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AbstractAn error tolerant hardware efficient very 

large scale integration (VLSI) architecture for bit 
parallel systolic multiplication over dual base, which can 
be pipelined, is presented. Since this architecture has the 
features of regularity, modularity and unidirectional 
data flow, this structure is well suited to VLSI 
implementations. The length of the largest delay path 
and area of this architecture are less compared to the bit 
parallel systolic multiplication architectures reported 
earlier. The architecture is implemented using Austria 
Micro System’s 0.35 m CMOS (complementary metal 
oxide semiconductor) technology. This architecture can 
also operate over both the dual-base and polynomial 
base. 

 
Index TermsBit parallel, error correction, finite 

field, Reed-Solomon (RS) codes, systolic, very large scale 
integration (VLSI) testing. 

 

1. Introduction 
Finite field also known as Galois Field arithmetic 

operations over GF(2m) finds increasing applications in 
public-key cryptography, error detecting and correcting 
code[1], VLSI (very large scale integration) testing[2], digital 
signal processing[3]. There are different equivalent 
representations of the elements of the finite field over 
GF(2m), e.g. polynomial base (PB), normal base, and dual 
base. Dual-basis operators frequently have the lowest 
hardware requirements of all available operators[4],[5]. Two 
basic operations over GF(2m) are addition and 
multiplication. Addition over GF(2m) is relatively 
straightforward to implement, requiring at most m XOR 
gates. Multiplication operation is much more expensive in 
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terms of gate count and clock cycle. Other operations of the 
GF(2m) fields like exponentiation, division, and inversion 
can be performed by repeated multiplications. Based on 
different base representation, a variety of architectures for 
multiplication have been proposed. For high speed VLSI 
implementation, the preferred multiplier architecture is 
systolic array architecture. In this type of architecture, a 
basic cell is repeated in an array and signals flow 
unilaterally between neighbours. Polynomial basis (PB) 
systolic array multipliers in GF(2m) can be classified into 
four categories, namely bit serial[6], bit-parallel, hybrid and 
digit-serial[7]. The bit serial architecture has minimum area 
and minimum throughput among all the categories. The 
problem with serial architecture is its latency. The bit-serial 
architecture, which processes one bit of input data per clock 
cycle, is area-efficient and suitable for low-speed 
applications.  

The most widely used bit serial multiplier is dual basis 
Berlekamp bit serial multiplier[8]. This multiplier requires 
less hardware. PB bit-serial and bit-parallel systolic 
multipliers were presented in [9] and [10]. A bit-serial dual 
basis systolic multiplier over GF(2m) was presented in [11], 
which requires higher hardware compared to that needed 
for multiplier proposed in [12] and does not support 
pipelining. To support pipelining, a modified version which 
requires less hardware is presented in [13]. The bit parallel 
multiplier needs largest area and provides maximum 
throughput. Bit-parallel architecture, capable of processing 
one whole word of input data per clock cycle, is ideal for 
high-speed applications when pipelined at the bit-level. 
These architectures are typical examples of the area-speed 
tradeoff paradigm. Mastrovito has proposed an algorithm 
along with its hardware architecture for PB multiplication[14] 
known as the Mastrovito algorithm/multiplier. A 
formulation for polynomial basis multiplication and 
generalized bit-parallel hardware architecture for special 
reduction polynomials has been presented in [15]. A 
testable polynomial basis bit parallel multiplier circuits 
over GF(2m) was presented in [16]. Although bit-serial dual 
basis multipliers have been widely employed in 
applications such as Reed-Solomon (RS) encoders[11],[17], it 
was proven in [5] that it is advantageous of employing 
bit-parallel dual basis multipliers, particularly in more 
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complex circuits such as RS decoders and syndrome 
calculators. Bit-parallel dual basis multipliers therefore 
provide reduced complexity constant multipliers. In this 
paper, we present a hardware efficient fast bit parallel 
systolic architecture with error detecting capability using 
parity prediction technique over dual base which can be 
pipelined.  

