
1

Low Energy Digit-serial Architectures for

large GF(2m) multiplication

FETH ALLAH CHERIGUI, DANIEL MLYNEK

Integrated Systems Laboratory

Swiss Federal Institute of Technology EPFL

CH-1015 Lausanne

Feth-Allah.Cherigui@epfl.ch
+41 21 693 6983

Daniel.Mlynek@epfl.ch
+41 21 693 4681

Abstract. T his paper presents two low -energy, highly regular, VLSI architectures performing a

large prime GF(2m) multiplication. The first one is area-efficient digit -serial architecture, when

field-generating polynomial p(x) is a trinomial. The second architecture is digit-serial,

programmable on p(x). Both architectures are suitable for computing large prime GF(2m)

exponentiation for DL based schemes. The parallel algorithm inside of each digit cell reduces both

the global cycle time for the first architecture and the switching activity in the second one. An

analysis of the performance comparison is described as function of the digit-size. A comparison is

made with the bit serial architecture based on the performance improvement with respect to

computation delay and energy consumption of one multiplication operation. Thus, the factor of

merit for performance measurement is defined as the product of energy times the delay and it is

computed. The simulation results on gate level implementations shows that the energy delay

products are highly reduced for both architectures. Therefore, the proposed architectures are

attractive for low -power applications.

Key words. Finite Field multiplier, Trinomials, Digit-serial architecture, Low -power design, Low-

energy design, Energy-Delay product, Switching Activity, Bit-level Pipelining, Long Heavily

Loaded Lines.

1. INTRODUCTION

Finite field arithmetic architectures are the basic building blocks in many

applications involving cryptography. Many popular public-key algorithms require

exponentiation in large Galois Field GF(2m), including in particular schemes

based on the intractable discrete logarithm in finite fields [1].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

This operation can be computed by repeated square-and-multiply (S & M)

algorithm [7] as a series of modular multiplications over GF(2m). Although,

hardware integration of large prime field GF(2m) multipliers present a high degree

of complexity related to the field-size and field-generating polynomial.

Furthermore, the long arithmetic operators exhibit in general a great activity and

dissipate consequent shares of the power supply.

Reducing power consumption is equally important for non-portable systems as it

reduces cooling and packaging costs and increases system reliability. Thus, the

design of efficient dedicated, low energy, finite field multipliers can lead to

dramatic improvement on the overall system performance of GF(2m)

exponentiator.

The usual approach to reduce the time complexity and improve the performance

is to use parallel multipliers. However, the hardware complexity of a bit-parallel

multiplier is proportional to m2. Its area and energy consumption increase

dramatically as the field order m increase since large number of gates and registers

are mapped.

Digit-serial technique an alternative to the bit-parallel approach, process multiple

bits “digit” of an entire word, referred to as the digit-size, in one clock-cycle. This

technique is suitable for the implementation of moderate sample rate systems

where, the area and power consumption are critical. It was first used for the

implementation of Galois Field multiplier in [15]. However, the architecture of

the multiplier is based on semi-systolic 2-D array multiplier architecture [10] in

which, a large amount of gates and registers have to be mapped yielding to

increase both the area and the power consumption for large field-size. In this

paper a new digit-serial, high performance GF(2m) multipliers are developed and

implemented. The proposed architectures are mapped on low-power/low-voltage

technology. A technique such as gating the clock is used to analyze the amount of

power savings using different digit-size.

The outline of the paper is as follows. Section 2 provides Knowledge of basic

Finite Field concepts and properties, then some considerations are discussed

concerning the Primitive polynomials and field-size for DL based Finite Field

3

based cryptosystems and a brief overview of the existing VLSI architectures for

performing multiplication in GF(2m). Two selected architectures are briefly

exposed. In section 3, the corresponding theoretical basis for our proposed digit-

serial multiplication algorithms are developed and special purpose architectures

for implementing the proposed algorithms are described. The implementation

results and comparison are detailed in Section 4 and some conclusions are

provided in Section 5.

2. Finite Field GF(2m) Survey

2.1. Mathematical Background

Knowledge of basic Finite Field concepts and properties is assumed, as

covered in [4], [16].

Finite Field GF(2m) contains 2m elements. It is an extension field of GF(2), which

contains two elements {0,1}. The element of GF(2m) can be represented in several

equivalent forms. Mainly, there are three common types of bases, Standard or

Polynomial Basis (SD/PB), Normal Basis (NB) and Dual basis (DB). There are

many polynomial bases and normal bases from which to choose. For efficient

computation of the field arithmetic we generally use an optimal normal basis

representation or a polynomial basis representation.

If a standard basis { }1 11, ,..., mα α − is used, where the primitive element α is a root

of an irreducible polynomial of degree m, 1
1 1 0() ...m m

mp x x p x p x p−
−= + + + + over

GF(2), then

1

0

m
m i

i
i

pα α
−

=

= ∑ (1)

Each element can be represented as a polynomial in α with a degree less then m,

or

1

0

F(2) , F(2), 0 1
m

m i
i i

i

G A A a a G i mα
−

=

 = = ∈ ≤ ≤ − 
 

∑ (2)

4

In addition, the operation results of additions, multiplications and exponentiation

of element α are still polynomials of α with degree less than m. In this base,

addition is defined as integer addition modulo-2 (logical XOR) and multiplication

is defined as integer multiplication modulo-2 (logical AND). Element of the field

represented by a normal basis { }12 4 2, , ,...,
m

α α α α
−

, are expressed as polynomials

of degree 2m-1 or less, or

1
2

0

(2) , (2), 0 1
i

m
m

i i
i

GF A A a a GF i mα
−

=

 = = ∈ ≤ ≤ − 
 

∑ (3)

Since elements in one representation can be efficiently converted to elements in

the other representation by using an appropriate change-of-basis matrix, the

intractability of the DLP isn’t affected by the choice of representation.

