
1 

Low Energy Digit-serial Architectures for 

large GF(2m) multiplication 

FETH ALLAH CHERIGUI, DANIEL MLYNEK 

Integrated Systems Laboratory 

Swiss Federal Institute of Technology EPFL 

CH-1015 Lausanne 

Feth-Allah.Cherigui@epfl.ch 
+41 21 693 6983 

Daniel.Mlynek@epfl.ch 
+41 21 693 4681 

 

Abstract. T his paper presents two low -energy, highly regular, VLSI architectures performing a 

large prime GF(2m) multiplication. The first one is area-efficient digit -serial architecture, when 

field-generating polynomial p(x) is a trinomial. The second architecture is digit-serial, 

programmable on p(x). Both architectures are suitable for computing large prime GF(2m) 

exponentiation for DL based schemes. The parallel algorithm inside of each digit cell reduces both 

the global cycle time for the first architecture and the switching activity in the second one. An 

analysis of the performance comparison is described as function of the digit-size. A comparison is 

made with the bit serial architecture based on the performance improvement with respect to 

computation delay and energy consumption of one multiplication operation.  Thus, the factor of 

merit for performance measurement is defined as the product of energy times the delay and it is 

computed. The simulation results on gate level implementations shows that the energy delay 

products are highly reduced for both architectures. Therefore, the proposed architectures are 

attractive for low -power applications. 

 

Key words. Finite Field multiplier, Trinomials, Digit-serial architecture, Low -power design, Low-

energy design, Energy-Delay product, Switching Activity, Bit-level Pipelining, Long Heavily 

Loaded Lines.  

 

1. INTRODUCTION 

Finite field arithmetic architectures are the basic building blocks in many 

applications involving cryptography. Many popular public-key algorithms require 

exponentiation in large Galois Field GF(2m), including in particular schemes 

based on the intractable discrete logarithm in finite fields [1]. 
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This operation can be computed by repeated square-and-multiply (S & M) 

algorithm [7] as a series of modular multiplications over GF(2m). Although, 

hardware integration of large prime field GF(2m) multipliers present a high degree 

of complexity related to the field-size and field-generating polynomial. 

Furthermore, the long arithmetic operators exhibit in general a great activity and 

dissipate consequent shares of the power supply.  

Reducing power consumption is equally important for non-portable systems as it 

reduces cooling and packaging costs and increases system reliability. Thus, the 

design of efficient dedicated, low energy, finite field multipliers can lead to 

dramatic improvement on the overall system performance of GF(2m) 

exponentiator.  

 

The usual approach to reduce the time complexity and improve the performance 

is to use parallel multipliers. However, the hardware complexity of a bit-parallel 

multiplier is proportional to m2. Its area and energy consumption increase 

dramatically as the field order m increase since large number of gates and registers 

are mapped. 

 

Digit-serial technique an alternative to the bit-parallel approach, process multiple 

bits “digit” of an entire word, referred to as the digit-size, in one clock-cycle. This 

technique is suitable for the implementation of moderate sample rate systems 

where, the area and power consumption are critical. It was first used for the 

implementation of Galois Field multiplier in [15]. However, the architecture of 

the multiplier is based on semi-systolic 2-D array multiplier architecture [10] in 

which, a large amount of gates and registers have to be mapped yielding to 

increase both the area and the power consumption for large field-size. In this 

paper a new digit-serial, high performance GF(2m) multipliers are developed and 

implemented. The proposed architectures are mapped on low-power/low-voltage 

technology. A technique such as gating the clock is used to analyze the amount of 

power savings using different digit-size.   

 

The outline of the paper is as follows. Section 2 provides Knowledge of basic 

Finite Field concepts and properties, then some considerations are discussed 

concerning the Primitive polynomials and field-size for DL based Finite Field 
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based cryptosystems and a brief overview of the existing VLSI architectures for 

performing multiplication in GF(2m). Two selected architectures are briefly 

exposed. In section 3, the corresponding theoretical basis for our proposed digit-

serial multiplication algorithms are developed and special purpose architectures 

for implementing the proposed algorithms are described. The implementation 

results and comparison are detailed in Section 4  and some conclusions are 

provided in Section 5.   

 

2. Finite Field GF(2m) Survey 

2.1. Mathematical Background 

Knowledge of basic Finite Field concepts and properties is assumed, as 

covered in [4], [16]. 

Finite Field GF(2m) contains 2m elements. It is an extension field of GF(2), which 

contains two elements {0,1}. The element of GF(2m) can be represented in several 

equivalent forms. Mainly, there are three common types of bases, Standard or 

Polynomial Basis (SD/PB), Normal Basis (NB) and Dual basis (DB). There are 

many polynomial bases and normal bases from which to choose. For efficient 

computation of the field arithmetic we generally use an optimal normal basis 

representation or a polynomial basis representation.  

