801 research outputs found

    User-oriented mobility management in cellular wireless networks

    Get PDF
    2020 Spring.Includes bibliographical references.Mobility Management (MM) in wireless mobile networks is a vital process to keep an individual User Equipment (UE) connected while moving within the network coverage area—this is required to keep the network informed about the UE's mobility (i.e., location changes). The network must identify the exact serving cell of a specific UE for the purpose of data-packet delivery. The two MM procedures that are necessary to localize a specific UE and deliver data packets to that UE are known as Tracking Area Update (TAU) and Paging, which are burdensome not only to the network resources but also UE's battery—the UE and network always initiate the TAU and Paging, respectively. These two procedures are used in current Long Term Evolution (LTE) and its next generation (5G) networks despite the drawback that it consumes bandwidth and energy. Because of potentially very high-volume traffic and increasing density of high-mobility UEs, the TAU/Paging procedure incurs significant costs in terms of the signaling overhead and the power consumption in the battery-limited UE. This problem will become even worse in 5G, which is expected to accommodate exceptional services, such as supporting mission-critical systems (close-to-zero latency) and extending battery lifetime (10 times longer). This dissertation examines and discusses a variety of solution schemes for both the TAU and Paging, emphasizing a new key design to accommodate 5G use cases. However, ongoing efforts are still developing new schemes to provide seamless connections to the ever-increasing density of high-mobility UEs. In this context and toward achieving 5G use cases, we propose a novel solution to solve the MM issues, named gNB-based UE Mobility Tracking (gNB-based UeMT). This solution has four features aligned with achieving 5G goals. First, the mobile UE will no longer trigger the TAU to report their location changes, giving much more power savings with no signaling overhead. Instead, second, the network elements, gNBs, take over the responsibility of Tracking and Locating these UE, giving always-known UE locations. Third, our Paging procedure is markedly improved over the conventional one, providing very fast UE reachability with no Paging messages being sent simultaneously. Fourth, our solution guarantees lightweight signaling overhead with very low Paging delay; our simulation studies show that it achieves about 92% reduction in the corresponding signaling overhead. To realize these four features, this solution adds no implementation complexity. Instead, it exploits the already existing LTE/5G communication protocols, functions, and measurement reports. Our gNB-based UeMT solution by design has the potential to deal with mission-critical applications. In this context, we introduce a new approach for mission-critical and public-safety communications. Our approach aims at emergency situations (e.g., natural disasters) in which the mobile wireless network becomes dysfunctional, partially or completely. Specifically, this approach is intended to provide swift network recovery for Search-and-Rescue Operations (SAROs) to search for survivors after large-scale disasters, which we call UE-based SAROs. These SAROs are based on the fact that increasingly almost everyone carries wireless mobile devices (UEs), which serve as human-based wireless sensors on the ground. Our UE-based SAROs are aimed at accounting for limited UE battery power while providing critical information to first responders, as follows: 1) generate immediate crisis maps for the disaster-impacted areas, 2) provide vital information about where the majority of survivors are clustered/crowded, and 3) prioritize the impacted areas to identify regions that urgently need communication coverage. UE-based SAROs offer first responders a vital tool to prioritize and manage SAROs efficiently and effectively in a timely manner

    Novel architecture for cellular IoT in future non-terrestrial networks: store and forward adaptations for enabling discontinuous feeder link operation

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Internet of Things (IoT) paradigm has already progressed from an emerging technology to an incredibly fast-growing field. Defined as one of the three key services in 5th Generation (5G), massive Machine Type Communications (mMTC) are intended to enable the wide-spread adoption of IoT services across the globe. Satellite-based Non-Terrestrial Networks (NTN) are crucial in providing connectivity with global coverage including rural and offshore areas, which are fundamental for supporting important use cases in future networks. A rapidly growing market for IoT devices with mMTC applications using NarrowBandIoT (NB-IoT) will represent a large share of user equipment (UE) in such areas. While standardization efforts for NTN are underway for forthcoming 3GPP releases, they focus on transparent payload architectures where the satellite platform is necessarily connected to a ground station gateway to be able to provide satellite access services to IoT devices, thus requiring complex ground segment infrastructure in low Earth orbit (LEO) constellation deployments to achieve global coverage. In contrast, satellite network deployments targeting the delivery of delay-tolerant IoT applications using NB-IoT, which are a major mMTC use case, can benefit from architectures based on the use of regenerative payloads in the satellite and support for Store and Forward (S&F) operation where satellite access can remain operational even at times when the satellite is not connected to a ground station. In particular, such an approach would allow for extending satellite service coverage in areas where satellites cannot be connected to ground stations (e.g. maritime or very remote areas with lack of ground-stations infrastructures), improving ground segment affordability by enabling operation with fewer ground-stations and allowing more robust operation of the satellite under intermittent feeder link operation. In this paper, we provide a high-level design of an extended 3GPP architecture featuring store and forward mechanisms for IoT NTN delay-tolerant applications that address the previous challenges, as well as a laboratory validation of said architecture for a specific use case.Peer ReviewedPostprint (published version

    Radio Spectrum and the Disruptive Clarity OF Ronald Coase.