2.2. Primitive Polynomials and Field Size for Finite

Field based Cryptosystems

When first introduced as underlying Finite Field, GF(2m) was the preferred

implementation, basically because it is easier to implement in hardware [2], [3]

using LFSRs. Although, all practical DL based public -key schemes require

operations in relatively large Finite Fields; e.g., 500m > bits [3][19]. Further, for

security reasons, the field-size m is selected so that 2m-1 is a large prime (a

“Mersenne” prime). There are certain values of field-size for which the period of

the LFSR is the maximum, namely 2m-1, which is all the possible states of m bits,

excluding the all-zero state. A maximum length sequence will occur if the

reduction polynomials for constructing extension field corresponding to the

LFSRs are prime elements of GF(2m) [4].

In addition, arithmetic in GF(2m) can usually be implemented more efficiently if

the chosen irreducible polynomial has few non-zero terms. Since, the least

significant coefficient of any prime polynomial must always be nonzero

(otherwise the polynomial has 0 as a root), the hamming weight of the prime

polynomials of degree at least 2 with few nonzero coefficients, must be odd and

have at least 3 coefficients (prime polynomials of low hamming weight).

Polynomials of hamming weight 2, 3, 4 are called trinomials, quadrinomials and

5

pentanomials respectively. An irreducible trinomial of degree m must be of the

form xm+xk+1, where 11 −≤≤ mk . In fact, both the complexity and energy

consumption of mod p(x) operation could be significantly reduced by selecting k

with smaller value and less Hamming weight [5]. Table 1., gives some practical

values for parameter k and, the field-size m, for which an irreducible trinomial of

degree m in Finite Field exists.

Table 1 Most useful irreducible trinomials xm+xk+1, for each large Mersenne prime m, 512 ≤ m

≤ 4423

Table 1

2.3. Architectures for GF(2m) Multiplication

Various architectures have been proposed to perform modular multiplication

operation efficiency in GF(2m). Different basis representation, have been used to

obtain some interesting realizations [4][8][9][10][11]. The parallel approaches,

aren’t to be enumerate here, since for large m the multiplier has to be of serial

type. In fact for an arbitrary GF(2m) the gate count for a bit-parallel multiplier

using either a PD or NB is proportional to m2. In that case, area complexity

increases dramatically for large field size.

A synthesis comparison among DB, NB and SB is given in [12][13]. There, the

gate count is a guideline for the implementation complexity. It shows that,

multipliers based on NB and DB requires basis conversion. Moreover, the area of

NB multiplier grows dramatically as the order of the field goes up when optimal

normal basis doesn’t exist. Even when an optimal normal basis is chosen, the size

complexity is proportional to 3m. Also, both DB and NB are not highly modular

or expandable [14]. Instead, the SD multiplier does not require basis conversion,

its size and time complexity are proportional to m and it is readily matched to any

input or output system [12]. The polynomial basis multiplier can be implemented

using different architectures. The systolic and/or semi-systolic multipliers are

described in [9][10]. These architectures are pipelined and regular 2-D systolic

arrays based on approach similar to the bit-serial one (MSR) [4]. Their hardware

implementations use m bit-serial parallel multipliers resulting in expensive

6

hardware offering a high bit rate. The systolic multiplier described in [9] and [10]

is thus not very attractive for large Finite Field.

The MSR architecture described in [4] is a simple and area efficient way of

implementing SB multiplication over large Galois Field. It is a LFSR based

multiplier. The nice bit-slice depicted in Figure. 1, simplifies the VLSI design for

large field arithmetic. The input elements A(x) and B(x) and the output product

C(x) are bit serial and the computation proceeds in bit-parallel fashion by

convolution and reduction modulo an irreducible polynomial p(x) of degree m.

For more details about the algorithm, see [4].

The multiplication is performed with order O(m) in both computation time and

implementation area. 2m time units are required between the first-in and first-out

of computation and two-bits control signal is required. The MSR architecture is

programmable with respect to the primitive polynomial p (x) and field order m

using extra gates in each multiplier cell [4]. The complexity can be further

reduced for implementations that use irreducible polynomials with few

coefficients such as trinomials or pentanomials.

Figure 1

Fig. 1 MSR m-bit multiplier architecture.

In addition, it is easy to make the multiplier work as squarer since squarer can be

realized as a bit-serial multiplier [4]. This, simplify the design of the MSR based

exponentiator in which, squaring can be carried out concurrently with the

multiplication.

Another architecture LSA performing SD multiplication in GF(2m) is described

in [11]; this architecture is linear systolic array, bit-level pipelined Fig.2. It is also

highly regular and expandable and performs the SD multiplication operation over

GF(2m) in bit serial manner using the recursive algorithm in (4). It allows the

input elements to enter a linear systolic array in the same order and the system

only requires one bit pipelined control signal. For more details about the

algorithm, see [3].