If a standard basis { }1 11, ,..., mα α −  is used, where the primitive element α  is a root 

of an irreducible polynomial of degree m, 1
1 1 0( ) ...m m

mp x x p x p x p−
−= + + + + over 

GF(2), then 

1

0

m
m i

i
i

pα α
−

=

= ∑     (1) 

Each element can be represented as a polynomial in α  with a degree less then m, 

or 
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0
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 
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In addition, the operation results of additions, multiplications and exponentiation 

of element α  are still polynomials of α  with degree less than m. In this base, 

addition is defined as integer addition modulo-2 (logical XOR) and multiplication 

is defined as integer multiplication modulo-2 (logical AND). Element of the field 

represented by a normal basis { }12 4 2, , ,...,
m

α α α α
−

, are expressed as polynomials 

of degree 2m-1 or less, or  

1
2

0

(2 ) , (2), 0 1
i

m
m

i i
i

GF A A a a GF i mα
−

=

 = = ∈ ≤ ≤ − 
 

∑  (3) 

Since elements in one representation can be efficiently converted to elements in 

the other representation by using an appropriate change-of-basis matrix, the 

intractability of the DLP isn’t affected by the choice of representation.  

 

2.2. Primitive Polynomials and Field Size for Finite 

Field based Cryptosystems 

 

When first introduced as underlying Finite Field, GF(2m) was the preferred 

implementation, basically because it is easier to implement in hardware [2], [3] 

using LFSRs. Although, all practical DL based public -key schemes require 

operations in relatively large Finite Fields; e.g., 500m >  bits [3][19]. Further, for 

security reasons, the field-size m is selected so that 2m-1 is a large prime (a 

“Mersenne” prime). There are certain values of field-size for which the period of 

the LFSR is the maximum, namely 2m-1, which is all the possible states of m bits, 

excluding the all-zero state. A maximum length sequence will occur if the 

reduction polynomials for constructing extension field corresponding to the 

LFSRs are prime elements of GF(2m) [4].  

In addition, arithmetic in GF(2m) can usually be implemented more efficiently if 

the chosen irreducible polynomial has few non-zero terms. Since, the least 

significant coefficient of any prime polynomial must always be nonzero 

(otherwise the polynomial has 0 as a root), the hamming  weight of the prime 

polynomials of degree at least 2 with few nonzero coefficients, must be odd and 

have at least 3 coefficients (prime polynomials of low hamming weight). 

Polynomials of hamming weight 2, 3, 4 are called trinomials, quadrinomials and 
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pentanomials respectively. An irreducible trinomial of degree m must be of the 

form xm+xk+1, where 11 −≤≤ mk . In fact, both the complexity and energy 

consumption of mod p(x) operation could be significantly reduced by selecting k  

with smaller value and less Hamming weight [5]. Table 1., gives some practical 

values for parameter k  and, the field-size m, for which an irreducible trinomial of 

degree m in Finite Field exists. 

 

Table 1 Most useful irreducible trinomials xm+xk+1, for each large Mersenne prime m, 512 ≤ m 

≤ 4423  

Table 1 
 
 

2.3. Architectures for GF(2m ) Multiplication 

Various architectures have been proposed to perform modular multiplication 

operation efficiency in GF(2m). Different basis representation, have been used to 

obtain some interesting realizations [4][8][9][10][11]. The parallel approaches, 

aren’t to be enumerate here, since for large m the multiplier has to be of serial 

type. In fact for an arbitrary GF(2m) the gate count for a bit-parallel multiplier 

using either a PD or NB is proportional to m2. In that case, area complexity 

increases dramatically for large field size.  

A synthesis comparison among DB, NB and SB is given in [12][13]. There, the 

gate count is a guideline for the implementation complexity. It shows that, 

multipliers based on NB and DB requires basis conversion. Moreover, the area of 

NB multiplier grows dramatically as the order of the field goes up when optimal 

normal basis doesn’t exist. Even when an optimal normal basis is chosen, the size 

complexity is proportional to 3m. Also, both DB and NB are not highly modular 

or expandable [14]. Instead, the SD multiplier does not require basis conversion, 

its size and time complexity are proportional to m and it is readily matched to any 

input or output system [12]. The polynomial basis multiplier can be implemented 

using different architectures. The systolic and/or semi-systolic multipliers are 

described in [9][10]. These architectures are pipelined and regular 2-D systolic 

arrays based on approach similar to the bit-serial one (MSR) [4]. Their hardware 

implementations use m bit-serial parallel multipliers resulting in expensive 
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hardware offering a high bit rate. The systolic multiplier described in [9] and [10] 

is thus not very attractive for large Finite Field. 

