
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2010

Design of an Adaptable Run-Time Reconfigurable Software-Design of an Adaptable Run-Time Reconfigurable Software-

Defined Radio Processing Architecture Defined Radio Processing Architecture

Joshua R. Templin
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Templin, Joshua R., "Design of an Adaptable Run-Time Reconfigurable Software-Defined Radio Processing
Architecture" (2010). All Graduate Theses and Dissertations. 810.
https://digitalcommons.usu.edu/etd/810

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/19682042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.usu.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usu.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/810?utm_source=digitalcommons.usu.edu%2Fetd%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DESIGN OF AN ADAPTABLE RUN-TIME RECONFIGURABLE

SOFTWARE-DEFINED RADIO PROCESSING ARCHITECTURE

by

Joshua R. Templin

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Engineering

Approved:

Dr. Jacob Gunther Dr. Koushik Chakraborty
Major Professor Committee Member

Dr. Todd Moon Dr. Byron R. Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2010

ii

Copyright c© Joshua R. Templin 2010

All Rights Reserved

iii

Abstract

Design of an Adaptable Run-Time Reconfigurable Software-Defined Radio Processing

Architecture

by

Joshua R. Templin, Master of Science

Utah State University, 2010

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

Processing power is a key technical challenge holding back the development of a high-

performance software defined radio (SDR). Traditionally, SDR has utilized digital signal pro-

cessors (DSPs), but increasingly complex algorithms, higher data rates, and multi-tasking

needs have exceed the processing capabilities of modern DSPs. Reconfigurable comput-

ers, such as field-programmable gate arrays (FPGAs), are popular alternatives because of

their performance gains over software for streaming data applications like SDR. However,

FPGAs have not yet realized the ideal SDR because architectures have not fully utilized

their partial reconfiguration (PR) capabilities to bring needed flexibility. A reconfigurable

processor architecture is proposed that utilizes PR in reconfigurable computers to achieve a

more sophisticated SDR. The proposed processor contains run-time swappable blocks whose

parameters and interconnects are programmable. The architecture is analyzed for perfor-

mance and flexibility and compared with available alternate technologies. For a sample

QPSK algorithm, hardware performance gains of at least 44x are seen over modern desktop

processors and DSPs while most of their flexibility and extensibility is maintained.

(63 pages)

iv

To my wife and son who have patiently borne all the negatives resulting from my
academic pursuits and still encourage me.

v

Acknowledgments

My efforts could not have been possible without the help of my thesis committee,

especially Dr. Aravind Dasu and Dr. Jacob Gunther. Dr. Dasu was key to introducing

me to reconfigurable computing and giving me critical experience and tools to be able

to conceptualize the problem and realize a solution. Without Dr. Dasu, my interest in

reconfiguration computing would never have existed, nor would this thesis. Dr. Gunther

has been compassionate beyond degree to counsel me and chair my committee, even though

much of my work was outside his realm of expertise. Dr. Gunther provided valuable advice

along the path and sparked my interest in communication systems that led to this particular

application of reconfigurable computing. I especially appreciate Dr. Gunther’s selfless efforts

to acquire funding for me to support my family while I pursued this research of my own

interest. Dr. Todd Moon must also be credited as the teacher that, against all odds,

captured my interest in signal processing, which was ultimately fundamental to steering me

into digital communications. His challenging coursework caused me to think and explore

and simply made life satisfying.

Gratitude is due to my wife, who encouraged me and provided greater help than imag-

inable to finish this degree, and my parents, who counseled and advised me along the path

and listened to my concerns and struggles. My appreciation extends to my entire family,

who perpetually showed interest and concern in my work and made me feel loved, even

though I know they didn’t understand what I was trying to accomplish nor could I explain

it to them very well.

Josh Templin

vi

Contents

Page

Abstract . iii

Acknowledgments . v

List of Tables . viii

List of Figures . ix

Acronyms . xi

1 Introduction . 1
1.1 Motivation . 1
1.2 Software-Defined Radio Architectures . 4

1.2.1 Instruction-Based Processors . 5
1.2.2 Hardware Co-Processors . 6
1.2.3 Hardware Processors . 7

1.3 Contributions . 8
1.4 Thesis Organization . 9

2 Architecture . 11
2.1 Design Goals . 11

2.1.1 Streaming Data . 11
2.1.2 Data Widths . 11
2.1.3 Programmability . 12
2.1.4 Speed . 12

2.2 Overview . 13
2.3 System Controller . 14
2.4 Reconfiguration Controller . 16
2.5 External Programming Interface and Controller 17
2.6 Data Router and Manager . 17
2.7 Static-Reconfigurable Interface . 18
2.8 Sockets . 19

3 Implementation and Results . 22
3.1 Virtex-5 Implementation . 22

3.1.1 Architecture . 22
3.1.2 Algorithms . 26

3.2 Performance . 27
3.3 Results . 27
3.4 Summary . 29

vii

4 Conclusions . 30
4.1 Summary . 30
4.2 Conclusions . 30
4.3 Future Works . 31

4.3.1 Architecture Improvements . 31
4.3.2 Architecture Support . 32

References . 34

Appendices . 37
Appendix A Reconfigurable Computing . 38

A.1 Field Programmable Gate Arrays . 39
A.2 Partial Reconfiguration . 41
A.3 Bitstream Relocation . 45

Appendix B Xilinx EDK Design . 47
Appendix C Architecture Source Code . 50

viii

List of Tables

Table Page

3.1 Architecture resource distribution. Distribution of native FPGA resources
to each socket and to the static logic. 24

3.2 Architecture resource consumption. Resources required by the entire static-
logic portion of the architecture including the MicroBlaze, its peripherals,
and the DRM and master socket interfaces. 26

3.3 Performance comparison. Comparison of the sample algorithm performance
between the developed architecture, a CPU, and a DSP, in MSamples/s for
each instance of the algorithm and for all simultaneous instances supported
by the processor. 28

ix

List of Figures

Figure Page

1.1 Extensibility vs. performance for each CCM category. The desired realm of
SDR is both high-performance and high-extensibility. 6

1.2 Extensibility vs. performance of the proposed architecture. The desired
realm of SDR is both high-performance and high-extensibility and experi-
ences greater coverage. 10

2.1 The architecture - a top-level view. The purposed architecture contains a
1D array of sockets with configurable interconnects and sources/sinks. The
sockets can be reconfigured with PEs at run-time as specified by a user or
controller. 15

2.2 Data router and manager. The DRM consists of programmable routing logic
to interface the socket array with available streaming data sources. For each
socket there is an interface master that the PE connects to. 18

2.3 Static reconfigurable interface. The master SRIF multiplexes different-sized
data from several sources through a small interface to be reassembled on
the slave side. It also receives disassembled data from the slave side and
reassembles it for delivery. 20

2.4 Processing element structure. Each processing element (PE) for a given archi-
tecture implementation must have a common structure. Fundamentally this
common portion consists entirely of the slave SRIF. However, other templates
might include some signal pre-processing operations such as downsampling. 21

3.1 Floorplan of the xc5vlx110t chip. The xc5vlx110t has CLBs divided into
eight clocking rows (distinguished by the dividers in the rightmost column).
Interspersed are five columns of BRAMs (pink), one column of DSP48Es
(light blue), and four other columns of hard cores and IO banks. 23

3.2 Layout of the sockets. The xc5vlx110t fits seven large sockets divided by
clock rows. Each socket consumes most of the clock row with a little logic
reserved for use by the static-logic controller. 25

3.3 QPSK communication system. The QPSK communication consists of a mod-
ulator and a demodulator. All together the system requires three sockets. . 28

x

A.1 Typical FPGA architecture. Xilinx FPGAs consist of a fabric of programmable
routing with interspersed logic and hard core components such as multipliers
and memories. 41

A.2 Xilinx tool flow. The process of translating an HDL circuit into a bitstream
configuration involves five different tools. 42

A.3 Partial reconfiguration. In Xilinx FPGAs, partial reconfiguration allows re-
configuring only a portion of the FPGA with different configurations while
the remainder of the FPGA remains active. 44

