
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2008, Article ID 843634, 11 pages
doi:10.1155/2008/843634

Research Article
Complexity Analysis of Reed-Solomon Decoding over
GF(2m) without Using Syndromes

Ning Chen and Zhiyuan Yan

Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA

Correspondence should be addressed to Zhiyuan Yan, yan@lehigh.edu

Received 15 November 2007; Revised 29 March 2008; Accepted 6 May 2008

Recommended by Jinhong Yuan

There has been renewed interest in decoding Reed-Solomon (RS) codes without using syndromes recently. In this paper, we
investigate the complexity of syndromeless decoding, and compare it to that of syndrome-based decoding. Aiming to provide
guidelines to practical applications, our complexity analysis focuses on RS codes over characteristic-2 fields, for which some
multiplicative FFT techniques are not applicable. Due to moderate block lengths of RS codes in practice, our analysis is complete,
without big O notation. In addition to fast implementation using additive FFT techniques, we also consider direct implementation,
which is still relevant for RS codes with moderate lengths. For high-rate RS codes, when compared to syndrome-based decoding
algorithms, not only syndromeless decoding algorithms require more field operations regardless of implementation, but also
decoder architectures based on their direct implementations have higher hardware costs and lower throughput. We also derive
tighter bounds on the complexities of fast polynomial multiplications based on Cantor’s approach and the fast extended Euclidean
algorithm.

Copyright © 2008 N. Chen and Z. Yan. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Reed-Solomon (RS) codes are among the most widely used
error control codes, with applications in space commu-
nications, wireless communications, and consumer elec-
tronics [1]. As such, efficient decoding of RS codes is
of great interest. The majority of the applications of RS
codes use syndrome-based decoding algorithms such as the
Berlekamp-Massey algorithm (BMA) [2] or the extended
Euclidean algorithm (EEA) [3]. Alternative hard decision
decoding methods for RS codes without using syndromes
were considered in [4–6]. As pointed out in [7, 8], these
algorithms belong to the class of frequency-domain algo-
rithms and are related to the Welch-Berlekamp algorithm
[9]. In contrast to syndrome-based decoding algorithms,
these algorithms do not compute syndromes and avoid
the Chien search and Forney’s formula. Clearly, this differ-
ence leads to the question whether these algorithms offer
lower complexity than syndrome-based decoding, especially
when fast Fourier transform (FFT) techniques are applied
[6].

Asymptotic complexity of syndromeless decoding was
analyzed in [6], and in [7] it was concluded that syndrome-
less decoding has the same asymptotic complexity O(n log2n)
(note that all the logarithms in this paper are to base
two) as syndrome-based decoding [10]. However, existing
asymptotic complexity analysis is limited in several aspects.
For example, for RS codes over Fermat fields GF(22r + 1)
and other prime fields [5, 6], efficient multiplicative FFT
techniques lead to an asymptotic complexity of O(n log2n).
However, such FFT techniques do not apply to characteristic-
2 fields, and hence this complexity is not applicable to
RS codes over characteristic-2 fields. For RS codes over
arbitrary fields, the asymptotic complexity of syndromeless
decoding based on multiplicative FFT techniques was shown
to be O(n log2n log logn) [6]. Although they are applicable
to RS codes over characteristic-2 fields, the complexity has
large coefficients and multiplicative FFT techniques are less
efficient than fast implementation based on additive FFT
for RS codes with moderate block lengths [6, 11, 12]. As
such, asymptotic complexity analysis provides little help to
practical applications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81062361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EURASIP Journal on Wireless Communications and Networking

In this paper, we analyze the complexity of syndrome-
less decoding and compare it to that of syndrome-based
decoding. Aiming to provide guidelines to system designers,
we focus on the decoding complexity of RS codes over
GF(2m). Since RS codes in practice have moderate lengths,
our complexity analysis provides not only the coefficients
for the most significant terms, but also the following
terms. Due to their moderate lengths, our comparison is
based on two types of implementations of syndromeless
decoding and syndrome-based decoding: direct implemen-
tation and fast implementation based on FFT techniques.
Direct implementations are often efficient when decoding
RS codes with moderate lengths and have widespread
applications; thus, we consider both computational com-
plexities, in terms of field operations, and hardware costs
and throughputs. For fast implementations, we consider
their computational complexities only and their hardware
implementations are beyond the scope of this paper. We
use additive FFT techniques based on Cantor’s approach
[13] since this approach achieves small coefficients [6,
11] and hence is more suitable for moderate lengths. In
contrast to some previous works [12, 14], which count
field multiplications and additions together, we differen-
tiate the multiplicative and additive complexities in our
analysis.

The main contributions of the papers are as follows.

(i) We derived a tighter bound on the complexities
of fast polynomial multiplication based on Cantor’s
approach.

(ii) We also obtained a tighter bound on the complexity
of the fast extended Euclidean algorithm (FEEA)
for general partial greatest common divisor (GCD)
computation.

(iii) We evaluated the complexities of syndromeless de-
coding based on different implementation approach-
es and compare them with their counterparts of syn-
drome-based decoding. Both errors-only and errors-
and-erasures decodings are considered.

(iv) We compare the hardware costs and throughputs of
direct implementations for syndromeless decoders
with those for syndrome-based decoders.

The rest of the paper is organized as follows. To make
this paper self-contained, in Section 2 we briefly review FFT
algorithms over finite fields, fast algorithms for polyno-
mial multiplication and division over GF(2m), the FEEA,
and syndromeless decoding algorithms. Section 3 presents
both computational complexity and decoder architectures
of direct implementations of syndromeless decoding, and
compares them with their counterparts for syndrome-based
decoding algorithms. Section 4 compares the computational
complexity of fast implementations of syndromeless decod-
ing with that of syndrome-based decoding. In Section 5,
case studies on two RS codes are provided and errors-and-
erasures decoding is discussed. The conclusions are given in
Section 6.

2. BACKGROUND

2.1. Fast Fourier transform over finite fields

For any n (n | q − 1) distinct elements a0, a1, . . . , an−1 ∈
GF(q), the transform from f = (f0, f1, . . . , fn−1)T to F �
(f (a0), f (a1), . . . , f (an−1))T , where f (x) = ∑n−1

i=0 fixi ∈
GF(q)[x], is called a discrete Fourier transform (DFT),
denoted by F = DFT(f). Accordingly, f is called the inverse
DFT of F, denoted by f = IDFT(F). Asymptotically fast
Fourier transform (FFT) algorithm over GF(2m) was pro-
posed in [15]. Reduced-complexity cyclotomic FFT (CFFT)
was shown to be efficient for moderate lengths in [16].

2.2. Polynomial multiplication over GF(2m)
by Cantor’s approach

A fast polynomial multiplication algorithm using additive
FFT was proposed by Cantor [13] for GF(qq

m
), where

q is prime, and it was generalized to GF(qm) in [11].
Instead of evaluating and interpolating over the multiplica-
tive subgroups as in multiplicative FFT techniques, Can-
tor’s approach uses additive subgroups. Cantor’s approach
relies on two algorithms: multipoint evaluation (MPE) [11,
Algorithm 3.1] and multipoint interpolation (MPI) [11,
Algorithm 3.2].

Suppose the degree of the product of two polynomials
over GF(2m) is less than h (h ≤ 2m), the product can be
obtained as follows. First, the two operand polynomials are
evaluated using the MPE algorithm. The evaluation results
are then multiplied pointwise. Finally, the product polyno-
mial is obtained by the MPI algorithm to interpolate the
pointwise multiplication results. The polynomial multiplica-
tion requires at most (3/2)h log2h+(15/2)h logh+8h multi-
plications over GF(2m) and (3/2)h log2h+(29/2)h logh+4h+
9 additions over GF(2m) [11]. For simplicity, henceforth in
this paper, all arithmetic operations are over GF(2m) unless
specified otherwise.