 

The MSR architecture described in [4] is a simple and area efficient way of 

implementing SB multiplication over large Galois Field. It is a LFSR based 

multiplier. The nice bit-slice depicted in Figure. 1, simplifies the VLSI design for 

large field arithmetic. The input elements A(x) and B(x) and the output product 

C(x) are bit serial and the computation proceeds in bit-parallel fashion by 

convolution and reduction modulo an irreducible polynomial p(x) of degree m. 

For more details about the algorithm, see [4].  

The multiplication is performed with order O(m) in both computation time and 

implementation area. 2m time units are required between the first-in and first-out 

of computation and two-bits control signal is required. The MSR architecture is 

programmable with respect to the primitive polynomial p (x) and field order m 

using extra gates in each multiplier cell [4]. The complexity can be further 

reduced for implementations that use irreducible polynomials with few 

coefficients such as trinomials or pentanomials.  

 

Figure 1  

Fig. 1 MSR m-bit multiplier architecture. 

 

In addition, it is easy to make the multiplier work as squarer since squarer can be 

realized as a bit-serial multiplier [4]. This, simplify the design of the MSR based 

exponentiator in which, squaring can be carried out concurrently with the 

multiplication.  

 

Another architecture LSA performing SD multiplication in GF(2m) is described 

in [11]; this architecture is linear systolic array, bit-level pipelined Fig.2. It is also 

highly regular and expandable and performs the SD multiplication operation over 

GF(2m) in bit serial manner using the recursive algorithm in (4). It allows the 

input elements to enter a linear systolic array in the same order and the system 

only requires one bit pipelined control signal. For more details about the 

algorithm, see [3].     
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Where 1m
ic −  for 0 1i m≤ ≤ −  (output of the last cell-k) are the coefficients of the 

product )(mod)()()( xpxBxAxC ⋅=  and ip  for 0 1i m≤ ≤ −  are the coefficients 

of the polynomial generator.  

 

Figure 2  

Fig. 2 Linear systolic array multiplier. 

 

The circuit diagram of CELL-k is shown in Fig.3. Two internal registers b and 

c  are used to hold the bit coefficients 1m kb − −  and ( 1)
1

k
mc −

−  along the operation using 

the ins  signal which mark the start of the multiplication. These coefficients are 

then used to compute the CELL-k output (4) at the next clock cycle when ins = 0. 

Thus, three registers a , p  and s  are used to give one time unit delay to the input 

bit coefficients ,i ia p  and is  at each CELL-k. The outputs are then triggered using 

a next register output stage in master slave manner as shown in Fig. 3.   

The m-bit multiplication time takes 3m-1 clock cycles. At 2m clock cycles after 

1ma −  and 1mb −  enter the leftmost cell; the results will start coming out from the 

rightmost cell at the rate of one coefficient every clock cycle. 

 

Figure 3 
Fig. 3 LSA basic processing cell and its algorithm. 

 

This multiplier is programmable with respect to the primitive polynomial p(x). 

The algorithm is often advantageous because of its efficient implementation time. 

The critical path in this architecture is just the sum of one full-adder and one 

NAND gate delay. 

In contrast with the MSR architecture, LSA multiplier can achieve consecutive 

overlapped multiplication operations without waiting for the result to start a new 
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computation. Hence, with a simple multiplier and minor modification we can 

implement the exponentiation based on repeated square-and-multiply algorithm 

yielding to decrease the exponentiator area when large field-size is used.   

3. Architecture Level Transformation 

Power consumption in standard CMOS technology originates from two 

different sources:  

• Static power is dissipated in several ways. The largest percentage of static 

power results from source-to-drain sub threshold leakage, which is caused 

by reduced threshold voltages that prevent the gate from completely 

turning off. Static power is also dissipated when current leaks between the 

diffusion layers and the substrate. For this reason, static power is often 

called leakage power. 

• Dynamic power caused by charging and discharging capacitors during 

signal computation (Switching power). Short circuits (internal power) 

occurs also in the dynamic phase where both the nMOS and pMOS 

transistors are conducting, and 

Hence, the total power dissipated in a CMOS gate with a capacitive load Cload is 

given by  

DDleakDDscDDload VINfVQNfVCP ⋅+⋅⋅⋅+⋅⋅⋅= 2

2
1

  (5) 

Where VDD denotes the voltage swing, and f is the frequency of operation, N the 

activity factor, i.e., the number of gate output transitions per clock cycle. The 

factor Qsc represents the quantity of charge carried by the short circuit current per 

transition and Ileak is the leakage current. 