    Get PDF
    In the Federal Communications Commission, Ronald Coase (1959) exposed deep foundations via normative argument buttressed by astute historical observation. The government controlled scarce frequencies, issuing sharply limited use rights. Spillovers were said to be otherwise endemic. Coase saw that Government limited conflicts by restricting uses; property owners perform an analogous function via the "price system." The government solution was inefficient unless the net benefits of the alternative property regime were lower. Coase augured that the price system would outperform the administrative allocation system. His spectrum auction proposal was mocked by communications policy experts, opposed by industry interests, and ridiculed by policy makers. Hence, it took until July 25, 1994 for FCC license sales to commence. Today, some 73 U.S. auctions have been held, 27,484 licenses sold, and 52.6billionpaid.Thereformisatextbookexampleofeconomicpolicysuccess.WeexamineCoase‘sseminal1959paperontwolevels.First,wenotetheimportanceofitsanalyticalsymmetry,comparingadministrativetomarketmechanismsundertheassumptionofpositivetransactioncosts.Thisfundamentalinsighthashadenormousinfluencewithintheeconomicsprofession,yetisoftenlostincurrentanalyses.Thisanalyticalinsighthaditsbeginninginhisacclaimedearlyarticleonthefirm(Coase1937),andcontinuedintohissubsequenttreatmentofsocialcost(Coase1960).Second,weinvestigatewhyspectrumpolicieshavestoppedwellshortofthepropertyrightsregimethatCoaseadvocated,consideringrent−seekingdynamicsandtheemergenceofnewtheorieschallengingCoase‘spropertyframework.Oneconclusioniseasilyrendered:competitivebiddingisnowthedefaulttoolinwirelesslicenseawards.Byruleofthumb,about52.6 billion paid. The reform is a textbook example of economic policy success. We examine Coase‘s seminal 1959 paper on two levels. First, we note the importance of its analytical symmetry, comparing administrative to market mechanisms under the assumption of positive transaction costs. This fundamental insight has had enormous influence within the economics profession, yet is often lost in current analyses. This analytical insight had its beginning in his acclaimed early article on the firm (Coase 1937), and continued into his subsequent treatment of social cost (Coase 1960). Second, we investigate why spectrum policies have stopped well short of the property rights regime that Coase advocated, considering rent-seeking dynamics and the emergence of new theories challenging Coase‘s property framework. One conclusion is easily rendered: competitive bidding is now the default tool in wireless license awards. By rule of thumb, about 17 billion in U.S. welfare losses have been averted. Not bad for the first 50 years of this, or any, Article appearing in Volume II of the Journal of Law & Economics.

    Increasing Spectrum for Broadband: What Are The Options?

    Get PDF
    The growth of wireless broadband is a bright spot in the U.S. economy, but a shortage of flexibly licensed spectrum rights could put a crimp on this expansion. Freeing up spectrum from other uses would allow greater expansion of wireless broadband and would bring substantial gains—likely in the hundreds of billions of dollars—for U.S. consumers, businesses, and the federal treasury. ... U.S. experience suggests that it takes at least six years, and possibly over a decade, to complete any large-scale reallocation of spectrum. Thus, for policymakers, the ?projected? need is actually here today. This paper makes three proposals to increase spectrum available for wireless broadband under a flexibly licensed, market-based regime.

    Paper Session I-C - Space Operations Management Training: Educating the Future Space Workforce for 2000 and Beyond

    Get PDF
    The Space Operations profession has been expanding, for the past 4 decades at nearly the same scale, proportionally, as space itself. Gene Roddenberry’s Star Trek1 captured the imagination and interest of several generations; many hoping to someday get a chance to work in some space related field. In 1975, a NASA study reported the proposed construction and operation of a US200Billiondollar,Earth−orbiting,commercialspacestationwith10,000inhabitantswho’ssolejobwouldbetomanufactureandoperatesolar−powersatellitessupplyingEarthwithenergy−−generatingenoughrevenuetopayforit’sconstructionandcontinuingoperationinabout30years2.Seeingspaceportrayedasaroutineworkenvironmentforaworldofearthcitizensseemedlikefarfetchedsciencefictionfordecades.In1991,spacewasalreadygeneratingUS200 Billion dollar, Earth-orbiting, commercial space station with 10,000 inhabitants who’s sole job would be to manufacture and operate solar-power satellites supplying Earth with energy -- generating enough revenue to pay for it’s construction and continuing operation in about 30 years2. Seeing space portrayed as a routine work environment for a world of earth citizens seemed like far fetched science fiction for decades. In 1991, space was already generating US11.5 Billion dollars in revenue; in 1996 that jumped to US26.7Billion;by2001itwillhavemorethandoubledtoUS26.7 Billion; by 2001 it will have more than doubled to US57.5 Billion3