2.3. Polynomial division by Newton iteration

Suppose a, b ∈ GF(q)[x] are two polynomials of degrees
d0 + d1 and d1 (d0,d1 ≥ 0), respectively. To find the quotient
polynomial q and the remainder polynomial r satisfying
a = qb + r, where deg r < d1, a fast polynomial division
algorithm is available [12]. Suppose revh(a) � xha(1/x),
the fast algorithm first computes the inverse of revd1 (b) mod
xd0+1 by Newton iteration. Then, the reverse quotient is given
by q∗ = revd0+d1 (a)revd1 (b)−1 mod xd0+1. Finally, the actual
quotient and remainder are given by q = revd0 (q∗) and
r = a− qb.

Thus, the complexity of polynomial division with
remainder of a polynomial a of degree d0 + d1 by a monic
polynomial b of degree d1 is at most 4M(d0) + M(d1) +
O(d1) multiplications/additions when d1 ≥ d0 [12, Theorem
9.6], where M(h) stands for the numbers of multiplica-
tions/additions required to multiply two polynomials of
degree less than h.

N. Chen and Z. Yan 3

2.4. Fast extended Euclidean algorithm

Let r0 and r1 be two monic polynomials with deg r0 >
deg r1 and we assume s0 = t1 = 1, s1 = t0 = 0. Step
i (i = 1, 2, . . . , l) of the EEA computes ρi+1ri+1 = ri−1 −
qiri, ρi+1si+1 = si−1− qisi, and ρi+1ti+1 = ti−1− qiti so that the
sequence ri are monic polynomials with strictly decreasing
degrees. If the GCD of r0 and r1 is desired, the EEA terminates
when rl+1 = 0. For 1 ≤ i ≤ l, Ri � Qi · · ·Q1R0, where
Qi =

[0 1
1/ρi+1 −qi/ρi+1

]
and R0 =

[
1 0
0 1

]
. Then, it can be easily

verified that Ri =
[si ti
si+1 ti+1

]
for 0 ≤ i ≤ l. In RS decoding,

the EEA stops when the degree of ri falls below a certain
threshold for the first time, and we refer to this as partial
GCD.

The FEEA in [12, 17] costs no more than (22M(h) +
O(h)) logh multiplications/additions when n0 ≤ 2h [14].

2.5. Syndrome-based and syndromeless decoding

Over a finite field GF(q), suppose a0, a1, . . . , an−1 are n (n ≤
q) distinct elements and g0(x) � ∏n−1

i=0 (x − ai). Let us
consider an RS code over GF(q) with length n, dimension
k, and minimum Hamming distance d = n − k + 1. A
message polynomial m(x) of degree less than k is encoded to
a codeword (c0, c1, . . . , cn−1) with ci = m(ai), and the received
vector is given by r = (r0, r1, . . . , rn−1).

The syndrome-based hard decision decoding consists of
the following Steps: syndrome computation, key equation
solver, the Chien search, and Forney’s formula. Further
details are omitted, and interested readers are referred to
[1, 2, 18]. We also consider the following two syndromeless
algorithms.

Algorithm 1. [4, 5], [6, Algorithm 1]

(1.1) Interpolation. Construct a polynomial g1(x) with
deg g1(x) < n such that g1(ai) = ri for i = 0, 1, . . . ,
n− 1.

(1.2) Partial GCD. Apply the EEA to g0(x) and g1(x), and
find g(x) and v(x) that maximize deg g(x) while
satisfying v(x)g1(x) ≡ g(x) mod g0(x) and deg g(x) <
(n + k)/2.

(1.3) Message recovery. If v(x) | g(x), the message poly-
nomial is recovered by m(x) = g(x)/v(x), otherwise
output “decoding failure.”

Algorithm 2. [6, Algorithm 1a]

(2.1) Interpolation. Construct a polynomial g1(x) with
deg g1(x) < n such that g1(ai) = ri for i = 0, 1, . . . ,
n− 1.

(2.2) Partial GCD. Find s0(x) and s1(x) satisfying g0(x) =
xn−d+1s0(x) + r0(x) and g1(x) = xn−d+1s1(x) + r1(x),
where deg r0(x) ≤ n − d and deg r1(x) ≤ n − d.
Apply the EEA to s0(x) and s1(x), and stop when the
remainder g(x) has degree less than (d − 1)/2. Thus,
we have v(x)s1(x) + u(x)s0(x) = g(x).

(2.3) Message recovery. If v(x) � g0(x), output “decoding
failure;” otherwise, first compute q(x) = g0(x)/v(x),
and then obtain m′(x) = g1(x) + q(x)u(x). If
degm′(x) < k, output m′(x); otherwise output
“decoding failure.”

Compared with Algorithm 1, the partial GCD Step of
Algorithm 2 is simpler but its message recovery Step is more
complex [6].

3. DIRECT IMPLEMENTATION OF
SYNDROMELESS DECODING

3.1. Complexity analysis

We analyze the complexity of direct implementation of
Algorithms 1 and 2. For simplicity, we assume n − k is even
and hence d − 1 = 2t.

First, g1(x) in Steps (1.1) and (2.1) is given by IDFT(r).
Direct implementation of Steps (1.1) and (2.1) follows
Horner’s rule and requires n(n − 1) multiplications and
n(n− 1) additions [19].

Steps (1.2) and (2.2) both use the EEA. The Sugiyama
tower (ST) [3, 20] is well known as an efficient direct
implementation of the EEA. For Algorithm 1, the ST is
initialized by g1(x) and g0(x), whose degrees are at most n.
Since the number of iterations is 2t, Step (1.2) requires 4t(n+
2) multiplications and 2t(n + 1) additions. For Algorithm 2,
the ST is initialized by s0(x) and s1(x), whose degrees are at
most 2t and the iteration number is at most 2t.

Step (1.3) requires one polynomial division, which can
be implemented by using k iterations of cross multiplications
in the ST. Since v(x) is actually the error locator polynomial
[6], deg v(x) ≤ t. Hence, this requires k(k + 2t + 2)
multiplications and k(t + 2) additions. However, the result
of the polynomial division is scaled by a nonzero constant.
That is, cross multiplications lead to m(x) = am(x). To
remove the scaling factor a, we can first compute 1/a =
lc(g(x))/(lc(m(x))lc(v(x))), where lc(f) denotes the leading
coefficient of a polynomial f , and then obtains m(x) =
(1/a)m(x). This process requires one inversion and k + 2
multiplications.

Step (2.3) involves one polynomial division, one poly-
nomial multiplication, and one polynomial addition, and
their complexities depend on the degrees of v(x) and
u(x), denoted as dv and du, respectively. In the polynomial
division, let the result of the ST be q(x) = aq(x). The scaling
factor is recovered by 1/a = 1/(lc(q(x))lc(v(x))). Thus, it
requires one inversion, (n− dv + 1)(n + dv + 3) + n − dv + 2
multiplications, and (n− dv + 1)(dv + 2) additions to obtain
q(x). The polynomial multiplication needs (n−dv+1)(du+1)
multiplications and (n − dv + 1)(du + 1) − (n − dv + du + 1)
additions, and the polynomial addition needs n additions
since g1(x) has degree at most n − 1. The total complexity
of Step (2.3) includes (n − dv + 1)(n + dv + du + 5) + 1
multiplications, (n− dv + 1)(dv + du + 2) + n− du additions,
and one inversion. Consider the worst case for multiplicative
complexity, where dv should be as small as possible. But

4 EURASIP Journal on Wireless Communications and Networking

dv > du, so the highest multiplicative complexity is (n −
du)(n + 2du + 6) + 1, which maximizes when du = (n− 6)/4.
And we know du < dv ≤ t. Let R denote the code rate.
So for RS codes with R > 1/2, the maximum complexity
is n2 + nt − 2t2 + 5n − 2t + 5 multiplications, 2nt − 2t2 +
2n + 2 additions, and one inversion. For codes with R ≤
1/2, the maximum complexity is (9/8)n2 + (9/2)n + 11/2
multiplications, (3/8)n2 + (3/2)n + 3/2 additions, and one
inversion.