 

In traditional design the average power consumption of a CMOS gate is 

dominated by the switching activity (dynamic power) and contributes to more 

than 90% of the total power consumption [17]. For recent technologies (deep sub-

micron) short circuit current and leakage current may be neglected, but this may 

change for future developments of high scaled integration [20]. As the device size 

and threshold voltage continue to decrease, the short circuit power dissipation is 

no longer a negligible factor. Reducing the power consumption amounts to the 
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reduction of one or more of these factors. In energy-efficient design, we seek to 

minimize the energy consumed per operation or the power-delay product of the 

circuit, which is the factor of merit for high performance architectures.  

Lower supply voltages can achieve extremely low power consumption (5). 

However, lowering supply voltage leads to performance degradation. Delays 

drastically increase as VDD approaches the threshold voltages Vt of the device (6).  

Since the delay time is proportional to 1/VDD, the supply voltage can be reduced to 

a certain value, so that the chosen frequency matches with the longest critical 

path. The propagation delay equation of a CMOS circuit is given by [21], 

2( )
load DD

delay
DD t

C V
T

k V V
⋅

=
⋅ −

     (6)  

Where k  depends on the transistors aspect ratio (W/L) and other device 

parameters, Vt is the transistor threshold voltage. 

 
When the propagation delay is less than the clock period by a factor δ , we can 

reduce the supply voltage by a factor β such that clkT  is equal to delayT . Hence, 

2. ( ) ( )
( )

load DD
clk delay DD delay DD

DD t

C V
T T V T V

k V V
β

δ β
β

⋅ ⋅
= = ⋅ =

⋅ ⋅ −
   (7) 

Parallelism and pipelining can be exploited to improve the performance (to 

compensate for the increased gate delays) of low-voltage circuits [17] [18].   Also, 

much higher reductions in power consumption are possible when using clock-

gating technique in order to reduce the activity factor N in (4). Further, increasing 

the concurrency of internal operations, and rearranging the gate topology from 

array-type to tree-type reduces the switching power [15].  

 
In this section, we demonstrate that highest gain can be achieved on the 

behavioural and architectural levels (up to 90% of power saving) using digit-serial 

technique to implement partially parallel architecture. We extend the MSR and 

LSA bit serial multipliers to a generalized digit-serial architecture, which is array-

type at the digit-level using parallel multiplication algorithm inside of each digit 

cells. These architectures are obtained by unfolding the bit-serial multipliers. 

Instead of the LSA multiplier, the MSR digit-serial architecture cannot be 

pipelined below digit-level because of the presence of the feedback loops in the 
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MSR bit-serial architecture. The linear dependency in mod p(x) degree reduction 

operation can be broken by using the trinomials as field-generating polynomials.  

 

3.1. Digit-Serial MSR Multiplier 

 
The architecture presented in Fig. 1 is not pipelined below bit-level. The 

presence of long loaded lines for large m affects directly the maximum clock 

frequency and consequently the system performance. In order to overcome this 

disability, a digit-serial technique can be applied by unfolding the bit-serial MSR 

architecture.  

 

The transformation approach involves treating the multiplier operands as digits: 

the m bits of data operands are processed in units (digits) of digit size D using 

/d m D=     slices. Let 
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i
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i

i
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1

0
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, 1
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Di jj
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B
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      (7)  

 
Then 

)(mod)(mod
1

0

xpxBAxpBAC
d

i

Di
i∑

−

=

⋅=⋅=    (8) 

This result on array-type multiplication, which can be performed in the following 

way: 

 

[ ]0 1

2

( 2)
1

( ) mod ( ) ( ( ) mod ( )

( ( ( ) mod ( )))

( ( ( ) mod ( )))

D

D D

D d D
d

C B A x p x B A x x p x

B x A x x p x

B x A x x p x−
−

 = + ⋅ 
 + ⋅ ⋅ ⋅ +⋅⋅ ⋅ 
 + ⋅ 

   (9) 

We define now the polynomials )(, xZ j−  as: 
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1
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0

( ) ( ) ( ) ( ) mod ( ), 0,1,..., 1
d

D i D j
j i j

i
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−
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where )2(, GFz ji ∈ . Then  

1

,
0

( ) ( )
d

j j
j

C x B Z x
−

−
=

= ∑          (11) 

And in matrix notation 

0,0 0,1 0, 10

1,0 1,1 1, 11

1,0 1,1 1, 11

. . .

. . .

. . . . . . ..