The rest of the paper is organized as follows. Section 2 
briefly describes the preliminaries. In section 3, we propose 
systolic bit-parallel and digit serial architecture based on 
MM algorithm. Section 4 presents analysis and discussion 
on these architectures. The experimental results have 
appeared in Section 5. Finally, we conclude our discussions 
in Section 6. 

2. Preliminaries 
 

2.1 Polynomial Multiplication 

 
Let GF(N) denote a set of N elements, where N is a 

power of a prime number, with two special elements 0 and 
1 representing the additive and multiplicative identities 
respectively and two operator addition ‘+’ and 
multiplication ‘’. The GF(N) defines a finite field, if it 
forms a commutative ring with identity over these two 
operators in which every element has a multiplicative 
inverse. Finite fields can be generated with primitive 

polynomials of the form 1

0

( )
m

m i
i

i

P x x p x


  , where 

GF(2)ip  [1]. It is conventional to represent the elements 

of GF(2m) as a power of the primitive element , where  is 

the root of P(x), i.e., P()=0. The set {1, , …, m1} is 

referred to as polynomial basis or standard basis. Each 
element AGF(2m) can be expressed with respect to the PB 

as a polynomial of degree m over GF(2), i.e., A(x)=
1
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m
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a x

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where GF(2)ia  . Given , GF(2 )mA B , the PB 

multiplication over GF(2m) can be defined as  
C(x)=A(x)B(x) mod P(x). In practice, C(x) is obtained in 
two steps: polynomial multiplication and modulo reduction. 

 

2.2 Dual Basis Multiplication 

Let m
pF  denote the set of all linear function f : 

GF(pm)GF( p). A well known linear function is the trace 
function which is frequently used to produce the finite field 
multipliers. There are number of other linear functions 
including trace functions. Here, we use the definition of the 
duality of two bases[13],[14] as given below. 

Definition. Let {i} and {i} be bases for GF(2m), let f : 

GF(2m)GF(2) be a linear function and let  GF(2m),   

 0. Then the bases are said to be dual with respect to f and 
 if 
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In this case {i} is the standard basis and {i} is the dual 
basis. We now restate the multiplication algorithm utilized 
here. This result was first presented in the context of 
division[14] but has subsequently been used to describe 
finite-field multiplication[18]. Furthermore, as observed in 
[19], the following represents a generalized and alternative 
representation of Berlekamp bit-serial multiplier. 

Theorem 1[13]. Let a, b, cGF(pm) such that c=ab. 
Further, let  be a root of the defining irreducible 

polynomial for the field, let GF(2m), 2
mf F  and 

represent c over the polynomial basis by a =
1

0

m
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i
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 , then 

the following relation holds: 
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We have modified (1) as follows: 
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where bk=f (b k) (k=0, 1,…, 2m2) and ck=f (c k) (k=0, 

1, …, m1). If f and  are taken as in the preceding 

definition, ck and bk, (k=0, 1, …, m1) in (1) are the 

dual-basis coefficients of c and b, respectively. Thus to 
make use of (1) in a systolic multiplier, one must first 

generate the values of bk (k=m, m + 1, …, 2m2).  

If 
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and then  
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Then in general  
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where bk (k=0, 1, …, m1) are the dual basis coefficients 

of b and  is root of p(x). After computing the values of bk 
from (2), we need to carry out the matrix multiplication 
given in (1). Now we consider the implementation of this 
multiplication algorithm in the design of a bit-parallel 
systolic multiplier. 
 