Table 1 lists the complexity of direct implementation of
Algorithms 1 and 2, in terms of operations in GF(2m). The
complexity of syndrome-based decoding is given in Table 2.
The numbers for syndrome computation, the Chien search,
and Forney’s formula are from [21]. We assume that the EEA
is used for the key equation solver since it was shown to be
equivalent to the BMA [22]. The ST is used to implement
the EEA. Note that the overall complexity of syndrome-based
decoding can be reduced by sharing computations between
the Chien search and Forney’s formula. However, this is not
taken into account in Table 2.

3.2. Complexity comparison

For any application with fixed parameters n and k, the
comparison between the algorithms is straightforward using
the complexities in Tables 1 and 2. Below we try to determine
which algorithm is more suitable for a given code rate.
The comparison between different algorithms is complicated
by three different types of field operations. However, the
complexity is dominated by the number of multiplications:
in hardware implementation, both multiplication and inver-
sion over GF(2m) require an area-time complexity of O(m2)
[23], whereas an addition requires an area-time complexity
of O(m); the complexity due to inversions is negligible since
the required number of inversions is much smaller than
that of multiplications; the numbers of multiplications and
additions are both O(n2). Thus, we focus on the number of
multiplications for simplicity.

Since t = (1/2)(1 − R)n and k = Rn, the multiplicative
complexities of Algorithms 1 and 2 are (3−R)n2 +(3−R)n+2
and (1/2)(3R2−7R+ 8)n2 + (7−3R)n+ 5, respectively, while
the complexity of syndrome-based decoding is (1/2)(5R2 −
13R + 8)n2 + (2 − 3R)n. It is easy to verify that in all
these complexities, the quadratic and linear coefficients
are of the same order of magnitude; hence, we consider
only the quadratic terms. Considering only the quadratic
terms, Algorithm 1 is less efficient than syndrome-based
decoding when R > 1/5. If the Chien search and Forney’s
formula share computations, this threshold will be even
lower. Comparing the highest terms, Algorithm 2 is less
efficient than the syndrome-based algorithm regardless of
R. It is easy to verify that the most significant term of the
difference between Algorithms 1 and 2 is (1/2)(1 − R)(3R −
2)n2. So when implemented directly, Algorithm 1 is less
efficient than Algorithm 2 when R > 2/3. Thus, Algorithm 1
is more suitable for codes with very low rate, while
syndrome-based decoding is the most efficient for high-rate
codes.

3.3. Hardware costs, latency, and throughput

We have compared the computational complexities of syn-
dromeless decoding algorithms with those of syndrome-
based algorithms. Now we compare these two types of
decoding algorithms from a hardware perspective: we will
compare the hardware costs, latency, and throughput of
decoder architectures based on direct implementations of
these algorithms. Since our goal is to compare syndrome-
based algorithms with syndromeless algorithms, we select
our architectures so that the comparison is on a level
field. Thus, among various decoder architectures available
for syndrome-based decoders in the literature, we consider
the hypersystolic architecture in [20]. Not only it is an
efficient architecture for syndrome-based decoders, but also
some of its functional units can be easily adapted to
implement syndromeless decoders. Thus, decoder archi-
tectures for both types of decoding algorithms have the
same structure with some functional units the same; this
allows us to focus on the difference between the two
types of algorithms. For the same reason, we do not try
to optimize the hardware costs, latency, or throughput
using circuit-level techniques since such techniques will
benefit from the architectures for both types of decoding
algorithms in a similar fashion and hence does not affect the
comparison.

The hypersystolic architecture [20] contains three func-
tional units: the power sums tower (PST) computing the
syndromes, the ST solving the key equation, and the
correction tower (CT) performing the Chien search and
Forney’s formula. The PST consists of 2t systolic cells, each of
which comprises of one multiplier, one adder, five registers,
and one multiplexer. The ST has δ + 1 (δ is the maximal
degree of the input polynomials) systolic cells, each of which
contains one multiplier, one adder, five registers, and seven
multiplexers. The latency of the ST is 6γ clock cycles [20],
where γ is the number of iterations. For the syndrome-based
decoder architecture, δ and γ are both 2t. The CT consists
of 3t + 1 evaluation cells, two delay cells, along with two
joiner cells, which also perform inversions. Each evaluation
cell needs one multiplier, one adder, four registers, and one
multiplexer. Each delay cell needs one register. The two
joiner cells altogether need two multipliers, one inverter, and
four registers. Table 3 summarizes the hardware costs of the
decoder architecture for syndrome-based decoders described
above. For each functional unit, we also list the latency
(in clock cycles), as well as the number of clock cycles it
needs to process one received word, which is proportional to
the inverse of the throughput. In theory, the computational
complexities of Steps of RS decoding depend on the received
word, and the total complexity is obtained by first computing
the sum of complexities for all the Steps and then considering
the worst case scenario (cf. Section 3.1). In contrast, the
hardware costs, latency, and throughput of every functional
unit are dominated by the worst case scenario; the numbers
in Table 3 all correspond to the worst case scenario. The
critical path delay (CPD) is the same, Tmult +Tadd +Tmux, for
the PST, ST, and CT. In addition to the registers required by
the PST, ST, and CT, the total number of registers in Table 3

N. Chen and Z. Yan 5

Table 1: Direct implementation complexities of syndromeless decoding algorithms

Multiplications Additions Inversions

Interpolation n(n− 1) n(n− 1) 0

Partial GCD
Algorithm 1 4t(n + 2) 2t(n + 1) 0

Algorithm 2 4t(2t + 2) 2t(2t + 1) 0

Message recovery
Algorithm 1 (k + 2)(k + 1) + 2kt k(t + 2) 1

Algorithm 2 n2 + nt − 2t2 + 5n− 2t + 5 2nt − 2t2 + 2n + 2 1

Total
Algorithm 1 2n2 + 2nt + 2n + 2t + 2 n2 + 3nt − 2t2 + n− 2t 1

Algorithm 2 2n2 + nt + 6t2 + 4n + 6t + 5 n2 + 2nt + 2t2 + n + 2t + 2 1

Table 2: Direct implementation complexity of syndrome-based
decoding

Multiplications Additions Inv.

Syndrome computation 2t(n− 1) 2t(n− 1) 0

Key equation solver 4t(2t + 2) 2t(2t + 1) 0

Chien search n(t − 1) nt 0

Forney’s formula 2t2 t(2t − 1) t

Total 3nt + 10t2 − n + 6t 3nt + 6t2 − t t

also account for the registers needed by the delay line called
Main Street [20].