. . . . . ..
. . .

d

d

d d d dd

z z zC
z z zC

C B Z B

z z zC

−

−

− − − −−

  
  
  
  = = • = •
  
  

      

          (12) 

Where Z is a d  by d digit matrix. The columns of Z are the d consecutive states of 

a Galois-type parallel LFSR with feedback polynomial p (x) that has been initially 

loaded with A (=Z-,0). The product is therefore obtained by first loading the LFSR 

with A, computing B0Z-,0 and storing the result in d  stage register of D-bits size. 

Next we clock the LFSR, compute B1Z-,1, add it to B0Z-,0, and store the result and 

so forth. After d  clock cycles the product is available in the lower register. The 

general form of the circuit is shown in Fig. 4., for large “Mersenne” prime using 

trinomial primitive polynomial, with appropriate choice of parameter k  (m, k  are 

selected from Table 1.). The structure is kept simple and highly regular. 

 
The explanatory notes for the italic line / across the signal lines denote the weights 

of the corresponding signals, i.e., LSBXD >−< 1  means that the corresponding 

line carries the D-X1 least significant bits of the corresponding signal. The values 

of X1 and X2 are reported in Table 2, with respect to the value of parameter k , the 

field-size m and digit-size D . 

 

Figure 4 
Fig. 4 Digit-serial MSR multiplier for field-generating polynomial p(x)=1+xk+xm. 

 
The LFSR performs the computation (11), i.e., A(x) multiplied by xD  followed by 

mod p(x). The partial product generator denoted by ⊗  computes BiZ-,i in (12). The 

accumulator is denoted by ⊕  and performs the sum operation in (12); it consists 
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of XOR gates rearranged from array-type to tree-type and storage elements, where 

the partial product BiZ-,i and the intermediate result are accumulated using the 

binary-tree of XOR gates. At each cell, only the D LSB-bits of the partial product 

are computed. At the last cell, a correction must be done in order to reduce the 

degree of the result from m+D-2 to m-1. This can be done efficiently in one step. 

The polynomial degree is reduced using AND and XOR gates (1). The total 

computation time takes 3d clock cycles between the first-in digit and the last-out 

digit. 

 

Table 2 x1 and x2 values for digit size D  = 8,16,32 

Table 2 
 

3.2. Linear Digit-Serial Systolic Array Multiplier 

The architecture shown in Fig. 4, is not programmable on p(x), which  is 

hardwired. We propose here a methodology to design a programmable digit-serial 

Finite Field multiplier with respect to the primitive polynomial. The multiplier is 

based on the architecture shown in Fig.2. The digit-serial architecture is obtained 

by folding the bit-serial architecture implementing (6).  

 
Consider the structure of the bit-serial multiplier shown in Fig. 2. The 

transformation approach involves treating the bits in this multiplier as digits. 

Therefore, the inputs bit a i ,  bi , ci and p i  for 0 1i m≤ ≤ −  to CELL-k in Fig. 3, are 

replaced by digits forms Ai, Bi, C i, Pi for 10 −≤≤ di  where   
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
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where, D denotes the digit-size and d the total number of digits, /d m d=    .  

 

Suppose that the resulting architecture can be implemented on a linear digit-serial 

systolic array, as shown in Fig.5. The inputs digit-words Ai, Bi, Ci,  Pi are fed into 

the multiplier in the same order for i  deceasing and from the MSB to the LSB. If 

m is not divisible per D, the zero padding is performed at the LSB positions for 

0i = . 

 

Figure 5 
Fig. 5 Digit-serial, linear systolic array multiplier. 

 

The system now consists of d  identical cells for D d⋅ -bit multiplication in 

GF(2m). It inputs the data at the leftmost cell and outputs the results at the 

rightmost cell at the rate of one digit every clock cycle.  
 

The basic processing element CELL-K of the multiplier is shown in Fig. 6. Two 

D-bit registers A, P and 1-bit s registers are used to give one time unit delay to the 

input data Ai, Pi and si at each CELL-k. The s signal is used to denote the start of a 

multiplication. 

 

Figure 6 
Fig. 6 LSA digit-serial basic processing cell and its algorithm. 

 

The corresponding algorithm is obtained by grouping each set of D cells from the 

LSA multiplier in Fig. 2, then computing the outputs of each of these grouped 

cells after D steps (clock cycles). These are the outputs of the resulting digit cell. 

This is illustrated in the example bellow. 

 

Example 1.  

 
Consider the computation of ( ) ( ). ( ) mod ( )C x A x B x p x=  over GF(27) where 

2 4 6( ) 1A x x x x= + + + and  1 3 5( )B x x x x= + +  and 3 7( ) 1p x x x= + + . 
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Consider now the basic processing element CELL-k and its algorithm given in 

Fig. 3. Let each CELL-k be represented using the I/O signals and the state of its 

internal registers as shown in Fig. 6. 

 

 

Figure 7 
Fig. 7 LSA CELL-K multiplier representation. 