7

(1) (1)
1 1 1()

(1)
1 0 0 1

, 0 1;

, 0

k k
m i i m k ik

i k
m m k

c p a b c i m
c

c p a b i

− −
− − − −

−
− − −

 + + < ≤ −= 
+ =

 (4)

100)1(−≤≤=− miforci

Where 1m
ic − for 0 1i m≤ ≤ − (output of the last cell-k) are the coefficients of the

product)(mod)()()(xpxBxAxC ⋅= and ip for 0 1i m≤ ≤ − are the coefficients

of the polynomial generator.

Figure 2

Fig. 2 Linear systolic array multiplier.

The circuit diagram of CELL-k is shown in Fig.3. Two internal registers b and

c are used to hold the bit coefficients 1m kb − − and (1)
1

k
mc −

− along the operation using

the ins signal which mark the start of the multiplication. These coefficients are

then used to compute the CELL-k output (4) at the next clock cycle when ins = 0.

Thus, three registers a , p and s are used to give one time unit delay to the input

bit coefficients ,i ia p and is at each CELL-k. The outputs are then triggered using

a next register output stage in master slave manner as shown in Fig. 3.

The m-bit multiplication time takes 3m-1 clock cycles. At 2m clock cycles after

1ma − and 1mb − enter the leftmost cell; the results will start coming out from the

rightmost cell at the rate of one coefficient every clock cycle.

Figure 3
Fig. 3 LSA basic processing cell and its algorithm.

This multiplier is programmable with respect to the primitive polynomial p(x).

The algorithm is often advantageous because of its efficient implementation time.

The critical path in this architecture is just the sum of one full-adder and one

NAND gate delay.

In contrast with the MSR architecture, LSA multiplier can achieve consecutive

overlapped multiplication operations without waiting for the result to start a new

8

computation. Hence, with a simple multiplier and minor modification we can

implement the exponentiation based on repeated square-and-multiply algorithm

yielding to decrease the exponentiator area when large field-size is used.

3. Architecture Level Transformation

Power consumption in standard CMOS technology originates from two

different sources:

• Static power is dissipated in several ways. The largest percentage of static

power results from source-to-drain sub threshold leakage, which is caused

by reduced threshold voltages that prevent the gate from completely

turning off. Static power is also dissipated when current leaks between the

diffusion layers and the substrate. For this reason, static power is often

called leakage power.

• Dynamic power caused by charging and discharging capacitors during

signal computation (Switching power). Short circuits (internal power)

occurs also in the dynamic phase where both the nMOS and pMOS

transistors are conducting, and

Hence, the total power dissipated in a CMOS gate with a capacitive load Cload is

given by

DDleakDDscDDload VINfVQNfVCP ⋅+⋅⋅⋅+⋅⋅⋅= 2

2
1

 (5)

Where VDD denotes the voltage swing, and f is the frequency of operation, N the

activity factor, i.e., the number of gate output transitions per clock cycle. The

factor Qsc represents the quantity of charge carried by the short circuit current per

transition and Ileak is the leakage current.

In traditional design the average power consumption of a CMOS gate is

dominated by the switching activity (dynamic power) and contributes to more

than 90% of the total power consumption [17]. For recent technologies (deep sub-

micron) short circuit current and leakage current may be neglected, but this may

change for future developments of high scaled integration [20]. As the device size

and threshold voltage continue to decrease, the short circuit power dissipation is

no longer a negligible factor. Reducing the power consumption amounts to the

9

reduction of one or more of these factors. In energy-efficient design, we seek to

minimize the energy consumed per operation or the power-delay product of the

circuit, which is the factor of merit for high performance architectures.

Lower supply voltages can achieve extremely low power consumption (5).

However, lowering supply voltage leads to performance degradation. Delays

drastically increase as VDD approaches the threshold voltages Vt of the device (6).

Since the delay time is proportional to 1/VDD, the supply voltage can be reduced to

a certain value, so that the chosen frequency matches with the longest critical

path. The propagation delay equation of a CMOS circuit is given by [21],

2()
load DD

delay
DD t

C V
T

k V V
⋅

=
⋅ −

 (6)

Where k depends on the transistors aspect ratio (W/L) and other device

parameters, Vt is the transistor threshold voltage.

When the propagation delay is less than the clock period by a factor δ , we can

reduce the supply voltage by a factor β such that clkT is equal to delayT . Hence,

2. () ()
()

load DD
clk delay DD delay DD

DD t

C V
T T V T V

k V V
β

δ β
β

⋅ ⋅
= = ⋅ =

⋅ ⋅ −
 (7)

Parallelism and pipelining can be exploited to improve the performance (to

compensate for the increased gate delays) of low-voltage circuits [17] [18]. Also,

much higher reductions in power consumption are possible when using clock-

gating technique in order to reduce the activity factor N in (4). Further, increasing

the concurrency of internal operations, and rearranging the gate topology from

array-type to tree-type reduces the switching power [15].

In this section, we demonstrate that highest gain can be achieved on the

behavioural and architectural levels (up to 90% of power saving) using digit-serial

technique to implement partially parallel architecture. We extend the MSR and

LSA bit serial multipliers to a generalized digit-serial architecture, which is array-

type at the digit-level using parallel multiplication algorithm inside of each digit

cells. These architectures are obtained by unfolding the bit-serial multipliers.