Both the PST and the ST can be adapted to implement
decoder architectures for syndromeless decoding algorithms.
Similar to syndrome computation, interpolation in syn-
dromeless decoders can be implemented by Horner’s rule,
and thus the PST can be easily adapted to implement this
Step. For the architectures based on syndromeless decoding,
the PST contains n cells, and the hardware costs of each
cell remain the same. The partial GCD is implemented by
the ST. The ST can implement the polynomial division
in message recovery as well. In Step (1.3), the maximum
polynomial degree of the polynomial division is k+ t and the
iteration number is at most k. As mentioned in Section 3.1,
the degree of q(x) in Step (2.3) ranges from 1 to t. In the
polynomial division g0(x)/v(x), the maximum polynomial
degree is n and the iteration number is at most n − 1. Given
the maximum polynomial degree and iteration number, the
hardware costs and latency for the ST can be determined as
for the syndrome-based architecture.

The other operations of syndromeless decoders do
not have corresponding functional units available in the
hypersystolic architecture, and we choose to implement them
in a straightforward way. In the polynomial multiplication
q(x)u(x), u(x) has degree at most t − 1 and the product has
degree at most n−1. Thus, it can be done by n multiply-and-
accumulate circuits, n registers in t cycles (see, e.g., [24]). The
polynomial addition in Step (2.3) can be done in one clock
cycle with n adders and n registers. To remove the scaling
factor, Step (1.3) is implemented in four cycles with at most
one inverter, k+2 multipliers, and k+3 registers; Step (2.3) is
implemented in three cycles with at most one inverter, n + 1
multipliers, and n + 2 registers. We summarize the hardware
costs, latency, and throughput of the decoder architectures
based on Algorithms 1 and 2 in Table 4.

Now we compare the hardware costs of the three decoder
architectures based on Tables 3 and 4. The hardware costs
are measured by the numbers of various basic circuit
elements. All three decoder architectures need only one
inverter. The syndrome-based decoder architecture requires
fewer multiplexers than the decoder architecture based on
Algorithm 1, regardless of the rate, and fewer multipliers,
adders, and registers when R > 1/2. The syndrome-
based decoder architecture requires fewer registers than the
decoder architecture based on Algorithm 2 when R > 21/43,
and fewer multipliers, adders, and multiplexers regardless
of the rate. Thus, for high rate codes, the syndrome-
based decoder has lower hardware costs than syndromeless
decoders. The decoder architecture based on Algorithm 1
requires fewer multipliers and adders than that based on
Algorithm 2, regardless of the rate, but more registers and
multiplexers when R > 9/17.

In these algorithms, each Step starts with the results
of the previous Step. Due to this data dependency, their
corresponding functional units have to operate in a pipelined
fashion. Thus, the decoding latency is simply the sum of the
latency of all the functional units. The decoder architecture
based on Algorithm 2 has the longest latency, regardless
of the rate. The syndrome-based decoder architecture has
shorter latency than the decoder architecture based on
Algorithm 1 when R > 1/7.

All three decoders have the same CPD, so the throughput
is determined by the number of clock cycles. Since the
functional units in each decoder architecture are pipelined,
the throughput of each decoder architecture is determined by
the functional unit that requires the largest number of cycles.
Regardless of the rate, the decoder based on Algorithm 2 has
the lowest throughput. When R > 1/2, the syndrome-based
decoder architecture has higher throughput than the decoder
architecture based on Algorithm 1. When the rate is lower,
they have the same throughput.

Hence, for high-rate RS codes, the syndrome-based
decoder architecture requires less hardware and achieves
higher throughput and shorter latency than those based on
syndromeless decoding algorithms.

4. FAST IMPLEMENTATION OF
SYNDROMELESS DECODING

In this section, we implement the three Steps of Algorithms
1 and 2: interpolation, partial GCD, and message recovery,

6 EURASIP Journal on Wireless Communications and Networking

Table 3: Decoder architecture based on syndrome-based decoding (CPD is Tmult + Tadd + Tmux)

Multipliers Adders Inverters Registers Muxes Latency Throughput−1

Syndrome computation 2t 2t 0 10t 2t n + 6t 6t

Key equation solver 2t + 1 2t + 1 0 10t + 5 14t + 7 12t 12t

Correction 3t + 3 3t + 1 1 12t + 10 3t + 1 3t 3t

Total 7t + 4 7t + 2 1 n + 53t + 15 19t + 8 n + 21t 12t

Table 4: Decoder architectures based on syndromeless decoding (CPD is Tmult + Tadd + Tmux)

Multipliers Adders Inverters Registers Muxes Latency Throughput−1

Interpolation n n 0 5n n 4n 3n

Partial Algorithm 1 n + 1 n + 1 0 5n + 5 7n + 7 12t 12t

GCD Algorithm 2 2t + 1 2t + 1 0 10t + 5 14t + 7 12t 12t

Message Algorithm 1 2k + t + 3 k + t + 1 1 6k + 5t + 8 7k + 7t + 7 6k + 4 6k

recovery Algorithm 2 3n + 2 3n + 1 1 7n + 7 7n + 7 6n + t − 2 6n

Total
Algorithm 1 2n + 2k + t + 4 2n + k + t + 2 1 10n + 6k + 5t + 13 8n + 7k + 7t + 14 4n + 6k + 12t + 4 6k

Algorithm 2 4n + 2t + 3 4n + 2t + 2 1 12n + 10t + 12 8n + 14t + 14 10n + 13t − 2 6n

by fast algorithms described in Section 2 and evaluate their
complexities. Since both the polynomial division by Newton
iteration and the FEEA depend on efficient polynomial
multiplication, the decoding complexity relies on the com-
plexity of polynomial multiplication. Thus, in addition
to field multiplications and additions, the complexities in
this section are also expressed in terms of polynomial
multiplications.

4.1. Polynomial multiplication

We first derive a tighter bound on the complexity of the fast
polynomial multiplication based on Cantor’s approach.

Let the degree of the product of two polynomials be less
than n. The polynomial multiplication can be done by two
FFTs and one inverse FFT if length-n FFT is available over
GF(2m), which requires n | 2m − 1. If n � 2m − 1, one
option is to pad the polynomials to length n′ (n′ > n) with
n′ | 2m − 1. Compared with fast polynomial multiplication
based on multiplicative FFT, Cantor’s approach uses additive
FFT and does not require n | 2m − 1, so it is more
efficient than FFT multiplication with padding for most
degrees. For n= 2m − 1, their complexities are similar.
Although asymptotically worse than Schönhage’s algorithm
[12], which has O(n logn log logn) complexity, Cantor’s
approach has small implicit constants, and hence, it is more
suitable for practical implementation of RS codes [6, 11].
Gao claimed an improvement on Cantor’s approach in [6],
but we do not pursue this due to lack of details.

A tighter bound on the complexity of Cantor’s approach
is given in Theorem 1. Here we make the same assumption
as in [11] that the auxiliary polynomials si and the values
si(βj) are precomputed. The complexity of precomputation
was given in [11].

Theorem 1. By Cantor’s approach, two polynomials a, b ∈
GF(2m)[x] whose product has a degree less than h (1 ≤
h ≤ 2m) can be multiplied using less than (3/2)h log2h +

(7/2)h logh − 2h + logh + 2 multiplications, (3/2)h log2h +
(21/2)h logh − 13h + logh + 15 additions, and 2h inversions
over GF(2m).