 

The I/O signals and the state of internal registers at each CELL-k for each 

computation step are reported in Fig. 7. The steps represented at the right side of 

each CELL6 represents the steps corresponding to the digit-serial architecture for 

D=3. 

 

Therefore, by folding the bit-serial computations in Fig. 7., and after 3d-1 steps 

the output of the multiplier expressed in digit form is as follows: 

 

cout è 000 000 000 000 000 011 001 000 
 
 
Thus, the C internal register of each CELL-k in the digit-serial multiplier are 

expressed as follows:  

 

LSA multiplier cell         LSA multiplier time step 

    
 C (0) = cin(0,0)  è C(0) = C in(2) 

C(1) = cin(1,2) = cout(0,1)= cin(0,1) . )1,0(ins + c(0,0) . p(0,0) + b (0,0) . a (0,0) 

       = cin(0,1) . )1,0(ins  + c(0) . p(0,0) + b(0) . a (0,0) 

è C(1) = Cin(1) + (Cin(2) . Pin(2)) + (Bin(2) . Ain(2)) 

C(2) = cin(2,4) = cout(1,3)= cin(1,3) . )3,1(ins + c(1,2) . p(1,2) + b (1,2) . a (1,2) 

        = cin(1,3) . )3,1(ins  + c(1) . p(1,2) + b (1) . a(1,2) 

where, cin(1,3) = cout(0,2) = cin(0,2) . sin(0,2) + c(0) . p (0,1) + b(0) . a (0,1) 

è C(2) =(Cin(0) + (Cin(2) . Pin(1)) + (Bin(2) . Ain(2))) + [(Cin(1)+ (C in(2) . Pin(2))  

+ (Bin(2) . Ain(2))) . Pin(2)]  + (Bin(1) . Ain(2)) 
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Figure 8 
Fig. 8 Folding bit-serial computations. 

 

Note that all the states of C registers must be computed during one clock cycle. 

The Cout register at the output of each CELL-k, are then expressed as follows : 

 

Cout(2) = ((((Cin(2)+(C(0) . P(0))+(B(0) . A(0)))+(C(1) . P(1))  

 + (B(1) . A(1))) . ins )+(C(2) . P(2))+(B(2) . A(2))); 

Cout(1) = ((((Cin(1)+(C(0) .  Pin(2))+(B(0) .  Ain(2))) +(C(1) . P(0)) 

 +(B(1) . A(0))) . ins )+(C(2) . P(1)) +(B(2) . A(1))); 

Cout(0) = ((((Cin(0)+(C(0) .  Pin(1))+(B(0) .  Ain(1))) +(C(1) . Pin(2)) 

 +(B(1) .  Ain(2))) . ins )+(C(2) . P(0)) + (B(2) . A(0))); 

 

Hence, we can extend these expressions to a D-bits digit words and drive a 

generalized algorithm described bellow, by computing the expression of F and G 

functions reported in Fig. 9 and 10. 

 

Figure 9 
Fig. 9 Circuit diagram of the F function. 

 

In Fig. 5, F denotes the function processing the state of the C internal register. The 

circuit diagram of F function is shown in Fig. 9., where FF denotes a flip-flop. 

Note that the critical path is (D-1)(Txor-3+TNAND-2). 

 

Figure 10 
Fig. 10 Circuit diagram of the G function for one bit output. 

 

The G function process the state of the output register Cout. The corresponding 

circuit diagram for one output coefficient is shown in Fig. 10. The critical path in 

this architecture is increased to DTXOR-3+TXOR-2+2TNAND-2 

 
The d-bit multiplication implemented within architecture shown in Fig. 5., takes 

3d -1 clock cycles. At 2d  clock cycles after Ad-1 and Bd-1 enter the leftmost cell, the 
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results will start coming out from the rightmost cell at the rate of one digit every 

clock cycle. 

4. Implementation Issues and Comparison 

Clock gating technique can be used for power-efficient implementation of 

registers that are disabled during some clock cycles, when such registers maintain 

the same value through multiple cycles such as the internal slave registers c and b  

in Fig. 3 and C and B in the LSA architecture shown in Fig. 6. These registers 

have their own load controlled by sin signal. This technique works well for data-

flow logic, where clocking requirements can be predetermined at least one cycle 

ahead. Thus, the clock gating enable signal sin must be valid halfway into the 

cycle to gate off the capture clock. To overcome this problem, we require that 

these internal registers be triggered faster than the master registers Bout and Cout 

using different clock edges that is pipelining within the clock cycle. This requires 

one more clock pulse, resulting in 2-phase non-overlapping clocking scheme.  