A.4 Relocation. While not officially supported by Xilinx, relocation allows mov-
ing a module generated for one region to other identically shaped and con-
stituted regions. 46

B.1 EDK controller system block diagram part 1. EDK was used to design and
implement the static controller logic including the system controller, the re-
configuration controller, and the EPIC. This block diagram, generated by
EDK, shows the architecture of the generated soft-processor, its peripherals
and busses (continued to figure B.2). 48

B.2 EDK controller system block diagram part 2. EDK was used to design and
implement the static controller logic including the system controller, the re-
configuration controller, and the EPIC. This block diagram, generated by
EDK, shows the architecture of the generated soft-processor, its peripherals
and busses (continued from figure B.1). 49

xi

Acronyms

3G 3rd generation

4G 4th generation

ADC analog-digital converter

ALU arithmetic/logic unit

AM amplitude modulation

ASIC application-specific integrated circuit

CCM configurable computing machine

CDFG control- and data-flow graph

CDMA code division multiple access

CPU central processing unit

DAC digital-analog converter

DLP data-level parallelism

DRM data router and manager

DSP digital signal processor, digital signal processing

DSP48E digital signal processing 48 extension

EDK embedded development kit

EMAC ethernet media-access controller

EPIC external interface and control

FM frequency modulation

FPFA field-programmable function array

FPGA field-programmable gate array

FSL Fast simplex link

FU functional unit

GPP general purpose processor

GPS Global positioning system

GSM Global system for mobile communications or group spécial mobile

xii

HDL hardware description language

HWICAP hardware ICAP

ICAP Internal configuration access port

ILP instruction-level parallelism

IO input-output

LED light-emitting diode

LUT look-up table

MAC multiply-accumulate

Mbps megabits per second

MIMO multiple-input, multiple-output

MIPS Microprocessor without interlocked pipeline stages

MSPS million samples per second

MODEM modulator/demodulator

OPB On-chip peripheral bus

PAR place and route

PDR partial, dynamic reconfiguration

PE processing element

PR partial reconfiguration

QPSK quadrature phase-shift keying

RAM random-access memory

RaPiD Reconfigurable pipelined datapath

RAW Reconfigurable architecture workstation

RCA Radio corporation of America

ROM read-only memory

RPE reconfigurable processing element

RSFMD reconfigurable SFMD

SDR software-defined radio

SFMD single-function, multiple-data

SIMD single-instruction, multiple-data

SOC system-on-a-chip

xiii

SRAM static RAM

SRIF static-reconfigurable interface

TI Texas Instruments

TLP thread-level parallelism or task-level parallelism

USB Universal serial bus

VHDL VHSIC HDL

VHSIC very-high-speed integrated circuit

VLSI very-large-scale integration

XUP Xilinx University Program

1

Chapter 1

Introduction

1.1 Motivation

Software-defined radios (SDRs) [1]1 are becoming an ever-increasingly popular plat-

form for signal processing implementations [2, 3]. Unlike hardware radios, which build sys-

tems from primitive hardware elements, SDRs typically build systems from programmable

processors like general purpose processors (GPPs) and digital signal processors (DSPs),

instruction-based processors that execute software algorithms. SDRs are well liked because

of their ease of development and their reconfigurability. Hardware radios, on the other

hand, are statically designed for a specific use, have little adaptability, and require a new

hardware design for each new application.

Most modern wired and wireless communication devices incorporate software perform-

ing radio algorithms, from cellular phones to Wi-Fi routers. These devices generally have mi-

croprocessors performing critical modulator/demodulator (MODEM) functionality in soft-

ware. Most of these systems’ radios are little beyond a software implemented radio, that

is, a radio implemented in software with little or no run-time re-programmability. True

software-defined radios (SDRs) go beyond a simple software implementation; they entail

the ability to configure and manipulate the performance of the radio to a significant degree

at run time. In addition to manipulating MODEM parameters such as carrier frequency, er-

ror coding, filter types, etc, SDRs are capable of changing MODEM standards and schemes

altogether. A true SDR forms a suitable platform for a cognitive radio.

1The term software-defined radio or software radio was first coined by J. Mitola in a 1992 IEEE pub-
lication, although software radios had existed for decades prior. Since then the term’s usage has become
muddy, often blurring the line with cognitive radio, which Mitola also introduces. In this paper, “software
radio” or “software-implemented radio” is used to define a basic software implementation of a radio while
“software-defined radio” is used to identify a software radio with substantial run-time re-programmability.
“Cognitive radio” is used to distinguish software-defined radios that possess some degree of intelligence and
autonomous optimization capabilities.

2

From a consumer’s perspective, SDRs have the ability to compact all of their wireless

devices into a single receiver/hand-held unit. Consumers often have dozens of software-

implemented radios, each performing a specific function and only occasionally needed. Ex-

amples of such devices are: GPSes, provider-specific national cellular phones, international

cellular phones, satellite phones, frequency modulation (FM) radios, amplitude modulation

(AM) radios, HAM radios, XM radios, mobile hotspots, and wireless access points. Gener-

ally each device is packaged separately, creating a large assortment of radios that must be

transported to provide access to all of the desired radio services. Ideally, all of these devices

would be combined into a single package [1]. A consumer demands an SDR that is widely

versatile while simultaneously handling multiple modes/uses.

With the progression from 3rd generation (3G) to 4th generation (4G) wireless cellular

networks and the ever changing standards and technologies of wireless communication, a

consumer SDR allows upgrade-ability and increases future-proofing. A consumer desires

each purchase to have a long lifetime. Almost every cellular phone, for example, is opti-

mized and tuned to a particular standard. For example, there are two main cellular phone

communication standards: code division multiple access (CDMA) and Global System for

Mobile Communications (GSM). While some phones support both, typically the process

of changing standards requires a hardware upgrade (the purchase of a different device),

not a software upgrade. International travelers have frequently been frustrated by this

incompatibility. Consumer demand exists for an SDR with feature upgrades and some de-

gree of future-proofing. Ultimately what is desired is an any-mode, any-band, run-time

reconfigurable software-defined radio.

Such an SDR has never before been realized. One of the challenges hindering the

development of this commercial SDR is the lack of proper processing power. As modern,

complex, high-data-rate modulations arise, researchers find themselves turning to processors

other than SDRs and DSPs [4]. Consequently, SDRs targeting high-data-rate modulations

have shifted hardware into the FPGA realm, which have proven more efficient computers

for streaming data applications [5, 6]. However, tweaking an FPGA configuration is not as

3

simple as changing the software of a GPP or DSP.

The emergence of configurable computing machines (CCMs) indicate the trend to solve

the SDR problem by abandoning the GPP and DSP and creating custom hardware architec-

tures for signal processing/communication algorithms. These CCMs implement processing

architectures that are configurable, adaptable for improved performance for a subset of

applications. An excellent overview of CCM efforts targeting SDRs has already been pre-

sented [7]. Some of these CCMs are implemented on custom application-specific integraded

circuit (ASIC) hardware, while others are prototyped on or targeting FPGAs. While cus-

tom ASIC CCMs can easily outperform an FPGA, their utilization requires the fabrication

of a new (and generally expensive) silicon chip and development of a suitable evaluation

platform. Custom ASIC CCMs also generally lack sufficient software support, which renders

their use very difficult. FPGA-based CCMs are able to leverage the pre-designed evalua-

tion platforms and the substantial software support of the FPGA vendors, saving decades

of work and millions of dollars. Also, as FPGA technology continues to progress, their per-

formance margin over ASIC implemented designs continues to narrow, lending the FPGA

as a suitable target platform and not just as a prototyping platform.

FPGAs are becoming ever more popular as the hardware of choice for SDR CCMs.

Their ability to capitalize on thread-, instruction-, and data-level parallelism have allowed

them to achieve incredibly high performance in the realm of stream processing. But develop-

ing for FPGAs has been infamously difficult in the past. However, modern open-source col-

lections of cores [8] along with improving C/Matlab/C++-to-hardware-description-language

(HDL) compilers [9–11] have drastically improved developer efficiency and reduced develop-

ment time by eliminating a bulk of the required user-generated HDL. Reconfiguring FPGAs

allows for platform reusability so that a single FPGA platform can be used for a large set of

drastically different algorithms. Thus, an FPGA configuration can be modified and updated

as required by future needs and applications, achieving any-band and any-mode within the

confines of the FPGA size and speed. This also achieves run-time reconfigurability but only

for mono-mode use.