Proof. There exists 0 ≤ p ≤ m satisfying 2p−1 < h ≤ 2p. Since
both the MPE and MPI algorithms are recursive, we denote
the numbers of additions of the MPE and MPI algorithms for
input i (0 ≤ i ≤ p) as SE(i) and SI(i), respectively. Clearly,
SE(0) = SI(0) = 0. Following the approach in [11], it can be
shown that for 1 ≤ i ≤ p,

SE(i) ≤ i(i + 3)2i−2 + (p − 3)(2i − 1) + i, (1)

SI(i) ≤ i(i + 5)2i−2 + (p − 3)(2i − 1) + i. (2)

Let ME(h) and AE(h) denote the numbers of multipli-
cations and additions, respectively, that the MPE algorithm
requires for polynomials of a degree less than h. When i = p
in the MPE algorithm, f (x) has a degree less than h ≤ 2p,
while sp−1 is of degree 2p−1 and has at most p nonzero
coefficients. Thus, g(x) has a degree less than h − 2p−1.
Therefore, the numbers of multiplications and additions for
the polynomial division in [11, Step 2 of Algorithm 3.1] are
both p(h − 2p−1), while r1(x) = r0(x) + si−1(βi)g(x) needs
at most h − 2p−1 multiplications and the same number of
additions. Substituting the bound on ME(2p−1) in [11], we
obtain ME(h) ≤ 2ME(2p−1) + p(h − 2p−1) + h − 2p−1, and
thus ME(h) is at most (1/4)p22p − (1/4)p2p − 2p + (p + 1)h.
Similarly, substituting the bound on SE(p − 1) in (1), we
obtain AE(h) ≤ 2SE(p−1)+ p(h−2p−1)+h−2p−1, and hence
AE(h) is at most (1/4)p22p + (3/4)p2p − 4·2p + (p + 1)h + 4.

Let MI(h) and AI(h) denote the numbers of multiplica-
tions and additions, respectively, which the MPI algorithm
requires when the interpolated polynomial has a degree less
than h. When i = p in the MPI algorithm, f (x) has a degree
less than h ≤ 2p. It implies that r0(x) + r1(x) has a degree less
than h − 2p−1. Thus, it requires at most h − 2p−1 additions
to obtain r0(x) + r1(x) and h − 2p−1 multiplications for
si−1(βi)

−1(r0(x)+r1(x)). The numbers of multiplications and

N. Chen and Z. Yan 7

additions for the polynomial multiplication in [11, Step 3 of
Algorithm 3.2] to obtain f (x) are both p(h − 2p−1). Adding
r0(x) also needs 2p−1 additions. Substituting the bound on
MI(2p−1) in [11], we have MI(h) ≤ 2MI(2p−1)+p(h−2p−1)+
h− 2p−1, and hence MI(h) is at most (1/4)p22p− (1/4)p2p−
2p+(p+1)h. Similarly, substituting the bound on SI(p−1) in
(2), we have AI(h) ≤ 2SI(p−1)+p(h−2p−1)+h+1, and hence
AE(h) is at most (1/4)p22p + (5/4)p2p − 4·2p + (p + 1)h + 5.
The interpolation Step also needs 2p inversions.

Let M(h1,h2) be the complexity of multiplication of two
polynomials of degrees less than h1 and h2. Using Cantor’s
approach, M(h1,h2) includes ME(h1) + ME(h2) + MI(h) + 2p

multiplications, AE(h1) + AE(h2) + AI(h) additions, and 2p

inversions, when h = h1 + h2− 1. Finally, we replace 2p by 2h
as in [11].

Compared with the results in [11], our results have
the same highest degree term but smaller terms for lower
degrees.

By Theorem 1, we can easily compute M(h1) � M(h1,
h1). A by-product of the above proof is the bounds for the
MPE and MPI algorithms. We also observe some properties
for the complexity of fast polynomial multiplication that
hold for not only Cantor’s approach but also for other
approaches. These properties will be used in our complex-
ity analysis next. Since all fast polynomial multiplication
algorithms have higher-than-linear complexities, 2M(h) ≤
M(2h). Also note that M(h + 1) is no more than M(h) plus
2h multiplications and 2h additions [12, Exercise 8.34]. Since
the complexity bound is determined only by the degree of
the product polynomial, we assume M(h1,h2) ≤ M(�(h1 +
h2)/2). We note that the complexities of Schönhage’s
algorithm as well as Schönhage and Strassen’s algorithm,
both based on multiplicative FFT, are also determined by the
degree of the product polynomial [12].

4.2. Polynomial division

Similar to [12, Exercise 9.6], in characteristic-2 fields, the
complexity of Newton iteration is at most

∑

0≤ j≤r−1

(
M
(⌈(

d0 + 1
)
2
− j⌉)

+ M
(⌈(

d0 + 1
)
2
− j−1⌉))

, (3)

where r = �log(d0+1)	. Since �(d0+1)2− j	 ≤
(d0+1)2− j�+1
and M(h + 1) is no more than M(h), plus 2h multiplica-
tions and 2h additions [12, Exercise 8.34], it requires at
most

∑
1≤ j≤r(M(
(d0 + 1)2− j�) + M(
(d0 + 1)2− j−1�)), plus

∑
0≤ j≤r−1(2
(d0 + 1)2− j�+ 2
(d0 + 1)2− j−1�) multiplications

and the same number of additions. Since 2M(h) ≤ M(2h),
Newton iteration costs at most

∑
0≤ j≤r−1((3/2)M(
(d0 +

1)2− j�)) ≤ 3M(d0 + 1), 6(d0 + 1) multiplications, and
6(d0 +1) additions. The second Step to compute the quotient
needs M(d0 + 1) and the last Step to compute the remainder
needs M(d1 + 1,d0 + 1) and d1 + 1 additions. By M(d1 +
1,d0 + 1) ≤ M(�(d0 + d1)/2	 + 1), the total cost is at most
4M(d0) + M(�(d0 + d1)/2), 15d0 + d1 + 7 multiplications,
and 11d0 + 2d1 + 8 additions. Note that this bound does not
require d1 ≥ d0 as in [12].

4.3. Partial GCD

The partial GCD Step can be implemented in three
approaches: the ST, the classical EEA with fast polynomial
multiplication and Newton iteration, and the FEEA with fast
polynomial multiplication and Newton iteration. The ST is
essentially the classical EEA. The complexity of the classical
EEA is asymptotically worse than that of the FEEA. Since the
FEEA is more suitable for long codes, we will use the FEEA
in our complexity analysis of fast implementations.

In order to derive a tighter bound on the complexity of
the FEEA, we first present a modified FEEA in Algorithm 3.

Let η(h) � max{ j:∑ j
i=1deg qi ≤ h}, which is the number of

Steps of the EEA satisfying deg r0 − deg rη(h) ≤ h < deg r0 −
deg rη(h)+1. For f (x) = fnxn + · · · + f1x + f0 with fn /= 0, the

truncated polynomial f (x) � h � fnxh +· · ·+ fn−h+1x+ fn−h,
where fi = 0 for i < 0. Note that f (x) � h = 0 if h < 0.

Algorithm 3. (modified fast extended Euclidean algorithm)
Input: two monic polynomials r0 and r1, with deg r0 =

n0 > n1 = deg r1, as well as integer h (0 < h ≤ n0)
Output: l = η(h), ρl+1, Rl, rl, and r̃l+1

(3.1) If r1 = 0 or h < n0 − n1, then return 0, 1,
[

1 0
0 1

]
, r0,

and r1.

(3.2) h1 =
h/2�, r∗0 = r0 � 2h1, r∗1 = r1 � (2h1 − (n0 −
n1)).

(3.3) (j − 1, ρ∗j ,R∗j−1, r∗j−1, r̃∗j) = FEEA(r∗0 , r∗1 ,h1).

(3.4)
[r j−1

r̃ j

] = R∗j−1

[r0−r∗0 xn0−2h1

r1−r∗1 xn0−2h1

]
+
[r∗j−1x

n0−2h1

r̃∗j xn0−2h1

]
, Rj−1 =

[1 0
0 1/lc(r̃ j)

]
R∗j−1, ρj = ρ∗j lc(r̃ j), r j = r̃ j /lc(r̃ j), nj =

deg r j .