3. Bit Parallel Dual Basis Multiplier 
 

3.1 Proposed Architecture 

 
Let a, b, cGF(2m) such that c=ab and let {i} be the 

dual basis to the polynomial basis for GF(2m) and 

2
mf F . Representing b over the dual basis by 

1

0

m

i i
i

b b 



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and a over the polynomial basis by a, 
1

0

m
i

i
i

a a



  . We can 

derive following equation from (2): 

c0=b0a0b1a1…bm1am1 

c1=bla0b2a1…bmam1; … 

cm1=bm1a0bma1… b2m2 a m1 

where bm+k (k0) are given by (3). From these equations, it 
can be seen that m product bits are generated by m identical 
functions of the form. 

h(b, a)=bka0+bk+1a1+…+ bk+ m1 am1.     (4) 

A bit-parallel dual basis multiplier over GF(2m) can, 
therefore, be constructed using two cells. We introduce 
cell-1 as shown in Fig. 2 to generate (3) and also introduce 
a cell-2 for generating (2) as shown in Fig. 1. An example 
of such a multiplier over GF(24) is given below. 

Example 1. Let p(x)x4x1 be the defining irreducible 
polynomial and let a be a root of p(x). From (4), we can 
write as follows:  

h(b, a)=bka0bk+1a1bk+2a2bk+3a3.       (5) 
This equation can be implemented by the circuit as 

shown in Fig. 2. From p(x)=x4x1 and (3) and (4), we can 
derive the values of b4, b5, b6 as follows:  

b4=b1b0,  b5=b2b1,  b6=b3 b2. 

Equation (2) for this example is given below. 
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The m2 cells of Fig. 1 and m cells of Fig. 2 are then 
combined to form the full bit-parallel dual basis multiplier 

for GF(24) as shown in Fig. 3. If 
1
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   is the dual 

basis representation of b and 
1

0

m
i

i
i

a a



   is the 

polynomial basis representation of a, the product bits ci (i= 
0, 1, 2, 3) become available on the output lines. In the 
architecture, b4, b5 and b6 are generated by the block 
diagram of Fig. 2. In general, Fig. 2 represents the sum of 

partial products (2), i.e., bm+k =
1

0

m

j j k
j

p b




 , k=0, 1, …, m2. 

The partial sum in the matrix multiplication in (1) is 
generated by the block diagram of Fig. 1. 

 
In BP Systolic dual basis multiplier design of [13], there 

exist two datapaths, one is horizontal and the other is 
vertical. The vertical datapath generates partial sum in 
matrix multiplication of (1). The horizontal data path 
generates partial sum of (2). There is a bottleneck to 
support pipelining in this design. The horizontal data path 
consists of AND-XOR binary tree, the depth of tree is O(m). 
We try to modify the horizontal data path by replacing the 
binary tree of depth O(m) with a binary tree of depth of 
O(log2). For this purpose, we introduce a new cell (see Fig. 
2) to generate (2). The complete circuit for dual basis 
systolic multiplier over GF(24) is shown in Fig. 3. Latches 
are introduced in Fig. 3, to make this architecture suitable 
for pipelining. There is m-clock cycle delay between b, c 
entering in the multiplier and becoming available in the 
output lines. After the initial delay, results can be produced 
continuously one per clock cycle. 
 
 
 

 

 

    
 
 
 
 
 
 

p0  bi   p1  bi+1    p2  b i+2   p3  b i+3  

 

  bi+4    ccout 

 bin          ccin 

ain                           aout 

Fig. 1. Generation of partial 
products of (1). 

Fig. 2. Generation of the sum
of partial products of (2).

Cell-2
Cell-1
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Fig. 3. Arrangement of systolic cells for bit-parallel multiplier for 
GF(24). 

 

3.2 Hardware and Delay Analysis 

We compare our proposed architecture with the bit 
parallel architecture described in [14]. Total hardware 
required for the architecture presented consists of m2 cells. 
Each cell consists of two 2 input AND gates and two 2 
input EXOR gates. Total circuit consists of 2m2 AND gates 
and 2m2 EXOR gates. Our proposed design requires 2 cells. 
The first cell consists of one AND gate and one EXOR gate. 
The second cell consists of m AND gates and (m1) EXOR 
gates. For m bit multipliers, the proposed architecture 
consists of m2 first cells and m second cells. Total 2m2 AND 
gates and (2m2–m) EXOR gates are required. Overall 
saving in hardware is m EXOR gate. 