    Paging and Location Management in IEEE 802.16j Multihop Relay Network

    Get PDF
    IEEE 802.16j is an emerging wireless broadband networking standard that integrates infrastructure base stations with multihop relay technology. Based on the idle mode operation in IEEE 802.16j, we propose a novel location management and paging scheme. It integrates the paging area-based and the timer-based location update mechanism. In paging area-based scheme, an idle mode mobile station updates when it moves to a new paging area. In timer-based scheme, an idle mode MS updates when the location update timer expires. In this work, we formulate the mathematical model to evaluate the performance of the proposed paging scheme. A new random walk mobility model that is suitable for modeling in multihop relay network is created. Optimization of location update timer is also investigated

    Traffic and mobility management in large-scale networks of small cells

    Get PDF
    The growth in user demand for higher mobile data rates is driving Mobile Network Operators (MNOs) and network infrastructure vendors towards the adoption of innovative solutions in areas that span from physical layer techniques (e.g., carrier aggregation, massive MIMO, etc.) to the Radio Access Network and the Evolved Packet Core, amongst other. In terms of network capacity, out of a millionfold increase since 1957, the use of wider spectrum (25x increase), the division of spectrum into smaller resources (5x), and the introduction of advanced modulation and coding schemes (5x) have played a less significant role than the improvements in system capacity due to cell size reduction (1600x). This justifies the academic and industrial interest in short-range, low-power cellular base stations, such as small cells. The shift from traditional macrocell-based deployments towards heterogeneous cellular networks raises the need for new architectural and procedural frameworks capable of providing a seamless integration of massive deployments of small cells into the existing cellular network infrastructure. This is particularly challenging for large-scale, all-wireless networks of small cells (NoS), where connectivity amongst base stations is provided via a wireless multi-hop backhaul. Networks of small cells are a cost-effective solution for improving network coverage and capacity in high user-density scenarios, such as transportation hubs, sports venues, convention centres, dense urban areas, shopping malls, corporate premises, university campuses, theme parks, etc. This Ph.D. Thesis provides an answer to the following research question: What is the architectural and procedural framework needed to support efficient traffic and mobility management mechanisms in massive deployments of all-wireless 3GPP Long-Term Evolution networks of small cells? In order to do so, we address three key research challenges in NoS. First, we present a 3GPP network architecture capable of supporting large-scale, all-wireless NoS deployments in the Evolved Packet System. This involves delegating core network functions onto new functional entities in the network of small cells, as well as adapting Transport Network Layer functionalities to the characteristics of a NoS in order to support key cellular services. Secondly, we address the issue of local location management, i.e., determining the approximate location of a mobile terminal in the NoS upon arrival of an incoming connection from the core network. This entails the design, implementation, and evaluation of efficient paging and Tracking Area Update mechanisms that can keep track of mobile terminals in the complex scenario of an all-wireless NoS whilst mitigating the impact on signalling traffic throughout the local NoS domain and towards the core network. Finally, we deal with the issue of traffic management in large-scale networks of small cells. On the one hand, we propose new 3GPP network procedures to support direct unicast communication between LTE terminals camped on the same NoS with minimal involvement from functional entities in the Evolved Packet Core. On the other hand, we define a set of extensions to the standard 3GPP Multicast/Broadcast Multimedia Service (MBMS) in order to improve the quality of experience of multicast/broadcast traffic services in high user-density scenarios.El crecimiento de la demanda de tasas de transmisión más altas está empujando a los operadores de redes móviles y a los fabricantes de equipos de red a la adopción de soluciones innovadoras en áreas que se extienden desde técnicas avanzadas de capa física (agregación de portadoras, esquemas MIMO masivos, etc.) hasta la red de acceso radio y troncal, entre otras. Desde 1957 la capacidad de las redes celulares se ha multiplicado por un millón. La utilización de mayor espectro radioeléctrico (incremento en factor 25), la división de dicho espectro en recursos más pequeños (factor 5) y la introducción de esquemas avanzados de modulación y codificación (factor 5) han desempeñado un papel menos significativo que las mejoras en la capacidad del sistema debidas a la reducción del tamaño de las celdas (factor 1600). Este hecho justifica el interés del mundo académico y de la industria en estaciones base de corto alcance y baja potencia, conocidas comúnmente como small cells. La transición de despliegues tradicionales de redes celulares basados en macroceldas hacia redes heterogéneas pone de manifiesto la necesidad de adoptar esquemas arquitecturales y de procedimientos capaces de proporcionar una integración transparente de despliegues masivos de small cells en la actual infraestructura de red celular. Este aspecto es particularmente complejo en el caso de despliegues a gran escala de redes inalámbricas de small cells (NoS, en sus siglas en inglés), donde la conectividad entre estaciones base se proporciona a través de una conexión troncal inalámbrica multi-salto. En general, las redes de small cells son una solución eficiente para mejorar la cobertura y la capacidad de la red celular en entornos de alta densidad de usuarios, como núcleos de transporte, sedes de eventos deportivos, palacios de congresos, áreas urbanas densas, centros comerciales, edificios corporativos, campus universitarios, parques temáticos, etc. El objetivo de esta Tesis de Doctorado es proporcionar una respuesta a la siguiente pregunta de investigación: ¿Cuál es el esquema arquitectural y de procedimientos de red necesario para soportar mecanismos eficientes de gestión de tráfico y movilidad en despliegues masivos de redes inalámbricas de small cells LTE? Para responder a esta pregunta nos centramos en tres desafíos clave en NoS. En primer lugar, presentamos una arquitectura de red 3GPP capaz de soportar despliegues a gran escala de redes inalámbricas de small cells en el Evolved Packet System, esto es, el sistema global de comunicaciones celulares LTE. Esto implica delegar funciones de red troncal en nuevas entidades funcionales desplegadas en la red de small cells, así como adaptar funcionalidades de la red de transporte a las características de una NoS para soportar servicios celulares clave. En segundo lugar, nos centramos en el problema de la gestión de movilidad local, es decir, determinar la localización aproximada de un terminal móvil en la NoS a la llegada de una solicitud de conexión desde la red troncal. Esto incluye el diseño, la implementación y la evaluación de mecanismos eficientes de paging y Tracking Area Update capaces de monitorizar terminales móviles en el complejo escenario de redes de small cells inalámbricas que, a la vez, mitiguen el impacto sobre el tráfico de señalización en el dominio local de la NoS y hacia la red troncal. Finalmente, estudiamos el problema de gestión de tráfico en despliegues a gran escala de redes inalámbricas de small cells. Por un lado, proponemos nuevos procedimientos de red 3GPP para soportar comunicaciones unicast directas entre terminales LTE registrados en la misma NoS con mínima intervención por parte de entidades funcionales en la red troncal. Por otro lado, definimos un conjunto de extensiones para mejorar la calidad de la experiencia del servicio estándar 3GPP de transmisión multicast/broadcast de tráfico multimedia (MBMS, en sus siglas en inglés) en entornos de alta densidad de usuarios