(3.5) If r j = 0 or h < n0 − nj , then return j −
1, ρj , Rj−1, r j−1, and r̃ j .

(3.6) Perform polynomial division with remainder as
r j−1 = qjr j + r̃ j+1, ρj+1 = lc(r̃ j+1), r j+1 =
r̃ j+1/ρj+1, nj+1 = deg r j+1, Rj =

[0 1
1/ρj+1 −qj /ρj+1

]
Rj−1.

(3.7) h2 = h − (n0 − nj), r∗j = r j � 2h2, r∗j+1 = r j+1 �
(2h2 − (nj − nj+1)).

(3.8) (l − j, ρ∗l+1, S∗, r∗l− j , r̃
∗
l− j+1) = FEEA(r∗j , r∗j+1,h2).

(3.9)
[rl
r̃l+1

] = S∗
[r j−r∗j xn j−2h2

r j+1−r∗j+1x
nj−2h2

]
+
[r∗l− j x

n j−2h2

r̃∗l− j+1x
nj−2h2

]
, S =

[1 0
0 1/lc(r̃l+1)

]
S∗, ρl+1 = ρ∗l+1lc(r̃l+1).

(3.10) Return l, ρl+1, SRj , rl, r̃l+1.

It is easy to verify that Algorithm 3 is equivalent to the
FEEA in [12, 17]. The difference between Algorithm 3 and
the FEEA in [12, 17] lies in Steps (3.4), (3.5), (3.8), and
(3.10): in Steps (3.5) and (3.10), two additional polynomials
are returned, and they are used in the updates of Steps (3.4)
and (3.8) to reduce complexity. The modification in Step
(3.4) was suggested in [14] and the modification in Step (3.9)
follows the same idea.

In [12, 14], the complexity bounds of the FEEA are
established assuming n0 ≤ 2h. Thus, we first establish a
bound of the FEEA for the case n0 ≤ 2h below in Theorem 2,

8 EURASIP Journal on Wireless Communications and Networking

using the bounds we developed in Sections 4.1 and 4.2. The
proof is similar to those in [12, 14] and hence omitted;
interested readers should have no difficulty filling in the
details.

Theorem 2. Let T(n0,h) denote the complexity of the FEEA.
When n0 ≤ 2h, T(n0,h) is at most 17M(h) logh plus
(48h + 2) logh multiplications, (51h + 2) logh additions,
and 3h inversions. Furthermore, if the degree sequence is
normal, T(2h,h) is at most 10M(h) logh, ((55/2)h + 6) logh
multiplications, and ((69/2)h + 3) logh additions.

Compared with the complexity bounds in [12, 14], our
bound not only is tighter, but also specifies all terms of the
complexity and avoid the big O notation. The saving over
[14] is due to lower complexities of Steps (3.6), (3.9), and
(3.10) as explained above. The saving for the normal case
over [12] is due to lower complexity of Step (3.9).

Applying the FEEA to g0(x) and g1(x) to find v(x) and
g(x) in Algorithm 1, we have n0 = n and h ≤ t since
deg v(x) ≤ t. For RS codes, we always have n > 2t. Thus,
the condition n0 ≤ 2h for the complexity bound in [12, 14]
is not valid. It was pointed out in [6, 12] that s0(x) and s1(x)
as defined in Algorithm 2 can be used instead of g0(x) and
g1(x), which is the difference between Algorithms 1 and 2.
Although such a transform allows us to use the results in
[12, 14], it introduces extra cost for message recovery [6]. To
compare the complexities of Algorithms 1 and 2, we establish
a more general bound in Theorem 3.

Theorem 3. The complexity of FEEA is no more than
34M(
h/2�) log
h/2� + M(
n0/2�) + 4M(�n0/2 − h/4) +
2M(
(n0−h)/2�)+4M(h)+2M(
(3/4)h�)+4M(
h/2�), (48h+
4) log
h/2� + 9n0 + 22h multiplications, (51h + 4) log
h/2� +
11n0 + 17h + 2 additions, and 3h inversions.

The proof is also omitted for brevity. The main difference
between this case and Theorem 2 lies in the top level call
of the FEEA. The total complexity is obtained by adding
2T(h,
h/2�) and the top-level cost.

It can be verified that, when n0 ≤ 2h, Theorem 3 presents
a tighter bound than Theorem 2 since saving on the top
level is accounted for. Note that the complexity bounds in
Theorems 2 and 3 assume that the FEEA solves sl+1r0 +
tl+1r1 = r̃l+1 for both tl+1 and sl+1. If sl+1 is not necessary, the
complexity bounds in Theorems 2 and 3 are further reduced
by 2M(
h/2�), 3h + 1 multiplications, and 4h + 1 additions.

4.4. Complexity comparison

Using the results in Sections 4.1, 4.2, and 4.3, we first
analyze and then compare the complexities of Algorithms
1 and 2 as well as syndrome-based decoding under fast
implementations.

In Steps (1.1) and (2.1), g1(x) can be obtained by an
inverse FFT when n| 2m − 1 or by the MPI algorithm. In
the latter case, the complexity is given in Section 4.1. By
Theorem 3, the complexity of Step (1.2) is T(n, t) minus the
complexity to compute sl+1. The complexity of Step (2.2) is

T(2t, t). The complexity of Step (1.3) is given by the bound in
Section 4.2. Similarly, the complexity of Step (2.3) is readily
obtained by using the bounds of polynomial division and
multiplication.

All the steps of syndrome-based decoding can be imple-
mented using fast algorithms. Both syndrome computation
and the Chien search can be done by n-point evaluations.
Forney’s formula can be done by two t-point evaluations plus
t inversions and t multiplications. To use the MPE algorithm,
we choose to evaluate on all n points. By Theorem 3, the
complexity of the key equation solver is T(2t, t) minus the
complexity to compute sl+1.

Note that to simplify the expressions, the complexi-
ties are expressed in terms of three kinds of operations:
polynomial multiplications, field multiplications, and field
additions. Of course, with our bounds on the complexity of
polynomial multiplication in Theorem 1, the complexities of
the decoding algorithms can be expressed in terms of field
multiplications and additions.

Given the code parameters, the comparison among
these algorithms is quite straightforward with the above
expressions. As in Section 3.2, we attempt to compare the
complexities using onlyR. Such a comparison is of course not
accurate, but it sheds light on the comparative complexity
of these decoding algorithms without getting entangled in
the details. To this end, we make four assumptions. First, we
assume the complexity bounds on the decoding algorithms
as approximate decoding complexities. Second, we use the
complexity bound in Theorem 1 as approximate polynomial
multiplication complexities. Third, since the numbers of
multiplications and additions are of the same degree, we only
compare the numbers of multiplications. Fourth, we focus
on the difference of the second highest degree terms since the
highest degree terms are the same for all three algorithms.
This is because the partial GCD Steps of Algorithms 1 and
2, as well as the key equation solver in syndrome-based
decoding, differ only in the top level of the recursion of
FEEA. Hence, Algorithms 1 and 2 as well as the key equation
solver in syndrome-based decoding have the same highest
degree term.

We first compare the complexities of Algorithms 1 and
2. Using Theorem 1, the difference between the second
highest degree terms is given by (3/4)(25R − 13)n log2n,
so Algorithm 1 is less efficient than Algorithm 2 when
R > 0.52. Similarly, the complexity difference between
syndrome-based decoding and Algorithm 1 is given by
(3/4)(1 − 31R)n log2n. Thus, syndrome-based decoding is
more efficient than Algorithm 1 when R > 0.032. Comparing
syndrome-based decoding and Algorithm 2, the complexity
difference is roughly−(9/2)(2+R)n log2n. Hence, syndrome-
based decoding is more efficient than Algorithm 2 regardless
of the rate.