Instead of the LSA multiplier, the MSR digit-serial architecture cannot be

pipelined below digit-level because of the presence of the feedback loops in the

10

MSR bit-serial architecture. The linear dependency in mod p(x) degree reduction

operation can be broken by using the trinomials as field-generating polynomials.

3.1. Digit-Serial MSR Multiplier

The architecture presented in Fig. 1 is not pipelined below bit-level. The

presence of long loaded lines for large m affects directly the maximum clock

frequency and consequently the system performance. In order to overcome this

disability, a digit-serial technique can be applied by unfolding the bit-serial MSR

architecture.

The transformation approach involves treating the multiplier operands as digits:

the m bits of data operands are processed in units (digits) of digit size D using

/d m D=    slices. Let

∑∑
−

=

−

=

==
1

0

1

0

,
d

i

Di
i

m

i

i
i xBBxaA , where

1

0

1 (1)

0

, 0 2

, 1

D i
Di jj

i m D d i
Di jj

b x j d
B

b x j d

−
+=

− − −
+=

 ≤ ≤ −= 
= −

∑
∑

 (7)

Then

)(mod)(mod
1

0

xpxBAxpBAC
d

i

Di
i∑

−

=

⋅=⋅= (8)

This result on array-type multiplication, which can be performed in the following

way:

[]0 1

2

(2)
1

() mod () (() mod ()

((() mod ()))

((() mod ()))

D

D D

D d D
d

C B A x p x B A x x p x

B x A x x p x

B x A x x p x−
−

 = + ⋅ 
 + ⋅ ⋅ ⋅ +⋅⋅ ⋅ 
 + ⋅ 

 (9)

We define now the polynomials)(, xZ j− as:

11

1

, ,
0

() () () () mod (), 0,1,..., 1
d

D i D j
j i j

i

Z x z x x A x p x j m
−

−
=

= = = −∑ (10)

where)2(, GFz ji ∈ . Then

1

,
0

() ()
d

j j
j

C x B Z x
−

−
=

= ∑ (11)

And in matrix notation

0,0 0,1 0, 10

1,0 1,1 1, 11

1,0 1,1 1, 11

. . .

. . .

.

.
. . .

d

d

d d d dd

z z zC
z z zC

C B Z B

z z zC

−

−

− − − −−

  
  
  
  = = • = •
  
  

      

 (12)

Where Z is a d by d digit matrix. The columns of Z are the d consecutive states of

a Galois-type parallel LFSR with feedback polynomial p (x) that has been initially

loaded with A (=Z-,0). The product is therefore obtained by first loading the LFSR

with A, computing B0Z-,0 and storing the result in d stage register of D-bits size.

Next we clock the LFSR, compute B1Z-,1, add it to B0Z-,0, and store the result and

so forth. After d clock cycles the product is available in the lower register. The

general form of the circuit is shown in Fig. 4., for large “Mersenne” prime using

trinomial primitive polynomial, with appropriate choice of parameter k (m, k are

selected from Table 1.). The structure is kept simple and highly regular.

The explanatory notes for the italic line / across the signal lines denote the weights

of the corresponding signals, i.e., LSBXD >−< 1 means that the corresponding

line carries the D-X1 least significant bits of the corresponding signal. The values

of X1 and X2 are reported in Table 2, with respect to the value of parameter k , the

field-size m and digit-size D .

Figure 4
Fig. 4 Digit-serial MSR multiplier for field-generating polynomial p(x)=1+xk+xm.

The LFSR performs the computation (11), i.e., A(x) multiplied by xD followed by

mod p(x). The partial product generator denoted by ⊗ computes BiZ-,i in (12). The

accumulator is denoted by ⊕ and performs the sum operation in (12); it consists

12

of XOR gates rearranged from array-type to tree-type and storage elements, where

the partial product BiZ-,i and the intermediate result are accumulated using the

binary-tree of XOR gates. At each cell, only the D LSB-bits of the partial product

are computed. At the last cell, a correction must be done in order to reduce the

degree of the result from m+D-2 to m-1. This can be done efficiently in one step.

The polynomial degree is reduced using AND and XOR gates (1). The total

computation time takes 3d clock cycles between the first-in digit and the last-out

digit.

Table 2 x1 and x2 values for digit size D = 8,16,32

Table 2

3.2. Linear Digit-Serial Systolic Array Multiplier

The architecture shown in Fig. 4, is not programmable on p(x), which is

hardwired. We propose here a methodology to design a programmable digit-serial

Finite Field multiplier with respect to the primitive polynomial. The multiplier is

based on the architecture shown in Fig.2. The digit-serial architecture is obtained

by folding the bit-serial architecture implementing (6).

Consider the structure of the bit-serial multiplier shown in Fig. 2. The

transformation approach involves treating the bits in this multiplier as digits.

Therefore, the inputs bit a i , bi , ci and p i for 0 1i m≤ ≤ − to CELL-k in Fig. 3, are

replaced by digits forms Ai, Bi, C i, Pi for 10 −≤≤ di where

1

0

1 (1)

0

, , , , 0 2
, , ,

, , , , 1

D j
Di jj

i m D d j
Di jj

a b c p x i d
A B C P

a b c p x i d

−
+=

− − −
+=

 < > ≤ ≤ −< > = 
< > = −

∑
∑

 (13)

and

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

() , ()

() , ()

m d m d
i Di i Di

i i i i
i i i i

m d m d
i Di i Di

i i i i
i i i i

A x a x A x B x b x B x

C x c x C x P x p x P x

− − − −

= = = =

− − − −

= = = =

= = = =

= = = =

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 (14)

13

where, D denotes the digit-size and d the total number of digits, /d m d=    .