The MSR, LSA and clock gated LSA architectures have been implemented at the 

gate level using different digit-size D=1,4,8,16 in order to perform a comparison 

in terms of speed, area and energy consumption for GF(2607) multiplier with 

p(x)=1+x273+x607 as primitive polynomial. We mapped our design into a deep sub-

micron (0.18µ) target library from XEMICS (COOLIB) that contains rich logic-

gates optimised for low-power/low-voltage, operating at two different power 

supply 1.8v and 0.9v. A low power design-flow has been validated using 

Synopsys tools for power analysis and optimization. 

 
Different types of power dissipation components are estimated using gate level 

simulations on a set of random stimulus. Since low-energy design is more 

important than low-power design, the energy and energy-delay product is 

computed. The performance characteristics including total delay, area in term of 

gates and energy-delay product and are reported in Fig. 11, 12 and 13 

respectively. 

  

Figure 11 
Fig. 11 Total delay comparison as function of the digit-size for one GF(2607) multiplication. 
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Note that, the long signals that are distributed to all slices in Fig. 1 are susceptible 

to degradation due to the large capacitive loads. For example, the serial input 

multiplier bit bi is a long line that has to drive m AND gate. This signal must drive 

up to 11.76pF capacitive load. The source of this line will be trying to push 

current into the entire load and experiencing a very substantial RC delay, which, 

increase considerably the critical path and then the total delay as shown in Fig. 11. 

Hence, for large m, a number of refresh amplifiers is clearly needed to manage 

such a heavy load. We can consider using fast buffers to isolate heavy loads. 

However buffering the architecture can severely degrade system performance, it 

increases the critical path and creates the problem of skewed signals. Thus, when 

using a buffer, trace lengths should be balanced to minimize signal skew. The 

parallelism inside each digit-cell in Fig. 4 contribute to reduce the load on such 

long heavily loaded signals, i.e., when the chosen digit-size is 8 the capacitive 

load is significantly reduced to 1,35pF per bit-line for the most heavily loaded line 

(input multiplier digit-word Bi), experiencing over 72% improvement in circuit 

speed when operating at 1.8v and 96% when operating at 0.9v. 

 

Figure 12 
Fig. 12 Area in gates of the MSR, LSA and clock gating LSA digit-serial GF(2607) multipliers as 

function of the digit size. 

 

The bit-level pipelining approach makes the LSA multiplier architecture more 

advantageous in term of clock frequency and computation time. Both the total 

delay and the energy consumption are reduced. On the one hand, the latency 

decrease linearly with the digit-size but the critical path increases linearly in 

almost the same rate (Fig. 11.), resulting in a constant total delay for digit-size 

equal or larger then 4. On the other hand, the area increases dramatically due to 

the large number of latches used to temporary hold the internal and the output data 

in master-slave manner (Fig. 13). This means that the level of parallelism is 

limited by the area constraints.  

 

Figure 13 
Fig. 13 Energy-Delay product comparison between MSR and LSA digit-serial GF(2607) 

multipliers. 
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The most interesting result is obtained when comparing the Energy-Delay and the 

Energy-Delay-Area products. The performance characteristic reported in Fig. 13, 

shows that Energy-Delay products are significantly reduced for both LSA and 

MSR architecture when digit-size increase. High gain is obtained for D=16 when 

operating at 0.9v and more than 99% reduction is noticed. However, when 

comparing the characteristic reported in Fig. 14, the optimum gain for LSA 

architecture is obtained for D=4 when operating at 1.8v due to the dramatic 

increase in circuit area for larger digit-size. This is not the case when operating at 

0.9v since the energy is significantly reduced. 

  

Beside the programmability with respect to the primitive polynomial of the LSA 

architecture, the MSR present the best performance characteristic only for digit -

size equal or larger then 8 due to the large critical path for small digit-size. 

 

The clock gating technique inserted for LSA multiplier achieves a substantial 

reduction in both the Energy-Delay (over 28% at 0.9v and 17% at 1.8v for D=8) 

and the Energy-Delay-Area product (over 30% at 0.9v and 20% at 1.8v for D=8) 

for only 22% of clock gated registers. Clock gating reduces the number of gates in 

such architecture (multi-bit registers) when digit-size increase. It helps to 

eliminate the feedback loops and multiplixers used to feedback the output of each 

internal storage elements back to the input for synchronous load-enable registers. 

Such feedback loops and multiplixers are replaced by only one integrated cell 

with latch based clock gating which result in 3.5% and 4.3% reduction in gate 

number at 0.9v and 1.8v respectively when the chosen digit-size is 8. 

  

Figure 14 
Fig. 14 Energy-Delay-Area product comparison between MSR and LSA digit -serial GF(2607) 

multipliers. 