4

Ultimately, FPGAs lack the run-time flexibility of GPPs and DSPs. Simultaneous

multi-mode execution on a GPP is simply accomplished with multiple threads but at the

cost of deteriorated performance. Simultaneous multi-mode execution in an FPGA is more

difficult and cannot be feasibly accomplished by standard reconfiguration (this would require

a collection of configurations for every desired combination of modes). Fortunately, some

FPGAs have the ability to dynamically reprogram only a portion of the FPGA with new

configurations. The process of dynamically reprogramming portions of the FPGA is called

partial, dynamic reconfiguration (PDR), or more simply partial reconfiguration (PR) [12].

PR allows for only a portion of the FPGA to be reconfigured while the rest of the FPGA

remains active and continues with its current configuration. While this PDR can be slow

(on the order of 1-100 ms, depending on the device, speed, and bit-stream size [13–15]), it

does yield the ability to adapt the FPGA to a simultaneous multi-mode application. In ad-

dition to PDR, each FPGA-based core can be SDR conscious, designed specifically to allow

programming of the core’s functionality and parameters. This provides run-time reconfig-

urability via a much faster software reprogramming. When possible, utilizing this software

reprogramming can yield instantaneous reconfiguration and, when combined with the more

extensive capabilities of PDR, can yield an FPGA-based stream processing framework that

is both computationally efficient and greatly adaptable.

1.2 Software-Defined Radio Architectures

As the processing needs of software defined radio and cognitive radio exceed the capa-

bilities of GPPs and DSPs, alternative processors need to be designed. SDR poses unique

requirements to the design of a CCM. The class of algorithms found in SDR is somewhat

narrow, but broad enough that a single functional unit pipeline is not practical (one can-

not build every SDR algorithm from a practical-sized collection of functional units with

programmable interconnects). Typically, in SDR only a few tasks need to simultaneously

execute, (for instance, running a Global Positioning System (GPS) demodulation and HD

radio demodulation at the same time).

In light of these unique requirements, much research has been performed to identify

5

optimal architectures for SDR CCMs. A sampling of the more well-known architectures is

presented in this section. These architectures can be roughly divided into three categories:

instruction-based processors, hardware co-processors, and hardware processors. Figure 1.1

visualizes the extensibility vs. performance trade-offs for each type of CCM. Each CCM is

able to nick the desired realm of SDR in extensibility or performance, but none are currently

able to offer satisfactory coverage.

1.2.1 Instruction-Based Processors

Instruction-based processors are those processors which operate on a software program

consisting of a sequence of instructions coupled with data operands. GPPs and DSPs

fall into this category of processor. When used as a CCM architecture, these processors

generally have very reduced, optimized instruction sets targeting a specific application.

Instruction-based processor CCMs often seek to improve performance via instruction-level

parallelism (ILP) by implementing a very-long instruction word (VLIW) architecture as

well as to accomplish task-level- parallelism (TLP) by networking an array of processors

with a configurable array.

The most popular instruction-based processor CCM targetting SDR is the Reconfig-

urable Architecture Workstation (RAW) [16]. RAW consists of a 2D array of processor

tiles, each tile having its own instruction/data memory and registers, interconnected by

programmable switches, also having their own program memories. One of RAW’s main

performance advantages over other multi-core processor architectures is its incorporation of

a block of configurable logic for optimized execution of commonly occurring routines. The

field-programmable functional array (FPFA) [17] is another well-known architecture. Its

2D array of processor tiles with localized memories are optimized for streaming data, being

programmed with configurations and not by instructions.

The advantage of instruction-based processors is their support for a more general class

of applications and their ability to switch to a wildly different class of applications with little

to no overhead. The disadvantages of instruction-based processors for SDR are twofold:

1. They are always limited by a discrete instruction set which restricts the amount of

6

Fig. 1.1: Extensibility vs. performance for each CCM category. The desired realm of SDR
is both high-performance and high-extensibility.

doable work each cycle; and 2. They often suffer from low computation power per circuit

size because of the need to have a static, general purpose arithmetic/logic unit (ALU) for

which only a few functionals are active during a given cycle. Hence, instruction-based

processors have a comfortable niche in applications that require quickly or very frequently

changing tasks. For applications where only a single or a very small collection of tasks

need to be executed for long periods of time, a more targeted hardware implementation can

always perform better. SDR uses generally fall into the latter.

1.2.2 Hardware Co-Processors

In an attempt to keep the general nature of instruction-based processors and the ad-

vantage of optimized hardware, many SDR CCMs couple a DSP or GPP and a custom

hardware acceleration fabric together into a single processor. These hardware co-processor

CCMs usually rely on the presence of a master, instruction-based processor which man-

ages the configuration of the hardware acceleration fabric. A key attribute of hardware

co-processor systems is that algorithms are partitioned across both the instruction-based

processor and the hardware accelerator. Typically, the presence of an instruction-based

7

processor for synchronization and control while the hardware fabric performs the entire

algorithmic computation does not constitute a hardware co-processor system.

Garp [18] is one such architecture that contains a single MIPS-II processor with its

own instruction memory and sharing a data memory with a single, custom FPGA. The

instruction-based processor is able to populate the FPGA with a configuration to accelerate

a portion of the algorithm, like an inner-loop. Such hardware co-processor systems present

an elegantly simple solution to algorithm acceleration. However, the continual passing of

data to/from the accelerator can significantly hinder the system’s real-time performance,

which is critical in SDR applications. If the application is restricted to the hardware accel-

eration fabric then the system is no longer a hardware co-processor system and the cost in

area and power of a separate, full-fledged instruction-based processor is not merited.

1.2.3 Hardware Processors

Hardware processors offer the most potential for meeting the processing power needs

of SDR. The challenge of designing an effective SDR hardware processor is being ASIC

enough to meet the processing requirements of all of the algorithms yet GPP enough to

meet the flexibility introduced by SDR. Stallion [19] is a novel hardware solution consisting

of a 2D mesh of signal processing oriented functional units (FUs). The FUs are statically

implemented, reconfiguration is achieved by altering the configurations of the FUs and the

routing of data through the mesh via wormhole run-time reconfiguration [20]. RaPiD [21]

is a clever cascade of ALUs, random-access memories (RAM)s, multipliers, and registers

interconnected to a collection of buses which allows rapid, streaming reconfiguration of

custom pipelines. RSFMD [22] is a recent architecture which implements a collection of

reconfigurable processing elements (RPEs) which can be loaded at run-time with optimized

logic for a particular application. Each RPE is loaded with an identical configuration and

different data is routed to each RPE enabling large parallel data processes or single-function,

multiple-data (SFMD).

Hardware processors, such as those presented, are able to achieve large performance

gains over other types of processors for a particular class of application and have even re-

8

tained a significant amount of flexibility, but are still sub-optimal. In the case of Stallion

and RaPiD, the architectures are statically implemented and, while general and optimized

for a class of applications, non-optimal for a particular application. These architectures im-

plement all reconfiguration as “soft” reconfiguration (run-time programming of pre-designed

functionality, no hardware design alteration). The RSFMD implements all reconfiguration

as “hard” reconfiguration (run-time modification of processing hardware, no adaptability of

a hardware configuration to a similar but slightly different application). RSFMD also allows

only a single hardware configuration at a time, requiring custom-built hardware configu-

rations for every application or combination of applications, regardless of existing designs,

each of which configuration must be stored locally for run-time access.

In hardware processors, the lack of a “hard” reconfiguration requires that all applica-

tions map onto a pre-defined, sub-optimal architecture. The lack of a “soft” reconfiguration

requires that a new, time-consuming hard reconfiguration be performed for every applica-

tion, even those that use the same architecture but with different parameters or in a slightly

different configuration.