Suppose that the resulting architecture can be implemented on a linear digit-serial

systolic array, as shown in Fig.5. The inputs digit-words Ai, Bi, Ci, Pi are fed into

the multiplier in the same order for i deceasing and from the MSB to the LSB. If

m is not divisible per D, the zero padding is performed at the LSB positions for

0i = .

Figure 5
Fig. 5 Digit-serial, linear systolic array multiplier.

The system now consists of d identical cells for D d⋅ -bit multiplication in

GF(2m). It inputs the data at the leftmost cell and outputs the results at the

rightmost cell at the rate of one digit every clock cycle.

The basic processing element CELL-K of the multiplier is shown in Fig. 6. Two

D-bit registers A, P and 1-bit s registers are used to give one time unit delay to the

input data Ai, Pi and si at each CELL-k. The s signal is used to denote the start of a

multiplication.

Figure 6
Fig. 6 LSA digit-serial basic processing cell and its algorithm.

The corresponding algorithm is obtained by grouping each set of D cells from the

LSA multiplier in Fig. 2, then computing the outputs of each of these grouped

cells after D steps (clock cycles). These are the outputs of the resulting digit cell.

This is illustrated in the example bellow.

Example 1.

Consider the computation of () (). () mod ()C x A x B x p x= over GF(27) where

2 4 6() 1A x x x x= + + + and 1 3 5()B x x x x= + + and 3 7() 1p x x x= + + .

14

Consider now the basic processing element CELL-k and its algorithm given in

Fig. 3. Let each CELL-k be represented using the I/O signals and the state of its

internal registers as shown in Fig. 6.

Figure 7
Fig. 7 LSA CELL-K multiplier representation.

The I/O signals and the state of internal registers at each CELL-k for each

computation step are reported in Fig. 7. The steps represented at the right side of

each CELL6 represents the steps corresponding to the digit-serial architecture for

D=3.

Therefore, by folding the bit-serial computations in Fig. 7., and after 3d-1 steps

the output of the multiplier expressed in digit form is as follows:

cout è 000 000 000 000 000 011 001 000

Thus, the C internal register of each CELL-k in the digit-serial multiplier are

expressed as follows:

LSA multiplier cell LSA multiplier time step

 C (0) = cin(0,0) è C(0) = C in(2)

C(1) = cin(1,2) = cout(0,1)= cin(0,1) .)1,0(ins + c(0,0) . p(0,0) + b (0,0) . a (0,0)

 = cin(0,1) .)1,0(ins + c(0) . p(0,0) + b(0) . a (0,0)

è C(1) = Cin(1) + (Cin(2) . Pin(2)) + (Bin(2) . Ain(2))

C(2) = cin(2,4) = cout(1,3)= cin(1,3) .)3,1(ins + c(1,2) . p(1,2) + b (1,2) . a (1,2)

 = cin(1,3) .)3,1(ins + c(1) . p(1,2) + b (1) . a(1,2)

where, cin(1,3) = cout(0,2) = cin(0,2) . sin(0,2) + c(0) . p (0,1) + b(0) . a (0,1)

è C(2) =(Cin(0) + (Cin(2) . Pin(1)) + (Bin(2) . Ain(2))) + [(Cin(1)+ (C in(2) . Pin(2))

+ (Bin(2) . Ain(2))) . Pin(2)] + (Bin(1) . Ain(2))

15

Figure 8
Fig. 8 Folding bit-serial computations.

Note that all the states of C registers must be computed during one clock cycle.

The Cout register at the output of each CELL-k, are then expressed as follows :

Cout(2) = ((((Cin(2)+(C(0) . P(0))+(B(0) . A(0)))+(C(1) . P(1))

 + (B(1) . A(1))) . ins)+(C(2) . P(2))+(B(2) . A(2)));

Cout(1) = ((((Cin(1)+(C(0) . Pin(2))+(B(0) . Ain(2))) +(C(1) . P(0))

 +(B(1) . A(0))) . ins)+(C(2) . P(1)) +(B(2) . A(1)));

Cout(0) = ((((Cin(0)+(C(0) . Pin(1))+(B(0) . Ain(1))) +(C(1) . Pin(2))

 +(B(1) . Ain(2))) . ins)+(C(2) . P(0)) + (B(2) . A(0)));

Hence, we can extend these expressions to a D-bits digit words and drive a

generalized algorithm described bellow, by computing the expression of F and G

functions reported in Fig. 9 and 10.

Figure 9
Fig. 9 Circuit diagram of the F function.

In Fig. 5, F denotes the function processing the state of the C internal register. The

circuit diagram of F function is shown in Fig. 9., where FF denotes a flip-flop.

Note that the critical path is (D-1)(Txor-3+TNAND-2).

Figure 10
Fig. 10 Circuit diagram of the G function for one bit output.

The G function process the state of the output register Cout. The corresponding

circuit diagram for one output coefficient is shown in Fig. 10. The critical path in

this architecture is increased to DTXOR-3+TXOR-2+2TNAND-2

The d-bit multiplication implemented within architecture shown in Fig. 5., takes

3d -1 clock cycles. At 2d clock cycles after Ad-1 and Bd-1 enter the leftmost cell, the

16

results will start coming out from the rightmost cell at the rate of one digit every

clock cycle.

