 3150
4423 271, 369, 370, 649, 1393, 1419, 2098,

2325, 3004, 3030, 3774, 4053, 4054,
4152




Table 2

X2

=16

16

19
17
24

11
19

15

=8

D

11

15

=4

D

32

158
168
105
147
273
216
418
715
915

67

576
271

X1

=16
23

31

15

25

D=8

15

15

=4

D

521

607

3281