We remark that the conclusion of the above comparison
is similar to those obtained in Section 3.2 except the
thresholds are different. Based on fast implementations,
Algorithm 1 is more efficient than Algorithm 2 for low rate
codes, and the syndrome-based decoding is more efficient
than Algorithms 1 and 2 in virtually all cases.

N. Chen and Z. Yan 9

Table 5: Complexity of syndromeless decoding

(n, k)

Direct implementation Fast implementation

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

Mult. Add. Inv. Overall Mult. Add. Inv. Overall Mult. Add. Inv. Overall Mult. Add. Inv. Overall

(255, 233)

Interpolation 64770 64770 0 1101090 64770 64770 0 11101090 586 6900 0 16276 586 6900 0 16276

Partial GCD 16448 8192 0 271360 2176 1056 0 35872 8224 8176 16 140016 1392 1328 16 23856

Msg recovery 57536 4014 1 924606 69841 8160 1 1125632 3791 3568 1 64240 8160 7665 1 138241

Total 138754 76976 1 2297056 136787 73986 1 2262594 12601 18644 17 220532 10138 15893 17 178373

(511, 447)

Interpolation 260610 260610 0 4951590 260610 260610 0 4951590 1014 23424 0 41676 1014 23424 0 41676

Partial GCD 65664 32768 0 1214720 8448 4160 0 156224 32832 32736 32 624288 5344 5216 32 101984

Msg recovery 229760 15198 1 4150896 277921 31680 1 5034276 14751 14304 1 279840 31680 30689 1 600947

Total 556034 308576 1 10317206 546979 296450 1 10142090 48597 70464 33 945804 38038 59329 33 744607

Table 6: Complexity of syndrome-based decoding

(n, k)
Direct implementation Fast implementation

Mult. Add. Inv. Overall Mult. Add. Inv. Overall

(255, 223)

Syndrome computation 8128 8128 0 138176 149 4012 0 6396

Key equation solver 2176 1056 0 35872 1088 1040 16 18704

Chien search 3825 4080 0 65280 586 6900 0 16276

Forney’s formula 512 496 16 8944 512 496 16 8944

Total 14641 13760 16 248272 2335 12448 32 50320

(511, 447)

Syndrome computation 32640 32640 0 620160 345 16952 0 23162

Key equation solver 8448 4160 0 156224 4224 4128 32 80736

Chien search 15841 16352 0 301490 1014 23424 0 41676

Forney’s formula 2048 2016 32 39456 2048 2016 32 39456

Total 58977 55168 32 1117330 7631 46520 64 185030

5. CASE STUDY ANDDISCUSSIONS

5.1. Case study

We examine the complexities of Algorithms 1 and 2 as well as
syndrome-based decoding for the (255, 223) CCSDS RS code
[25] and a (511, 447) RS code which have roughly the same
rate R = 0.87. Again, both direct and fast implementations
are investigated. Due to the moderate lengths, in some cases
direct implementation leads to lower complexity, and hence
in such cases, the complexity of direct implementation is
used for both.

Tables 5 and 6 list the total decoding complexity of
Algorithms 1 and 2 as well as syndrome-based decoding,
respectively. In the fast implementations, cyclotomic FFT
[16] is used for interpolation, syndrome computation, and
the Chien search. The classical EEA with fast polynomial
multiplication and division is used in fast implementations
since it is more efficient than the FEEA for these lengths.
We assume normal degree sequence, which represents the
worst case scenario [12]. The message recovery Steps use long
division in fast implementation since it is more efficient than
Newton iteration for these lengths. We use Horner’s rule for
Forney’s formula in both direct and fast implementations.

We note that for each decoding Step, Tables 5 and 6
not only provide the numbers of finite field multiplications,
additions, and inversions, but also list the overall com-
plexities to facilitate comparisons. The overall complexities
are computed based on the assumptions that multiplication
and inversion are of equal complexity, and that as in [15],
one multiplication is equivalent to 2m additions. The latter
assumption is justified by both hardware and software
implementations of finite field operations. In hardware
implementation, a multiplier over GF(2m) generated by
trinomials requires m2 − 1 XOR and m2 AND gates [26],
while an adder requires m XOR gates. Assuming that XOR
and AND gates have the same complexity, the complexity of
a multiplier is 2m times that of an adder over GF(2m). In
software implementation, the complexity can be measured
by the number of word-level operations [27]. Using the
shift and add method as in [27], a multiplication requires
m − 1 shift and m XOR word-level operations, respectively,
while an addition needs only one XOR word-level operation.
Henceforth, in software implementations the complexity of
a multiplication over GF(2m) is also roughly 2m times as that
of an addition. Thus, the total complexity of each decoding
Step in Tables 5 and 6 is obtained by N = 2m(Nmult +Ninv) +
Nadd, which is in terms of field additions.

10 EURASIP Journal on Wireless Communications and Networking

Comparisons between direct and fast implementations
for each algorithm show that fast implementations consid-
erably reduce the complexities of both syndromeless and
syndrome-based decoding, as shown in Tables 5 and 6.
The comparison between these tables shows that for these
two high-rate codes, both direct and fast implementations
of syndromeless decoding are not as efficient as their
counterparts of syndrome-based decoding. This observation
is consistent with our conclusions in Sections 3.2 and 4.4.

For these two codes, hardware costs and throughput of
decoder architectures based on direct implementations of
syndrome-based and syndromeless decoding can be easily
obtained by substituting the parameters in Tables 3 and 4;
thus for these two codes, the conclusions in Section 3.3 apply.

5.2. Errors-and-erasures decoding

The complexity analysis of RS decoding in Sections 3
and 4 has assumed errors-only decoding. We extend our
complexity analysis to errors-and-erasures decoding below.

Syndrome-based errors-and-erasures decoding has been
well studied, and we adopt the approach in [18]. In this
approach, first erasure locator polynomial and modified
syndrome polynomial are computed. After the error locator
polynomial is found by the key equation solver, the errata
locator polynomial is computed and the error-and-erasure
values are computed by Forney’s formula. This approach is
used in both direct and fast implementations.

Syndromeless errors-and-erasures decoding can be car-
ried out in two approaches. Let us denote the number of
erasures as ν (0 ≤ ν ≤ 2t), and up to f =
(2t − ν)/2� errors
can be corrected given ν erasures. As pointed out in [5, 6], the
first approach is to ignore the ν erased coordinates, thereby
transforming the problem into errors-only decoding of an
(n− ν, k) shortened RS code. This approach is more suitable
for direct implementation. The second approach is similar
to syndrome-based errors-and-erasures decoding described
above, which uses the erasure locator polynomial [5]. In
the second approach, only the partial GCD Step is affected,
while the same fast implementation techniques described in
Section 4 can be used in the other Steps. Thus, the second
approach is more suitable for fast implementation.

We readily extend our complexity analysis for errors-
only decoding in Sections 3 and 4 to errors-and-erasures
decoding. Our conclusions for errors-and-erasures decoding
are the same as those for errors-only decoding: Algorithm 1
is the most efficient only for very low rate codes; syndrome-
based decoding is the most efficient algorithm for high rate
codes. For brevity, we omit the details and interested readers
will have no difficulty filling in the details.