 

When reducing the operating voltage by a factor δ=2 the switching power is 

reduced by factor δ 2 (5), from (6) assuming that VDD>>Vt the delay is increased 

by factor δ. If the switching power contribute to more then 90% (dominant factor) 
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then, the power saving is counterbalanced by the increased delay since the energy-

delay product is proportional to δ 2.  

5. Conclusion 

 
The VLSI architectures presented here are low energy, digit-serial, suitable for 

large prime GF(2m) multiplication. The MSR architecture is area efficient LFSR-

based for trinomial polynomial field-generator and the LSA architecture is bit -

level pipelined, linear systolic array architecture, which is programmable with 

respect to the primitive polynomial p(x). 

 
Digit-serial technique when applied to the MSR architecture can be exploited 

efficiently in order to decrease the critical path (total delay), when buffering the 

architecture, and helps to reduce the switching activity for the LSA architecture. 

This results in low energy design of large finite-field multipliers at the expense of 

increased area. Higher gain in energy-delay product is obtained (over 90%) when 

digit-size is large. Therefore, a trade-off can be made between the area, energy 

consumption and speed. No significant gain on the energy-delay product is 

obtained when reducing voltage supply since the delay and power counterbalance 

each other when the switching power dominates. Gating the clock when possible 

achieves a great saving in power consumption and area and has no significant 

effect on the circuit speed.   
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Figure Captions 

 

Fig. 1 MSR m-bit multiplier architecture. 

Fig. 2 Linear systolic array multiplier architecture. 

Fig. 3 LSA basic processing cell and its algorithm. 

Fig. 4 Digit-serial Multiplier for field-generating polynomial p(x)=1+xk+xm. 

Fig. 5 Digit-serial, linear systolic array multiplier. 

Fig. 6 Digit-serial LSA basic processing cell and its algorithm. 

Fig. 7 LSA CELL-K multiplier representation.  

Fig. 8 Folding bit-serial computations. 

Fig. 9 Circuit diagram of the F function. 

Fig. 10  Circuit diagram of the G function for one bit output. 

Fig. 11  Energy-Delay product comparison between MSR and LSA digit-serial 

GF(2607) multipliers. 

Fig.12 Total delay comparison as function of the digit-size for one GF(2607) 

multiplication. 

Fig. 13  Area in gates of the MSR, LSA and clock gating LSA digit-serial GF(2607) 

multipliers as function of the digit size. 

Table Captions 

Table 1 Most useful irreducible trinomials  xm+xk+1, for each large Mersenne 

prime m, 512 ≤ m ≤ 4423 

Table 2  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 

Figure 7 
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Figure 8 
STEP 0 STEP 0 STEP 12 STEP 4

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6
a 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0
b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
s 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

STEP 1 STEP 13
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

a 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
b 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0
f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0
s 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

STEP 2 STEP 14
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

a 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0
b 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0
f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
s 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STEP 3 STEP 1 STEP 15
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 STEP 5

a 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
b 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
f 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
s 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STEP 4 STEP 16
Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6

a 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
b 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0
s 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STEP 5 STEP 17

a 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
b 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
f 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
s 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

STEP 6 STEP 2 STEP 18 STEP 6

a 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
b 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1
f 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
s 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STEP 7 STEP 19

a 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
b 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
f 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STEP 8

a 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
b 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
s 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

STEP 9 STEP 3 STEP 7

a 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
b 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
c 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

STEP 10

a 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0
c 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1
f 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

STEP 11

a 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1
b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
c 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Cell6
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Table 1 

m k 

521 

607 

1279 

2281 

3217 

4423 

32, 48, 158, 168, 353, 363, 473, 489 

105, 147, 273, 334, 460, 502 

216, 418, 861, 1063 

715, 915, 1029, 1252, 1366, 1566 

67, 576, 2641, 3150 

271, 369, 370, 649, 1393, 1419, 2098, 

2325, 3004, 3030, 3774, 4053, 4054, 

4152 
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Table 2 

X1 X2 m 

D=4 D=8 D=16 

k 

D=4 D=8 D=16 

521 7 7 23 32 

48 

158 

168 

0 

0 

6 

0 

0 

0 

12 

8 

0 

16 

30 

8 

607 1 1 1 105 

147 

273 

1 

3 

1 

9 

3 

1 

9 

19 

17 

1279 1 1 1 216 

418 

0 

2 

8 

2 

24 

2 

1281 7 15 31 715 

915 

1029 

3 

3 

5 

11 

3 

5 

11 

19 

5 

3281 7 15 15 67 

576 

3 

0 

3 

0 

3 

0 

4423 1 9 25 271 7 15 15 

 
 

 

 

 

 