1.3 Contributions

The goal of this research is to provide better coverage of the SDR region represented

in figure 1.1. The approach that has been chosen is to improve the extensibility of hard-

ware processors. For this research, a new hardware processor was developed that utilizes

optimized logic for each application while maintaining great flexibility in the class of ap-

plications executable on the processor. The proposed architecture improves the hardware

processor group’s extensibility, as shown in figure 1.2, providing a better platform for realiz-

ing a larger range of both high-performance and highly-extensible applications. The scope

of this research is limited to the deduction and definition of a reconfigurable computer

architecture optimized for software-defined radio applications as well as a demonstration

implementation sufficient to prove the architectural concept. Important implementation

specifications are presented when applicable, but detailed specifications on the usage and

9

performance of technology-specific partial reconfiguration and bitstream relocation (includ-

ing partial reconfiguration timing) are beyond the scope of this work.

The key novelties of this architecture are: an array of programmable sockets cou-

pled with partial, run-time reconfiguration to achieve, to a large degree, the flexibility of

instruction-based processors; a high-speed, programmable data routing and socket inter-

connect; and a high-speed, programmable socket interface. These contributions together

allow arbitrary combinations of applications to simultaneously execute at the discretion of

a run-time controller. Run-time reconfiguration in the processor is achieved via both soft

reconfiguration and hard reconfiguration. The soft reconfiguration allows the controller to

capitalize on reconfigurability built-into the individual processing elements (PEs) and is

implemented as part of the processor. Hard reconfiguration allows a limitless possibility of

compatible PEs to be “plugged in” and utilized as needed and is realized by the underlying

technology. The developed architecture is described in a hardware descriptive language and

is portable to different platforms. The design and implementation target Xilinx’s Partial

Reconfiguration [12] as the hard reconfiguration technology, though the architecture could

easily be ported to other FPGAs featuring a run-time partial reconfiguration technology

and even other CCMs, such as hardware/software co-processor systems.

1.4 Thesis Organization

The remainder of the document presents the results of the performed research. Chap-

ter 2 describes the architecture of the processor and discusses its capabilities. Chapter 3

discusses a test case implementation on a Xilinx FPGA and presents the results of its per-

formance. Chapter 4 concludes the discussion with a summary and a discussion of future

possibilities. Appendix A gives an overview of necessary background topics on reconfig-

urable computing utilized by the processor and its implementation. Appendix B provides

additional details on the system as designed using Xilinx EDK. Appendix C contains all of

the source code developed as part of this effort.

10

Fig. 1.2: Extensibility vs. performance of the proposed architecture. The desired realm of
SDR is both high-performance and high-extensibility and experiences greater coverage.

11

Chapter 2

Architecture

2.1 Design Goals

The goal of this architecture is to provide a flexible processing environment for radio

applications. While the architecture should remain as general as possible so as to be useful

for a larger class of applications, many design decisions and optimizations need to specifically

target radio applications. The following considerations are important for specifying the

design details of varying parts of the architecture from a radio applications perspective.

2.1.1 Streaming Data

Communication algorithms are streaming by nature. Instead of executing only occa-

sionally when certain conditions are met they generally execute continuously as periodic

data arrives. A communication algorithm represents a function to be executed every time

a new data sample is available. Hence, each algorithm follows a single-function, multiple-

data (SFMD) [22] model. These functions are much coarser grained than single-instruction,

multiple-data (SIMD) models. In an instruction-based processor, a function may consist of

hundreds or thousands of instructions. Each instruction delays the beginning of processing

on a subsequent data sample, only to execute the same instruction again. Because of its

time-periodic nature, streaming lends itself better to parallelized, pipelined hardware im-

plementations than sequential, instruction-based implementations. Thus, the architecture

should be optimized for streaming data by being well-pipelined.

2.1.2 Data Widths

In instruction-based processors, data operands are generally a fixed width, such as 32-

bits, since registers are statically sized. Conversely, signal processing algorithms generally

12

require smaller data widths and have varying requirements for different data. For example,

a lot of resources are wasted mapping 12-bit samples produced by an analog-to-digital

converter (ADC) onto 32-bit arithmetic operations. Likewise, a function might take 12-

bit inputs and generate 23-bit outputs or a single-bit output. Throughout the function

processing chain, data widths may grow or shrink based on the operations being performed

and the data ranges of interest. Also, configuration parameters of a function may vary from

a single bit to 64 or more bits. Hardware implementations are free to use whatever precision

desired for an implementation. However, data width requirements vary from implementation

to implementation and this variability is important to realizing optimized implementations.

In order to not unnecessarily restrict the range of possible algorithms and the optimality of

their implementations, the architecture should allow for arbitrary data width ranges.

2.1.3 Programmability

Many communication algorithms consist of a common set of signal processing opera-

tions. Often two algorithms will have a large portion of common operations, varying only

in their parameters. Filtering is one of the most fundamental and common operations per-

formed in communications and often the filters are identical in function and architecture

and vary only in their coefficients. Taking advantage of these commonalities means that

switching between two similar algorithms does not require hard reconfiguration of the com-

mon parts, but only a soft reconfiguration, which can be substantially faster, depending on

the underlying technology. Thus these operations can be defined as generically as possible

and programmed at run-time to extend their application, achieving a soft reconfiguration.

Varying operations will provide varying programmability with each programming port hav-

ing different data width requirements. The architecture should be considerate and aware of

and allow this programmability.

2.1.4 Speed

Communications systems are real-time systems requiring the ability to begin another

iteration within a certain period of time, (generally determined by the period of the data

13

samples). In instruction-based processors this means the function must begin and complete

in the alloted amount of time. Real-time requirements can cause substantial problems in

instruction-based processors and algorithms must be carefully designed and even more care-

fully analyzed to ensure that real-time constraints are satisfied. Mixing and matching func-

tions at run-time only further complicates guaranteeing and meeting real-time performance.

When hardware implementations closely emulate software implementations, hardware im-

plementations can also suffer from this problem. However, in hardware, real-time issues can

be alleviated or eliminated by properly pipelining and adjusting the clock frequency of the

implementation.

Generally, a trade-off exists between the area consumed by a pipeline and the clock

frequency needed to meet real-time needs. When a pipeline contains replicated operations,

those operations can be time-shared, but the clock frequency needs to be increased propor-

tionally to maintain real-time performance. Similarly, pipeline stages may need to become

larger, simultaneously reducing clock speed, in order to reduce overall circuit size. Also,

the same algorithm may run at different frequencies to achieve different performance or

data rates. Each of these scenarios demonstrates the varying needs of potential algorithms’

operation speeds and even the ability to adjust these speeds via clock frequency at run-time.

The architecture should provide a mechanism for varying functional pipelines to execute at

varying speeds.

2.2 Overview

In light of the design goals, a novel hardware processor architecture was created which

allows arbitrary communication algorithms to be executed at hardware efficiency while

maintaining a great degree of flexibility. The architecture consists of a system controller

and a 1D array of sockets hanging from a configurable signal routing block. Each socket

can be populated at run-time with any of a variety of processing elements (PEs). Figure

2.1 presents a high-level view of the processor architecture. Many architecture parameters

are left unspecified to allow for proper adaptation to different underlying technologies (ie. a

Xilinx FPGA vs other reconfigurable logic technologies, commercial and academic, present

14

and future). Thus, the architecture can be realized on and a library of PEs developed for any

reconfigurable logic technology that supports a sufficient partial, dynamic reconfiguration.

The system is dichotomized into static logic and reconfigurable logic. The static por-

tion of the architecture is specified and defined at the time of porting the architecture onto a

hardware technology. When implementing the architecture on a target, the architecture pa-

rameters, such as number (and location) of sockets, number (and location) of signal sources

and sinks, and data widths of internal buses, must be concretized. The reconfigurable por-

tion, aside from the socket boundaries and locations, is specified completely at run-time.

That is, after the static portion of the architecture has been established, then, at run-time,

the controller populates the sockets with meaningful PEs from the library of available PEs.