6. CONCLUSION

We analyze the computational complexities of two syn-
dromeless decoding algorithms for RS codes using both
direct implementation and fast implementation, and com-
pare them with their counterparts of syndrome-based decod-
ing. With either direct or fast implementation, syndromeless
algorithms are more efficient than the syndrome-based

algorithms only for RS codes with very low rate. When imple-
mented in hardware, syndrome-based decoders also have
lower complexity and higher throughput. Since RS codes in
practice are usually high-rate codes, syndromeless decoding
algorithms are not suitable for these codes. Our case study
also shows that fast implementations can significantly reduce
the decoding complexity. Errors-and-erasures decoding is
also investigated although the details are omitted for brevity.

ACKNOWLEDGMENTS

This work was supported in part by Thales Communications
Inc. and in part by a grant from the Commonwealth of
Pennsylvania, Department of Community and Economic
Development, through the Pennsylvania Infrastructure Tech-
nology Alliance (PITA). The authors are grateful to Dr.
Jürgen Gerhard for valuable discussions. The authors would
also like to thank the reviewers for their constructive
comments, which have resulted in significant improvements
in the manuscript. The material in this paper was presented
in part at the IEEE Workshop on Signal Processing Systems,
Shanghai, China, October 2007.

REFERENCES

[1] S. B. Wicker and V. K. Bhargava, Eds., Reed–Solomon Codes
and Their Applications, IEEE Press, New York, NY, USA, 1994.

[2] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New
York, NY, USA, 1968.

[3] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A
method for solving key equation for decoding Goppa codes,”
Information and Control, vol. 27, no. 1, pp. 87–99, 1975.

[4] A. Shiozaki, “Decoding of redundant residue polynomial
codes using Euclid’s algorithm,” IEEE Transactions on Informa-
tion Theory, vol. 34, no. 5, part 1, pp. 1351–1354, 1988.

[5] A. Shiozaki, T. K. Truong, K. M. Cheung, and I. S. Reed, “Fast
transform decoding of nonsystematic Reed–Solomon codes,”
IEE Proceedings: Computers and Digital Techniques, vol. 137,
no. 2, pp. 139–143, 1990.

[6] S. Gao, “A new algorithm for decoding Reed–Solomon codes,”
in Communications, Information and Network Security, V. K.
Bhargava, H. V. Poor, V. Tarokh, and S. Yoon, Eds., pp. 55–68,
Kluwer Academic Publishers, Norwell, Mass, USA, 2003.

[7] S. V. Fedorenko, “A simple algorithm for decoding Reed–
Solomon codes and its relation to the Welch–Berlekamp
algorithm,” IEEE Transactions on Information Theory, vol. 51,
no. 3, pp. 1196–1198, 2005.

[8] S. V. Fedorenko, “Correction to “A simple algorithm for
decoding Reed–Solomon codes and its relation to the Welch–
Berlekamp algorithm”,” IEEE Transactions on Information
Theory, vol. 52, no. 3, p. 1278, 2006.

[9] L. R. Welch and E. R. Berlekamp, “Error correction for
algebraic block codes,” US patent 4633470, September 1983.

[10] J. Justesen, “On the complexity of decoding Reed–Solomon
codes,” IEEE Transactions on Information Theory, vol. 22, no.
2, pp. 237–238, 1976.

[11] J. von zur Gathen and J. Gerhard, “Arithmetic and
factorization of polynomials over F2,” Tech. Rep. tr-rsfb-
96-018, University of Paderborn, Paderborn, Germany, 1996,
http://www-math.uni-paderborn.de/∼aggathen/Publications/
gatger96a.ps.

N. Chen and Z. Yan 11

[12] J. von zur Gathen and J. Gerhard, Modern Computer Algebra,
Cambridge University Press, Cambridge, UK, 2nd edition,
2003.

[13] D. G. Cantor, “On arithmetical algorithms over finite fields,”
Journal of Combinatorial Theory, Series A, vol. 50, no. 2, pp.
285–300, 1989.

[14] S. Khodadad, Fast rational function reconstruction, M.S. thesis,
Simon Fraser University, Burnaby, BC, Canada, 2005.

[15] Y. Wang and X. Zhu, “A fast algorithm for the Fourier
transform over finite fields and its VLSI implementation,”
IEEE Journal on Selected Areas in Communications, vol. 6, no.
3, pp. 572–577, 1988.

[16] N. Chen and Z. Yan, “Reduced-complexity cyclotomic FFT
and its application in Reed–Solomon decoding,” in Pro-
ceedings of the IEEE Workshop on Signal Processing Systems
(SIPS ’07), pp. 657–662, Shanghai, China, October 2007.

[17] S. Khodadad and M. Monagan, “Fast rational function
reconstruction,” in Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC ’06), pp. 184–
190, ACM Press, Genoa, Italy, July 2006.

[18] T. K. Moon, Error Correction Coding: Mathematical Methods
and Algorithms, John Wiley & Sons, Hoboken, NJ, USA, 2005.

[19] J. J. Komo and L. L. Joiner, “Adaptive Reed–Solomon decoding
using Gao’s algorithm,” in Proceedings of the IEEE Military
Communications Conference (MILCOM ’02), vol. 2, pp. 1340–
1343, Anaheim, Calif, USA, October 2002.

[20] E. Berlekamp, G. Seroussi, and P. Tong, “A hypersystolic
Reed–Solomon decoder,” in Reed–Solomon Codes and Their
Applications, S. B. Wicker and V. K. Bhargava, Eds., pp. 205–
241, IEEE Press, New York, NY, USA, 1994.

[21] D. Mandelbaum, “On decoding of Reed–Solomon codes,”
IEEE Transactions on Information Theory, vol. 17, no. 6, pp.
707–712, 1971.

[22] A. E. Heydtmann and J. M. Jensen, “On the equivalence
of the Berlekamp–Massey and the Euclidean algorithms for
decoding,” IEEE Transactions on Information Theory, vol. 46,
no. 7, pp. 2614–2624, 2000.

[23] Z. Yan and D. V. Sarwate, “New systolic architectures for
inversion and division in GF(2m),” IEEE Transactions on
Computers, vol. 52, no. 11, pp. 1514–1519, 2003.

[24] T. Park, “Design of the (248, 216) Reed–Solomon decoder
with erasure correction for Blu-ray disc,” IEEE Transactions on
Consumer Electronics, vol. 51, no. 3, pp. 872–878, 2005.

[25] “Telemetry Channel Coding,” CCSDS Std. 101.0-B-6, October
2002.

[26] B. Sunar and Ç.K. Koç, “Mastrovito multiplier for all trinomi-
als,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 522–
527, 1999.

[27] A. Mahboob and N. Ikram, “Lookup table based multiplica-
tion technique for GF(2m) with cryptographic significance,”
IEE Proceedings: Communications, vol. 152, no. 6, pp. 965–974,
2005.

	1. INTRODUCTION
	2. BACKGROUND
	2.1. Fast Fourier transform over finite fields
	2.2. Polynomial multiplication over GF(2m) by Cantor’s approach
	2.3. Polynomial division by Newton iteration
	2.4. Fast extended Euclidean algorithm
	2.5. Syndrome-based and syndromeless decoding

	3. DIRECT IMPLEMENTATION OF SYNDROMELESS DECODING
	3.1. Complexity analysis
	3.2. Complexity comparison
	3.3. Hardware costs, latency, and throughput

	4. FAST IMPLEMENTATION OF SYNDROMELESS DECODING
	4.1. Polynomial multiplication
	4.2. Polynomial division
	4.3. Partial GCD
	4.4. Complexity comparison

	5. CASE STUDY AND DISCUSSIONS
	5.1. Case study
	5.2. Errors-and-erasures decoding

	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