    A sunset review of the South Carolina Public Service Commission

    Get PDF
    This report by the Legislative Audit Council reviewed the South Carolina Public Service Commission's statutes, regulations and policies and conclude that the agency fulfills a public need through the regulation of utilities. However, market forces in the future may lessen the need for regulation of phone service and the electric industry. In addition, it found no need for the PSC to regulate competitive businesses, such as trucking and radio common carriers (mobile phone and paging services)

    Design of an Adaptable Run-Time Reconfigurable Software-Defined Radio Processing Architecture

    Get PDF
    Processing power is a key technical challenge holding back the development of a high-performance software defined radio (SDR). Traditionally, SDR has utilized digital signal processors (DSPs), but increasingly complex algorithms, higher data rates, and multi-tasking needs have exceed the processing capabilities of modern DSPs. Reconfigurable computers, such as field-programmable gate arrays (FPGAs), are popular alternatives because of their performance gains over software for streaming data applications like SDR. However, FPGAs have not yet realized the ideal SDR because architectures have not fully utilized their partial reconfiguration (PR) capabilities to bring needed flexibility. A reconfigurable processor architecture is proposed that utilizes PR in reconfigurable computers to achieve a more sophisticated SDR. The proposed processor contains run-time swappable blocks whose parameters and interconnects are programmable. The architecture is analyzed for performance and flexibility and compared with available alternate technologies. For a sample QPSK algorithm, hardware performance gains of at least 44x are seen over modern desktop processors and DSPs while most of their flexibility and extensibility is maintained
    • …
    corecore