The PEs are coarser than a multiply-accumulate (MAC) or even a filter and are finer

than a complete, complex algorithm. Each PE can implement either an entire algorithm,

if the algorithm is simple enough, or a collection of common processing operations, such

as timing and phase error correction, or algorithm specific logic. The size of the sockets

is implementation dependent, but optimally they achieve balance between fine and coarse

granularity. Fine grained sockets see great reuse and little waste between different config-

urations but result in large overhead both within the socket and in the system. Coarse

grained sockets accomplish more work with less wasted overhead (because of the reduced

number of sockets) but are more likely to see increased waste between configurations (not all

parts of the PE being used for every application). Ultimately the architecture leans towards

larger sockets in order to reduce system complexity, accomplish more work, and improve

PE relocatability. An alternate version of this architecture features a more sophisticated

2D array of smaller processing elements, useful if the underlying technology can support

the finer-grained PE relocation. The former architecture was pursued and is presented here

because of the coarser relocation requirements of Xilinx FPGAs, which is the technology of

focus for this implementation.

2.3 System Controller

The system controller manages the entire system. It is responsible for interpreting

15

Fig. 2.1: The architecture - a top-level view. The purposed architecture contains a 1D
array of sockets with configurable interconnects and sources/sinks. The sockets can be
reconfigured with PEs at run-time as specified by a user or controller.

user instructions into system configurations and programming the necessary components

accordingly. Socket reconfigurations are initiated by the system controller. All virtualiza-

tion for over-partitioned sockets is managed by the system controller. The system controller

interfaces with all of the other static logic modules but does not have any communication

directly with any reconfigurable logic. The only communication between the system con-

troller and reconfigurable logic is communicating programming addresses and data which

get intercepted and manipulated by a reconfigurable logic interface. Because of the var-

ied and sporadic duties of the system controller it is well-suited for implementation in a

simple, embedded instruction-based processor. However, even when implemented in an

16

instruction-based processor, the architecture does not represent a hardware/software co-

processor system because the system controller does not execute any algorithmic software;

it executes strictly control logic software.

Because of the complexity of the system controller logic, it is desirable to separate it

from real-time sensitive parts of the architecture. Hence the routing of data to/from the

socket array is implemented in programmable hardware instead of being handled by the

system controller. Because of separation of concern, the system controller adopts a laissez-

faire interaction with the socket array, only communicating when the configuration needs

to be altered. Once configured by the system controller, the socket array and all of the

encompassing signal routing are completely self-sustaining.

2.4 Reconfiguration Controller

Technology dependent partial reconfiguration is abstracted into the reconfiguration

controller. The system controller issues reconfiguration commands to the reconfiguration

controller which translates the commands into platform-specific actions. This also frees

the system controller of the responsibilities of managing reconfiguration. While the system

controller knows about the contents of the PE library, only the reconfiguration controller

interfaces with the PE library, likely stored in external, persistent memory. The reconfigu-

ration controller also gives status updates to the system controller when requested.

Communication of addresses between the system controller and reconfiguration con-

troller is virtualized to simplify porting the architecture onto different technologies. The

system controller identifies both PEs and destination sockets to the reconfiguration con-

troller using virtual addresses. The reconfiguration controller then translates the virtual

addresses into physical addresses for communicating with the various physical interfaces.

For the PE library, this address mapping takes a unique PE identification number input

and generates a beginning memory address for the PE’s storage location within the library.

For the sockets, this address mapping takes a unique socket identification number input and

generates technology-specific address for the socket’s configuration data. In Xilinx FPGAs,

the addresses are the horizontal and vertical locations of each configuration frame within

17

the socket’s boundary.

The reconfiguration controller also manages relocation of PEs from one socket to an-

other. For Xilinx FPGAs, this means modifying the addresses of the frames in the PE

bitstream and performing any other relocation required bitstream modifications. This re-

location logic may be implemented in hardware or in software. When implemented in

software it makes sense to incorporate the relocation portion of the controller with the

system controller on the GPP.

2.5 External Programming Interface and Controller

Interfacing the system with the user is the responsibility of the external programming

interface and controller (EPIC). This module’s sole functionality is to bridge the user’s

world with the system’s internal world. Thus, the EPIC consists mostly of physical inter-

faces and their drivers. User IO may come in the form of a serial port, push buttons and

LEDs, a touchscreen display, a keyboard, etc. The EPIC implements these system-specific

interfaces so as to abstract them from the system controller. Thus, the EPIC delivers to the

system controller a standard set of messages directing the radio how to perform. In many

implementations, the EPIC module will be implemented as peripherals hanging off of a bus

of the system controller’s GPP.

2.6 Data Router and Manager

The data router and manager (DRM) is the most interesting component in the static

portion of the architecture and is diagrammed in figure 2.2. Its responsibility is mapping

streaming data between the sockets and the IO signal sources as well as delivering pro-

gramming commands from the system controller to the socket array. Input sources may be

ADCs connected to antennas or digital sources such as ethernet or USB or another processor

running the same architecture. Outputs may be to DACs connected to RCA or headphone

jacks or digital sinks such as ethernet or USB or another processor.

In the current implementation each socket is able to take its data from only a single

source and output its results to a single sink. Data from any external input can be routed

18

Fig. 2.2: Data router and manager. The DRM consists of programmable routing logic to
interface the socket array with available streaming data sources. For each socket there is
an interface master that the PE connects to.

to any or all of the sockets. Data to any external output can come from any single socket.

Sockets can also route data to each other but only in a streaming simplex fashion and only

to the nearest neighbor in a single direction. These limitations are imposed for the purpose

of simplifying the configurable routing logic of the DRM and can be eased/eliminated in

future revisions.

2.7 Static-Reconfigurable Interface

The most important and critical component of the entire system is the interface between

the static region and the reconfigurable region (SRIF), shown in figure 2.3. This link needs

to be flexible enough to meet the varying data width needs of streaming data interfacing with

the IO as well as the streaming data flowing between sockets and also the programming

parameters coming from the controller. Because of logic overhead in connecting signals

between static logic and reconfigurable logic in many reconfigurable platforms, including

Xilinx FPGA, signals crossing the boundary should be minimized to free up logic for use

19

by the PE. Thus the SRIF should be as serial and as fast as possible.

The SRIF consists of a static-side master and a reconfigurable-side slave. The master

initiates programming the slave while both the master and the slave communicate data

across the interface in full-duplex. Each side of the interface contains a disassembler, which

takes in words and fragments them for sending across the interface, and an assembler, which

receives fragments from the interface and assembles them into words. The size of the words

and the fragments must be specified at design time because the logic exists in the static

region. The slave side of the interface also contains programmable clock decimation logic

for providing custom clock speeds to the PE.

Because of the general nature of the SRIF (it has no knowledge of the PE’s function),

it does not perform any interpretation or manipulation of data. The same SRIF is used

for every PE so it must be capable of meeting the needs of PEs in general. Thus, the

SRIF is completely agnostic of any particular radio functionality and merely provides a

common interface for pushing data from multiple sources and various widths across a sim-

plistic, small-footprint, serialized interface. Interpreting the data and pumping multiple

inputs/outputs through the interface is the responsibility of the source/destination logic.

2.8 Sockets

Sockets are the workhorse of the architecture. All radio functionality is implemented in

the sockets. Sockets can be populated with any PE at any time. PEs are implementations

of customized/programmable radio logic that are compatible with the available sockets.

The architecture contains an array of sockets and, based on the current needs of the user,

any, all or none of the sockets may be utilized and populated with PEs. At any given time

a PE from the library of available PEs may be found in none, one, or multiple sockets. To

make this possible, and as required by the requirements of partial reconfiguration on many

platforms, the sockets are all constructed of regions of identical shape and resource structure

in the underlying reconfigurable fabric. If the sockets were of varying sizes or constitution

then relocation of PEs across sockets may not be possible and multiple versions of a given

PE may be required in the PE library. Keeping sockets equal allows for the use of relocation

20

Fig. 2.3: Static reconfigurable interface. The master SRIF multiplexes different-sized data
from several sources through a small interface to be reassembled on the slave side. It also
receives disassembled data from the slave side and reassembles it for delivery.

and reduces the development time and memory requirements of the PE library.