4. Implementation Issues and Comparison

Clock gating technique can be used for power-efficient implementation of

registers that are disabled during some clock cycles, when such registers maintain

the same value through multiple cycles such as the internal slave registers c and b

in Fig. 3 and C and B in the LSA architecture shown in Fig. 6. These registers

have their own load controlled by sin signal. This technique works well for data-

flow logic, where clocking requirements can be predetermined at least one cycle

ahead. Thus, the clock gating enable signal sin must be valid halfway into the

cycle to gate off the capture clock. To overcome this problem, we require that

these internal registers be triggered faster than the master registers Bout and Cout

using different clock edges that is pipelining within the clock cycle. This requires

one more clock pulse, resulting in 2-phase non-overlapping clocking scheme.

The MSR, LSA and clock gated LSA architectures have been implemented at the

gate level using different digit-size D=1,4,8,16 in order to perform a comparison

in terms of speed, area and energy consumption for GF(2607) multiplier with

p(x)=1+x273+x607 as primitive polynomial. We mapped our design into a deep sub-

micron (0.18µ) target library from XEMICS (COOLIB) that contains rich logic-

gates optimised for low-power/low-voltage, operating at two different power

supply 1.8v and 0.9v. A low power design-flow has been validated using

Synopsys tools for power analysis and optimization.

Different types of power dissipation components are estimated using gate level

simulations on a set of random stimulus. Since low-energy design is more

important than low-power design, the energy and energy-delay product is

computed. The performance characteristics including total delay, area in term of

gates and energy-delay product and are reported in Fig. 11, 12 and 13

respectively.

Figure 11
Fig. 11 Total delay comparison as function of the digit-size for one GF(2607) multiplication.

17

Note that, the long signals that are distributed to all slices in Fig. 1 are susceptible

to degradation due to the large capacitive loads. For example, the serial input

multiplier bit bi is a long line that has to drive m AND gate. This signal must drive

up to 11.76pF capacitive load. The source of this line will be trying to push

current into the entire load and experiencing a very substantial RC delay, which,

increase considerably the critical path and then the total delay as shown in Fig. 11.

Hence, for large m, a number of refresh amplifiers is clearly needed to manage

such a heavy load. We can consider using fast buffers to isolate heavy loads.

However buffering the architecture can severely degrade system performance, it

increases the critical path and creates the problem of skewed signals. Thus, when

using a buffer, trace lengths should be balanced to minimize signal skew. The

parallelism inside each digit-cell in Fig. 4 contribute to reduce the load on such

long heavily loaded signals, i.e., when the chosen digit-size is 8 the capacitive

load is significantly reduced to 1,35pF per bit-line for the most heavily loaded line

(input multiplier digit-word Bi), experiencing over 72% improvement in circuit

speed when operating at 1.8v and 96% when operating at 0.9v.

Figure 12
Fig. 12 Area in gates of the MSR, LSA and clock gating LSA digit-serial GF(2607) multipliers as

function of the digit size.

The bit-level pipelining approach makes the LSA multiplier architecture more

advantageous in term of clock frequency and computation time. Both the total

delay and the energy consumption are reduced. On the one hand, the latency

decrease linearly with the digit-size but the critical path increases linearly in

almost the same rate (Fig. 11.), resulting in a constant total delay for digit-size

equal or larger then 4. On the other hand, the area increases dramatically due to

the large number of latches used to temporary hold the internal and the output data

in master-slave manner (Fig. 13). This means that the level of parallelism is

limited by the area constraints.

Figure 13
Fig. 13 Energy-Delay product comparison between MSR and LSA digit-serial GF(2607)

multipliers.

18

The most interesting result is obtained when comparing the Energy-Delay and the

Energy-Delay-Area products. The performance characteristic reported in Fig. 13,

shows that Energy-Delay products are significantly reduced for both LSA and

MSR architecture when digit-size increase. High gain is obtained for D=16 when

operating at 0.9v and more than 99% reduction is noticed. However, when

comparing the characteristic reported in Fig. 14, the optimum gain for LSA

architecture is obtained for D=4 when operating at 1.8v due to the dramatic

increase in circuit area for larger digit-size. This is not the case when operating at

0.9v since the energy is significantly reduced.

Beside the programmability with respect to the primitive polynomial of the LSA

architecture, the MSR present the best performance characteristic only for digit -

size equal or larger then 8 due to the large critical path for small digit-size.

The clock gating technique inserted for LSA multiplier achieves a substantial

reduction in both the Energy-Delay (over 28% at 0.9v and 17% at 1.8v for D=8)

and the Energy-Delay-Area product (over 30% at 0.9v and 20% at 1.8v for D=8)

for only 22% of clock gated registers. Clock gating reduces the number of gates in

such architecture (multi-bit registers) when digit-size increase. It helps to

eliminate the feedback loops and multiplixers used to feedback the output of each

internal storage elements back to the input for synchronous load-enable registers.

Such feedback loops and multiplixers are replaced by only one integrated cell

with latch based clock gating which result in 3.5% and 4.3% reduction in gate

number at 0.9v and 1.8v respectively when the chosen digit-size is 8.

Figure 14
Fig. 14 Energy-Delay-Area product comparison between MSR and LSA digit -serial GF(2607)

multipliers.