Let DA be the delay through a two-input AND gate and 
Dx be the delay through a two-input XOR gate. The longest 
delay path is given in (6).  

Longest delay ={mDA(log2m+m1)DX}.     (6) 

BP multiplier of [14] has a longest delay path of 
{(2m1)[DA+DX]}, whereas the proposed multiplier has a 
longest delay path of {mDA+(log2m+m1)DX}. Hence, the 
proposed dual basis BP multiplier is hardware efficient and 
faster. 

From Table 1, we can conclude that in this architecture, 
the number of AND gates are the same compared with 
previous architecture in [5], but for m-bit dual basis systolic 
multiplier m, the number of XOR gates are less required in 
this architecture as well as the longest path delay of this 
architecture is also reduced by m-bit for AND gates and for 
XOR gates delay is reduced by log2m instead of m. 

Table 1: Hardware requirements and delays of dual basis bit 
parallel multiplier (DPM) presented in [14] and the proposed 

multiplier (DPM) 

 DPM in [14] Proposed DPM 

m AND XOR Delay AND XOR Delay 

2 8 8 3[DA +DX] 8 6 2DA+2DX 

3 18 18 5[DA +DX] 18 15 3DA+3.58DX 

4 32 32 7[DA +DX] 32 28 4DA+5DX 

5 50 50 9[DA +DX] 50 45 5DA+6.32DX 

6 72 72 11[DA +DX] 72 66 6DA+7.58DX 

7 98 98 13[DA +DX] 98 91 7DA+8.81DX 

8 128 128 15[DA+DX] 128 120 8DA+10DX 

9 162 162 17[DA+DX] 162 153 9DA+11.17DX 

10 200 200 19[DA+DX] 200 190 10DA+12.32DX 

Table 2: Comparison between two bit-parallel systolic multipliers 

Properties Reference [5] Presented here 

Number of cells m2 Cell 1: m2 
Cell 2: m 

No. of 2 input 
AND gate 

2m2 2m2 
Circuit  

complexity No. of 2 input 
XOR gate 

2m2 2m2m 

Largest delay path (2m1)[DA+DX] mDA+(log2
m+m1)DX 

In Table 1, the hardware complexity and delays of the 
DPM in [5] and our proposed DPM architecture are given 

for GF(2m) (m=2, 3, …, 10). From Table 2, it can be seen 

that for every case, the hardware complexity and delays of 
our proposed DPM architecture are less compared with 
those of the DPM architecture in [5]. 

4. Error Detection Using Parity 
Checking 

   We use error-detection scheme with a very high 
probability of detecting faults in the bit-parallel systolic 
multiplication over GF(2m) using dual base with some 
additional outputs, called the check-bits as shown in Fig. 4. 
We assume that no interconnections or buses have any fault 
and each test phase with the test-circuits is separately 
controllable. At first, we attach parity-bits to the input 
elements bp and ap and multiplying (AND) the inputs we 
have: 

bp=b0 b1 b2b3, ap=a0a1 a2a3 

bpap=(b0b1b2b3)(a0a1a2a3) 
=(b0a0b0a1b0a2b0a3)(b1a0b1a1b1a2b1a3) 
(b2a0b2a1b2a2b2a3)(b3a0b3a1b3a2b3a3). 

From (2), we get  

c0=b0a0b1a1b2a2b3a3 
c1=b1a0b2a1b3a2b4a3 
c2=b2a0b3a1b4a2b5a3 
c3=b3 0b4a1b5a2b6a3. 