Because all PEs communicate identically with the architecture through the SRIF, all

PEs have at least some common logic. This portion of the logic is pre-placed-and-routed

into a template to ensure common footprints and routings to the static logic as well as the

meeting of timing constraints. Developers then use this template and amend it with custom

logic to form a relocatable PE that becomes added to the PE library, as seen in figure 2.4.

The slave SRIF contains streaming data ports and configuration ports. The configu-

ration ports consist of an address port and a data port. The configuration data then is

processed by custom logic which maps the configuration data to the proper port of the PE

logic based on the address. In the case that the configuration words transmitted across the

SRIF are larger than the SRIF port word size, this logic will be aware of this and properly

reassemble the words to construct the full-length configuration parameter. Thus, between

the fragmentation performed by the SRIF and the fragmentation performed by the user

logic, configuration parameters of any bit-width can be communicated while maintaining a

common, low-footprint interface.

21

Fig. 2.4: Processing element structure. Each processing element (PE) for a given architec-
ture implementation must have a common structure. Fundamentally this common portion
consists entirely of the slave SRIF. However, other templates might include some signal
pre-processing operations such as downsampling.

22

Chapter 3

Implementation and Results

3.1 Virtex-5 Implementation

To demonstrate the feasibility of the proposed architecture, it was implemented on

a Xilinx Virtex-5 LX110T FPGA (xc5vlx110t), found on the Virtex-5 Xilinx University

Program (XUP) Evaluation Platform. The system was described using the VHDL language.

Once the system was developed, a small collection of PEs were developed to demonstrate

run-time swapping of PEs.

3.1.1 Architecture

Before implementation on a particular platform can begin, the system parameters must

be determined. The most critical of these parameters is the number, size, and placement of

sockets in the underlying fabric. These parameters are all determined based on the structure

of the underlying fabric while the remainder of the parameters (such as IO) are fixed, in

this case, by the available peripherals. The xc5vlx110t has the floorplan shown in figure

3.1.

Because of the frame-based reconfiguration approach of Xilinx, sockets should consume

the full height of a clock row. In the xc5vlx110t part has is no repeating pattern of con-

figurable logic blocks (CLBs), block RAMs (BRAMs), and DSP48Es within a given clock

row. Consequently, a clock row cannot be divided into multiple, identical sockets.1 Some

logic is needed for the static logic portion of the architecture and for interfacing with the

columns of hard cores and IO banks. Thus, some of the logic immediately surrounding

these devices is reserved for the static logic, as well as one entire central clock row for the

1The typical modern techniques of bitstream relocation in Xilinx FPGAs require relocation among
identical regions. This issue is discussed more in Appendix A.3.

23

Fig. 3.1: Floorplan of the xc5vlx110t chip. The xc5vlx110t has CLBs divided into eight
clocking rows (distinguished by the dividers in the rightmost column). Interspersed are five
columns of BRAMs (pink), one column of DSP48Es (light blue), and four other columns of
hard cores and IO banks.

24

purpose of horizontally bridging these four columns (and for interfacing with the Internal

configuration access port (ICAP), which is located in the center of the FPGA).

Based on these restrictions, the architecture is able to contain seven large sockets.

The size and location of these sockets are shown in figure 3.2. Each socket represents about

1/9th of the entire circuit, as reported in table 3.1. The static controller overhead consumes

about 2/9ths of the logic while the remaining 7/9ths are available for optimized PE logic.

The DRM is a hardware module described in VHDL. Being the most performance

critical part of the static logic, it is important to make this as fast as possible. A parame-

terizable DRM module was created which allows generic specification of the number of IO

ports, number of sockets, and data widths. In this example the only data sources and sinks

are canned data RAMs, but to create a realistic scenario the number of sources was set to

three and the number of sinks set to four. Finally, specifying that this implementation con-

tains seven sockets produced a fully-pipelined DRM entity preliminarily capable of running

at 300 MHz.

The availability of the MicroBlaze processor for Xilinx FPGAs makes it a natural

choice for implementing the system controller, the reconfiguration controller, and the EPIC.

When an embedded instruction-based processor is chosen for implementing the controllers

the architecture begins to take the form of a system-on-a-chip (SOC). In a custom silicon

design, this could be realized as a single die with a small-scale instruction-based processor

core coupled with one or more reconfigurable hardware cores.

Communication of the system controller with the DRM occurs via a custom periph-

eral attached to a Fast simplex link (FSL). This interface allows custom, asynchronous

communication across the clock domains of the slower MicroBlaze and the faster DRM.

Table 3.1: Architecture resource distribution. Distribution of native FPGA resources to
each socket and to the static logic.

Resources Slices BRAMs DSPs
Socket Static Socket Static Socket Static

Used 1960 3560 16 36 8 8
Available 17280 148 64

Proportion 11.3% 20.1% 10.8% 24.4% 12.5% 12.5%

25

Fig. 3.2: Layout of the sockets. The xc5vlx110t fits seven large sockets divided by clock
rows. Each socket consumes most of the clock row with a little logic reserved for use by the
static-logic controller.

26

The Reconfiguration Controller is realized via a software program and the Hardware ICAP

(HWICAP) interface provided by Xilinx for managing partial, dynamic reconfiguration.

Xilinx offers the HWICAP as a core connecting to a MicroBlaze via the On-chip peripheral

bus (OPB). EPIC is also realized as a partial software/hardware peripheral solution. Thus

the single MicroBlaze hosts the software for all three controllers and manages the physical

interfaces via hardware peripherals connected by buses.

MicroBlaze offers two different pipelines: a 3-stage pipeline targeting low area and a 5-

stage pipeline targeting high performance [23]. Since these controllers are not performance

critical the low-area pipeline was chosen. This produces a slower but smaller controller to

ensure the maximal amount of logic available to the socket array.

Altogether the static-logic portion of the architecture requires the resources shown in

table 3.2. The architecture runs off two clocks: the slower MicroBlaze clock and the faster

socket array clock. In this implementation the MicroBlaze clock is 100 Mhz and the socket

array clock was chosen as 300 Mhz.

3.1.2 Algorithms

The sample architecture implementation was tested using a typical QPSK system. The

QPSK system consists of a modulator and a demodulator, as shown in figure 3.3. As in

most communication systems, the modulator is lightweight compared with the demodulator,

where most of the processing occurs. The process of demodulation entails a linear series of

sample-based operations, ideally suited for a linear, streaming architecture such as this. The

demodulation process contains some highly-regular, largely parallel, arithmetic functions,

Table 3.2: Architecture resource consumption. Resources required by the entire static-logic
portion of the architecture including the MicroBlaze, its peripherals, and the DRM and
master socket interfaces.

Resources Slices BRAMs DSPs

Controller 1720 3 3
DRM 882 0 0

Total 2602 3 3

Available 17280 148 64

Proportion 15.1% 2.1% 4.7%

27

such as filters, as well as logical and branching functions, as found in the timing and phase

correction loops.

Each algorithm was created in VHDL for implementation on the architecture and in C

for benchmarking on an Intel central processing unit (CPU) and a Texas Instruments (TI)

DSP. Both implementations were kept functionally similar, including integrating similar

degrees of run-time re-programmability.

3.2 Performance

Performance of the architecture is bound by the socket array’s clock and the size of

the fragments. Ultimately the architecture’s performance is limited by the PE element

implementation. If the inputs to a PE are n SRIF fragments large then samples are only

available at most every 1/n cycles of the 300 MHz array clock. Similarly, if a PE is designed

to run at a maximum clock frequency of 50 MHz then its performance will be limited to 50

million samples per second (MSPS). Thus, in this implementation, the maximum sample

rate of any PE in the array is 300 MSPS which is possible when the PE is designed to run

at a 300 MHz clock frequency and the input samples are only one SRIF fragment large.

For this implementation of the architecture, a QPSK system was developed. The mod-

ulator fits within one socket while the demodulator consumes two sockets. Both are able

to run at 100 MHz. Running at an upsample factor of 2, the system is able to process

50 million symbols per second, resulting in a performance of 100 Mbps. With seven sock-

ets the system is able to simultaneously run 7 100 Mbps modulators or 3 1/2 100 Mbps

demodulators.