When reducing the operating voltage by a factor δ=2 the switching power is

reduced by factor δ 2 (5), from (6) assuming that VDD>>Vt the delay is increased

by factor δ. If the switching power contribute to more then 90% (dominant factor)

19

then, the power saving is counterbalanced by the increased delay since the energy-

delay product is proportional to δ 2.

5. Conclusion

The VLSI architectures presented here are low energy, digit-serial, suitable for

large prime GF(2m) multiplication. The MSR architecture is area efficient LFSR-

based for trinomial polynomial field-generator and the LSA architecture is bit -

level pipelined, linear systolic array architecture, which is programmable with

respect to the primitive polynomial p(x).

Digit-serial technique when applied to the MSR architecture can be exploited

efficiently in order to decrease the critical path (total delay), when buffering the

architecture, and helps to reduce the switching activity for the LSA architecture.

This results in low energy design of large finite-field multipliers at the expense of

increased area. Higher gain in energy-delay product is obtained (over 90%) when

digit-size is large. Therefore, a trade-off can be made between the area, energy

consumption and speed. No significant gain on the energy-delay product is

obtained when reducing voltage supply since the delay and power counterbalance

each other when the switching power dominates. Gating the clock when possible

achieves a great saving in power consumption and area and has no significant

effect on the circuit speed.

20

References

[1] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography, CRC Press
LLC, 1997.

[2] B. Schneier, Applied Cryptography, Second Edition, Wiley, 1996.
[3] A. M. Odlyzko, Discrete Logarithms in Finite Fields and their cryptographic significance,

EUROCRYPT, 1984, pp. 224-314.
[4] E. D. Mastrovito, VLSI Architectures for Computations in Galois Fields, PhD thesis, Linköping

University, Departement of Electrical Engineering, Linköping, Sweden, 1991.
[5] S. K. Jain, L. Song, K. K. Parhi, Optimum Primitive Polynomials for Low-Area Low-Power Finite Field

Semi-Systolic Multipliers, ECE Department, University of Minnesota, Minneapolis.
[6] M. Kovac, N. Ranganathan, ACE: A VLSI Chip for Galois Field Efficient GF(2m) Based Exponentiation ,

IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 43, No. 4, pp.
189-297, April 1996.

[7] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Volume2, Addison-
Wesley, Second edition, 1981.

[8] Sebastian T. J. Fenn, Mohammed Benaissa, and David Tylor, GF(2m) Multiplication and Division, IEEE
Transactions on Computers, vol. 45, no. 3, pp. 319-327, March 1996.

[9] Chin-Liang Wang. Bit-Level Systolic Array for Fast Exponentiation in GF(2m), IEEE Transactions on
Computers, vol. 43, no. 7, pp. 838-841, July 1994.

[10] S. K. Jain, L. Song, K. K. Parhi, Efficient Semi-Systolic Architectu res for Finite Field Arithmetic, IEEE
Trans. on VLSI Systems, vol. 6, pp. 101-113, March 1998.

[11] [11] B. B. Zhou, A New Bit-Serial Systolic Multiplier Over GF(2m), IEEE Transactions on Computers,
Vol. 37, No. 6, pp. 749-751, June 1988.

[12] I. S. Hsu, T. K. Truo ng, L. J. Deutsch, and I. S. Reed, A Comparison of VLSI Architecture of Finite Field
Multipliers Using Dual, Normal, or standard Bases, IEEE Transactions on Computers, vol. 37, no. 6,
pp. 735-739, June 1988.

[13] Christof Paar, Nikolaus Lange, A Comparive VLSI Synthesis of Finite Field Multipliers, Proceedings of
the 3rd International Symposium on Communication Theory & Applications, 10-14 July 1995, Lake
District, UK.

[14] A. G. Wassal, M. A. Hassan and M. I. Elmasry, Low-Power Design of finite Field Multipliers for
wireless Applications, Proceedings of the Great Lakes Symposium on VLSI ’98.

[15] L. Song, K. K. Parhi, Low-Energy Digit-Serial/Parallel Finite Field Multipliers, Journal of VLSI Signal
Processing Systems, Vol. 19, N0. 2, Issue No. 2, pp. 149-166, June 1998.

[16] M. R. Schroeder, Number Theory in Science and Communication, Volume2, Springer-Verlag, 1986.
[17] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic

Publishers, 1995.
[18] A. P. Chandrakasan and R. W. Brodersen, Minimizing Power in Digital CMOS Circuits, Proceedings of

the IEEE, Vol. 83, No. 4, April 1995.
[19] A. M. Odlyzko, Discrete logarithms: The past and the future, Designs, Codes and Cryptography 19(2/3),

2000, pp. 129-147.
[20] Y. Taur, Y. J. Mii, D.J. Frank, H.S. Wong, D.A. Buchanan, S.J. Wind, S. A. Rishton, G.A. Sai-Halasz

and E.J. Nowak, CMOS scaling into the 21st century: 0.1 µm and beyond , IBM Journal of Research and
Development, vol. 39, no. ½, Jan/Mar 1995, pp. 245-260.

[21] A. Bellaouar, M. Elmasry, Low-Power Digital VLSI design: Circuits and Systems, Boston,
Massachusetts, Kluwer Academic Publishers.

21

Figure Captions

Fig. 1 MSR m-bit multiplier architecture.

Fig. 2 Linear systolic array multiplier architecture.