Now, we denote the modulo 2 addition of these outputs of 
the multiplier by 

r=c0c1c2c3. 
Here, we add some extra lines and gates for the testing 

purposes which constitute the feedback lines yi. Lines b0, b1, 
b2, b3 and some XOR and AND gates are used to produce 
the circuit suitable for the testing. Some lines are used as 

a0 

a1 

a2 

a3 

 b0   0  b1   0  b2   0   b3   0 

  c0   c1 
 

  c2    c3 b7 

  
b4 

  b5 

  
b6 

p0 b0  p1 b1  p2  b2  p3 b3 

(0,0)       (0,1)       (0,2)      (0,3)       cell-1 

(1,0)       (1,1)      (1,2)       (1,3)      cell-1 

(2,0)       (2,1)      (2,2)       (2,3)      cell-1 

(3,0)       (3,1)      (3,2)       (3,3)      cell-1 
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feedback and are denoted by (y1, y2, y3, y4, y5, y6). So, some 
of the terms are eliminated when bp, ap are added by 
modulo 2 addition to form the parity check in the output 
line with the feedback lines.  

The yi lines are given as:  

y1= b0a1b0a2b0a3 
y2=b1a2b1a3 
y3=b2a3 
y4=b4a1b5a2b6a3 
y5=b4a2b5a3 
y6=b4a3. 

The q line is derived from modulo addition of bpcp and 
the yi lines.  

q=bpapy1y2y3y4y5y=b0a0b0a1b0a2b0a3 

b1a0b1a1b1a2b1a3b2a0b2a1b2a2b2a3 

b3a0b3a1b3a2b3ab0a1b0a2b0a3b1a2b1a3 

b2a3b4a1b5a2b6a3b4a2b5ab4a3=b0a0b1a0 

b1a1b2a0b2a1b2a2b3a0b3a1b3a2b3a3b4a1 

b4a2b4a3b5a2b5a3b6a3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. A parity checking circuit for the bit-parallel systolic multiplication over GF(24) using dual base. 

 

Now, rearranging, we see that q and r are same: 

q=b0a0b1a1b2a2b3a3b1a0b2a1b3a2b4a3b2a0 

b3a1b4a2b5a3b3a0b4a1b5a2b6a3.  

A parity checking circuit is presented in the figure 
which is correctly functioning for the Bit-parallel systolic 
multiplication over GF(24) using dual base. If the circuit 
operation is correct then q and r will agree and p=rq=0. If 
any cell in the circuit is faulty, it will change the output 
lines and that fault reflects in the r line, as q remains 
unaltered, so p=1 and the fault is detected. And if there is 
any failure in the yi line it can also be detected by p=1. 
Actually few of the yi terms cancel the output parity 
checking operation because they appear an even number of 
times in the coefficient of the output and are cancelled out 
in the parity-checking operation. It can be improved further 
as the yi terms are the sum of the results of some of the 
individual cells. So, if it is possible to temporarily 
disconnect those cells and connect with some lines to 

produce the desired feedback lines, the extra gates will not 
be required for the check line q. Then the circuit 
complexity will be reduced and less time will be required. 

Delay: As the architecture is pipelined, so the path 
delays of each stage is same, except the last stage. The last 
has the maximum path delay. This can be calculated as for 
m-bit architecture. So, 

Td=2mTXOR+TAND. 

In our example in Fig. 1, we calculate the path delay as   
Td=8TXOR+TAND. 

5. Simulation Result 
We have modeled our proposed architecture in VHDL. 

The design was simulated in “Model Sim XE III 6.3c” and 
checked the functionality of the multiplier for different 
values of m. The physical synthesis and place and route are 
done using Magma design Automation EDA tools based on 
Austria Microsystems 0.35 micron technology. The post 
CTS-post detailed route layout of design for GF(24) is 
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shown in Fig. 5. 

 
 
 
 
 
 

 

 

 

 

Fig. 5. Layout of bit-parallel dual basis systolic multiplier for 
GF(25) with error checking circuit. 

6. Conclusions 

The paper presented a fast dual-basis error tolerant 
bit-parallel systolic multiplier architecture over GF(2m), 
which can be pipelined and which requires less hardware 
compared with the multiplier architecture proposed earlier. 
Our proposed multiplier can also operate over both the 
dual-base and polynomial base. The proposed multiplier 
provides shorter longest delay path compared with earlier 
architecture. A simple and efficient error detection 
procedure using parity checking has been incorporated with 
some additional AND-XOR gates. 
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