3.3 Results

For purposes of benchmarking the architecture, its performance for the sample algo-

rithms is compared with the two next most common, likely alternative processors: a desktop

CPU and a Texas Instruments DSP. Due to the lack of availability, a comparison with sim-

ilar reconfigurable architectures is not currently feasible. For each processor the estimated

28

Fig. 3.3: QPSK communication system. The QPSK communication consists of a modulator
and a demodulator. All together the system requires three sockets.

maximum data rate for each algorithm was calculated based on experimental data gathered

from profiling reasonably-optimized C code. Table 3.3 shows the performance comparison.

CPU results were obtained by profiling the C code on a Pentium 4 3.4 GHz CPU. Only

a single thread was used, but the added performance of multiple cores is accounted for by

treating each core as a separate instance of the algorithm and calculating the combined data

rate. Instrumentation profiling was used to capture accurate execution times, simulating

stand-alone algorithm execution. Execution times were averaged over 1,600 generated/re-

ceived signal samples. DSP results were obtained by simulating DSP-optimized C code on

a TI TMS320C6713 DSP. This floating-point DSP has eight execution units and operates

at 225 MHz, achieving a maximum 1800 MIPS. The simulator delivers a precise instruction

count and function call count. Based on this information the maximum sample rate can be

calculated.

Table 3.3: Performance comparison. Comparison of the sample algorithm performance
between the developed architecture, a CPU, and a DSP, in MSamples/s for each instance
of the algorithm and for all simultaneous instances supported by the processor.

Algorithm Proposed CPU DSP
Each Total Each Total Each Total

QPSK Mod 100 700 .520 1.040 2.227 2.227
QPSK Demod 100 300 .352 .704 .202 .202

29

As the table indicates, the implementation handily outperforms both the CPU and

the DSP, achieving at least 44x greater data rates for the QPSK system. In addition to

higher data rates, the implementation is able to simultaneously execute up to seven such

algorithms, all with equivalent performance. The CPU is able to execute two algorithms

with similar performance because of hyper-threading and the DSP is able to execute only

one.

3.4 Summary

This Virtex-5-based implementation validates the concept of the proposed architecture.

A reconfigurable architecture for the domain of signal processing algorithms can be designed

that utilizes hardware-optimized logic and enables dynamic reconfiguration as in a software

implementation. More importantly, the architecture can be realized on existing, modern

reconfigurable fabrics and realize substantial performance improvement while maintaining

sufficient flexibility.

30

Chapter 4

Conclusions

4.1 Summary

A flexible, reconfigurable processor architecture has been designed and presented which

targets the SDR domain. The need for a more optimized, extensible architecture was

motivated and an overview of existing architectures was presented. These architectures

were categorized based on architecture features. Advantages and disadvantages of each

category and each architecture were discussed. The conclusion was reached that strictly

hardware processors are most likely to be the solution to the processing challenges of SDR

applications. This constituted Chapter 1.

Chapter 2 presented the architecture and presented details on its derivation, compo-

sition, and execution. The architecture presentation was kept separate from underlying

reconfigurable technologies discussions to emphasize the realizability of the architecture on

arbitrary technologies, only mentioning specific technologies when they influence the design

of the architecture. A sample implementation of the architecture in a modern, mid-sized

Xilinx Virtex-5 FPGA is presented in Chapter 3 to help concretize the design and presen-

tation of the architecture. From this specific implementation, performance metrics such as

sizing, speed, and throughput are gathered for comparison with alternative architectures.

4.2 Conclusions

Custom reconfigurable processor architectures, such as the architecture presented in

this document, are powerful alternatives to general processor architectures for a given do-

main of applications. This architecture can achieve greater performance for streaming data

applications, such as SDR, than standard GPPs and DSPs. Moreover, the architecture is

31

defined generically enough that it can be realized on different reconfigurable technologies.

FPGAs, such as those offered by Xilinx, are particularly good targets for this architecture.

Perhaps most importantly, the architecture is not tied to a particular technology which

means that it can be used now, on existing technologies, without the need for an expensive,

custom-made silicon very-large-scale integration (VLSI) design.

Using this architecture, radio algorithms can be implemented with the performance of

a hardware FPGA implementation but still maintain the flexibility provided by software

implementations. The architecture can allow, at run-time, arbitrary algorithms and even

arbitrary combinations of algorithms to execute. For low-performance algorithms the system

can even be over-partitioned via virtualization (socket paging). This architecture makes

novel strides to meet the processing requirements needed by future software defined radios

and cognitive radios.

4.3 Future Works

This presentation outlines an initial proof of concept for an interesting architecture.

However, much more work can and should be done to verify the design decisions and improve

the architecture. Such future work regarding this architecture can be classified into two

categories: improvements and support. Improvements are modifications to the architecture

to increase performance and extensibility. Support is development of external resources to

enhance the development for and use of the architecture.

4.3.1 Architecture Improvements

Currently the architecture is not as extensible as desired. The limitation that each

PE can only receive data from and send data to one source excludes a large number of

applications, including multiple-input, multiple-output (MIMO) applications. Also limiting

is the restriction of communication paths amongst sockets. Work can be done to improve the

DRM module to allow for multiple sources/destinations for PE data as well as allowing more

socket-socket communication paths. Also, while multiple inputs/outputs from/to a single

source (such as two-channel operation) can be accomplished by treating each port’s data

32

as separate, consecutive words when going through the SRIF and being reassembled on the

other side, this approach feels like a kludge and work should be done on increasing support

for single-source multiple inputs/outputs in the form of either architecture modification or

protocol specification.

Along with the limitations previously discussed, the limited routing presents another

restriction; it can only handle linear data flows. Because of this, loops or any feedback paths

cannot cross PEs; they must be implemented entirely within a PE. This unnecessarily limits

the possible size of feedback paths realizable on the architecture and restricts the domain of

possible application. Performing the stated work to increase the routing capabilities of the

architecture would allow for implementations of nonlinear data flow between sockets and

increase the usability of the architecture.

4.3.2 Architecture Support

This architectures suffers the same problem as almost every custom processor architec-

ture discussed; it lacks sufficient development support. No work has been done on creating

a generalized process to port algorithms onto the new architecture. As a result all work

done for the demonstration implementation has been done by hand and configurations have

been hard-coded into the system controller’s program or the PE’s default configurations

have been used. Ultimately a more sophisticated user interface could be developed which

would allow for large-scale, preset configurations to be loaded with minimal input as well

as providing access to the full configuration details of each PE.

Optimally, the development of a compiler for this architecture would most greatly

increase the usability of the architecture. While the architecture is not an instruction-

based architecture, it does have an available library of functional units which are capable

of being combined to accomplish complex algorithms. A standard should be developed for

describing the functionality and programmability of a given PE, perhaps as a data flow

graph. Then high-level descriptions of algorithms, perhaps in a software language like C

or in a functional description like a control- and data-flow graph (CDFG), could be input

to the compiler which would map the algorithm onto the PE library. This mapping would

33

then generate an alternate description of the algorithm based on combinations of PEs and

their required configurations. In addition, the compiler would indicate which portions of

the algorithm do not current map onto any available PEs so that a sufficient PE could be

created.

34

References

[1] J. Mitola III, “Software radios-survey, critical evaluation and future directions,” in
National Telesystems Conference, 1992. NTC-92, pp. 13/15–13/23, May 1992.

[2] S. Hasan, “A low cost multi-band/multi-mode radio for public safety,” in Software
Defined Radio Technical Conference, SDR’06. SDR Forum, Nov. 2006.

[3] Y. Tachwali and H. Refai, “Implementation of a bpsk transceiver on hybrid software
defined radio platforms,” in Proceedings of the 3rd International Conference on Infor-
mation and Communication Technologies: From Theory to Applications ICTTA 2008,
pp. 1–5, Apr. 2008.

[4] J. Wells, “Faster than fiber: the future of multi-g/s wireless,” Microwave Magazine,
IEEE, vol. 10, no. 3, pp. 104–112, May 2009.