Fig. 3 LSA basic processing cell and its algorithm.

Fig. 4 Digit-serial Multiplier for field-generating polynomial p(x)=1+xk+xm.

Fig. 5 Digit-serial, linear systolic array multiplier.

Fig. 6 Digit-serial LSA basic processing cell and its algorithm.

Fig. 7 LSA CELL-K multiplier representation.

Fig. 8 Folding bit-serial computations.

Fig. 9 Circuit diagram of the F function.

Fig. 10 Circuit diagram of the G function for one bit output.

Fig. 11 Energy-Delay product comparison between MSR and LSA digit-serial

GF(2607) multipliers.

Fig.12 Total delay comparison as function of the digit-size for one GF(2607)

multiplication.

Fig. 13 Area in gates of the MSR, LSA and clock gating LSA digit-serial GF(2607)

multipliers as function of the digit size.

Table Captions

Table 1 Most useful irreducible trinomials xm+xk+1, for each large Mersenne

prime m, 512 ≤ m ≤ 4423

Table 2

22

Figure 1

23

Figure 2

24

Figure 3

25

Figure 4

26

Figure 5

27

Figure 6

28

Figure 7

29

Figure 8
STEP 0 STEP 0 STEP 12 STEP 4

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6
a 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0
b 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
c 0 c 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
f 0 f 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
s 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

STEP 1 STEP 13
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

a 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
b 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
c 0 c 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0
f 0 f 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0
s 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 1

STEP 2 STEP 14
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

a 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0
b 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 c 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0
f 0 f 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
s 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0

STEP 3 STEP 1 STEP 15
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 STEP 5

a 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
b 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
f 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
s 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0

STEP 4 STEP 16
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

a 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
b 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0
s 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0

STEP 5 STEP 17

a 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
b 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
f 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
s 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 s 0 1

STEP 6 STEP 2 STEP 18 STEP 6

a 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
b 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1
f 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
s 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 s 0

STEP 7 STEP 19

a 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 a 0 1 1
b 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
f 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 1 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 s 0

STEP 8

a 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
b 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
s 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

STEP 9 STEP 3 STEP 7

a 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
b 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

STEP 10

a 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0
c 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1
f 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

STEP 11

a 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Cell6

Cell0 Cell1 Cell2

Cell0 Cell1 Cell2

Cell0 Cell1 Cell2

Cell3 Cell4 Cell5 Cell6

Cell4 Cell5 Cell6

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

Cell0 Cell1 Cell2 Cell3

O
U

T
P

U
T

Cell3 Cell4 Cell5 Cell6

Cell3 Cell4 Cell5 Cell6

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

Cell6

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

Cell0 Cell1

Cell2 Cell3

Cell4 Cell5Cell2 Cell3

Cell4 Cell5

Cell4 Cell5 Cell6

Cell6

Cell4 Cell5

Cell0 Cell1

Cell6

Cell1

Cell1 Cell2 Cell3

Cell2 Cell3Cell1

Cell2 Cell3

Cell0

Cell4 Cell5

Cell1 Cell2 Cell3 Cell4 Cell5Cell0

Cell0

Cell0

Cell6

Cell6Cell1 Cell2 Cell3 Cell4 Cell5

Cell0

30

Figure 9

31

Figure 10

32

Figure 11

100

1000

10000

100000

1000000

0.9V 1.8V 0.9V 1.8V 0.9V 1.8V

MSR LSA Gated LSA
Architecture

T
o

ta
l D

el
ay

 [
n

s]

D=1 D=4 D=8 D=16

33

Figure 12

0

20

40

60

80

100

120

140

0.9V 1.8V 0.9V 1.8V 0.9V 1.8V

MSR LSA Gated LSA

Architecture

G
at

e
N

u
m

b
er

 [
K

 g
at

es
]

D=1 D=4 D=8 D=16

34

Figure 13

1

10

100

1000

10000

0.9V 1.8V 0.9V 1.8V 0.9V 1.8V

MSR LSA Gated LSA

Architecture

E
n

er
g

y
x

D
el

ay
 [

n
J.

u
s]

D=1 D=4 D=8 D=16

35

Figure 14

100

1000

10000

100000

0.9V 1.8V 0.9V 1.8V 0.9V 1.8V

MSR LSA Gated LSA

Architecture

E
n

er
g

y-
D

el
ay

-A
re

a
p

ro
d

u
ct

D=1 D=4 D=8 D=16

36

Table 1

m k

521

607

1279

2281

3217

4423

32, 48, 158, 168, 353, 363, 473, 489

105, 147, 273, 334, 460, 502

216, 418, 861, 1063

715, 915, 1029, 1252, 1366, 1566

67, 576, 2641, 3150

271, 369, 370, 649, 1393, 1419, 2098,

2325, 3004, 3030, 3774, 4053, 4054,

4152

37

Table 2

X1 X2 m

D=4 D=8 D=16

k

D=4 D=8 D=16

521 7 7 23 32

48

158

168

0

0

6

0

0

0

12

8

0

16

30

8

607 1 1 1 105

147

273

1

3

1

9

3

1

9

19

17

1279 1 1 1 216

418

0

2

8

2

24

2

1281 7 15 31 715

915

1029

3

3

5

11

3

5

11

19

5

3281 7 15 15 67

576

3

0

3

0

3

0

4423 1 9 25 271 7 15 15