[5] Z. He, J. Chen, Y. Li, and H. Zirath, “A novel fpga-based 2.5gbps d-qpsk modem for
high capacity microwave radios,” in 2010 IEEE International Conference on Commu-
nications (ICC), pp. 1–4, May 2010.

[6] C. Dick, F. Harris, and M. Rice, “Synchronization in software radios. Carrier and timing
recovery using FPGAs,” in 2000 IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 195–204, 2000.

[7] S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas, “An overview of configurable
computing machines for software radio handsets,” IEEE Communications Magazine,
vol. 41, no. 7, pp. 134–141, July 2003.

[8] Opencores.org [Online]. Available: www.opencores.org.

[9] Impulse accelerated technologies [Online]. Available: www.impulseaccelerated.com/.

[10] Altium [Online]. Available: http://wiki.altium.com/display/ADOH/

Introduction+to+C-to-Hardware+Compilation+Technology+in+Altium+

Designer.

[11] Simulink hdl coder [Online]. Available: http://www.mathworks.com/products/

slhdlcoder/.

[12] Xilinx, Partial Reconfiguration User Guide, Xilinx, May 2010.

[13] T. Raikovich, “Dynamic reconfiguration of fpga devices,” in Proceedings of the
15th PhD Mini-Symposium, pp. 72–73, Feb. 2008. [Online]. Available: http:

//www.mit.bme.hu/events/minisy2008/papers/15Minisymp_proceedings.pdf.

[14] J. P. Delahaye, G. Gogniat, C. Roland, and P. Bomel, “Software radio and dynamic
reconfiguration on a dsp/fpga platform,” Frequenz, Journal of Telecommunications,
vol. 58, pp. 152–159, 2004.

35

[15] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynamically reconfig-
urable systolic array accelerators: a case study with extended kalman filter and discrete
wavelet transform algorithms,” IET Computers Digital Techniques, vol. 4, no. 2, pp.
126–142, 2010.

[16] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring it all to
software: Raw machines,” Computer, vol. 30, no. 9, pp. 86–93, Sept. 1997.

[17] P. M. Heysters, H. Bouma, J. Smit, G. J. M. Smit, and P. J. M. Havinga, “A reconfig-
urable function array architecture for 3g and 4g wireless terminals,” in World Wireless
Congress, San Francisco, California, pp. 399–405. Cupertino, CA: Delson Group,
May 2002.

[18] J. Hauser and J. Wawrzynek, “Garp: a mips processor with a reconfigurable copro-
cessor,” in Proceedings of The 5th Annual IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 12–21, Apr. 1997.

[19] S. Srikanteswara, M. Hosemann, J. Reed, and P. Athanas, “Design and implementa-
tion of a completely reconfigurable soft radio,” in RAWCON 2000: IEEE Radio and
Wireless Conference, pp. 7–11, 2000.

[20] R. Bittner and P. Athanas, “Wormhole run-time reconfiguration,” in FPGA ’97: Pro-
ceedings of the 1997 ACM fifth international symposium on Field-programmable gate
arrays, pp. 79–85. New York: Association for Computing Machinery, 1997.

[21] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable pipelined
datapath,” in FPL ’96: Proceedings of the 6th International Workshop on Field-
Programmable Logic, Smart Applications, New Paradigms and Compilers, pp. 126–135.
London, UK: Springer-Verlag, 1996.

[22] A. Saha and A. Sinha, “An fpga based architecture of a novel reconfigurable radio pro-
cessor for software defined radio,” in Proceedings of the 2009 International Conference
on Education Technology and Computer, pp. 45–49. Los Alamitos: IEEE Computer
Society, 2009.

[23] Xilinx, MicroBlaze Processor Reference Guide, 11th ed., July 2010.

[24] G. Estrin, “Organization of computer systems-the fixed plus variable structure com-
puter,” International Workshop on Managing Requirements Knowledge, p. 33, 1960.

[25] T. Becker, W. Luk, and P. Y. K. Cheung, “Enhancing relocatability of partial bit-
streams for run-time reconfiguration,” in Proceedings of the 15th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines FCCM 2007, pp. 35–44,
Apr. 2007.

[26] A. Sudarsanam, R. Kallam, and A. Dasu, “PRR-PRR dynamic relocation,” Computer
Architecture Letters, vol. 8, no. 2, pp. 44–47, Feb. 2009.

36

[27] S. Corbetta, M. Morandi, M. Novati, M. Santambrogio, D. Sciuto, and P. Spoletini,
“Internal and external bitstream relocation for partial dynamic reconfiguration,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 11, pp.
1650–1654, 2009.

[28] A. Flynn, A. Gordon-Ross, and A. George, “Bitstream relocation with local clock
domains for partially reconfigurable fpgas,” in Design, Automation Test in Europe
Conference Exhibition DATE ’09, pp. 300–303, Apr. 2009.

[29] Xilinx, Inc. (Sept 2009) Embedded system tools reference guide [Online]. Avail-
able: http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/

est_rm.pdf.

37

Appendices

38

Appendix A

Reconfigurable Computing

Reconfigurable computing is the term ascribed to digital computer processing where

the processor adapts itself to provide an optimized architecture for each task. In virtu-

ally all modern computers (both personal and embedded), the central processor consists of

a statically implemented architecture. This architecture is typically an instruction-based

processor which is generally optimized for the full spectrum of possible requests. These

processors are useful in that they perform all tasks well. Clearly, application-specific archi-

tectures achieve greater performance but they are then limited in their applicability. The

goal of reconfigurable computing is not to map all possible tasks onto a generally optimized

architecture. Instead, reconfigurable computing seeks a balance between hardware and soft-

ware, providing the optimized performance of hardware for each task with the flexibility of

software.

In his 1960 article [24], Gerald Estrin initially proposed the possibility of reconfigurable

computing by creating a “fixed plus variable structure” computer. This architecture is ba-

sically a software-hardware co-processor architecture with an instruction-based processor

used for managing and controlling several hardware-implementation fabrics which are cus-

tomized for a particular task. Estrin uses polynomial evaluation as a demonstration for

extracting hardware-optimized functions for implementation in the variable portion of the

computer and for implementing system control in the fixed portion. With the presentation

of this concept, no longer were computers limited to generally-optimized instruction-based

processors but could obtain acceleration outside of software. Care must be taken, though,

when designing the variable computer as too-much flexibility tends towards instruction-

based processors and we have come full-circle.

Initially, it was not exactly clear how such a architecture proposed by Estrin should be

39

realized. Decades of research has been performed trying to accomplish a practical recon-

figurable computer. Many efforts have produced prototype reconfigurable computing tech-

nologies, but almost all have failed to achieve any commercial success. The main barriers

have typically been maintaining performance while still allowing substantial configurability.

The most successful effort, the Field-Programmable Gate Array (FPGA), capitalizes on

the proposal of Estrin by integrating programmable routing, flip-flops, shift registers, and

counters.

A.1 Field Programmable Gate Arrays

In 1985, Xilinx created the world’s first FPGA. The concept behind the FPGA was to

create an array of logic that circuits of digital gates could be mapped onto and programmed

in the field (post-manufacturing and by the user). Creating a literal array of gates was

impractical and wasteful, so the first FPGA capitalized on look-up tables (LUTs). LUTs

are simply very small, read-only memories (ROMs) that are indexed by a certain number

of bits (typically fewer than ten) and generate a small number of outputs (typically two

or one). Digital logic can be mapped onto LUTs because all combinatorial circuits of

digital gates generate deterministic outputs based solely on inputs, meaning that the inputs

are like addresses into a space of pre-calculated outputs. By creating arrays of LUTs

with distributed registers and programmable interconnects, any arbitrary sequential digital

circuit limited to a certain size can be mapped onto an FPGA by properly programming

the LUT contents and the interconnects. This groundbreaking revelation allowed Xilinx to

construct the world’s most successful reconfigurable computing technology.

Many early FPGAs were single-burn only. Their programmability was implemented by

physical connections that would either be kept or destroyed by flowing electrical current,

literally a “burning.” This resulted in devices that, once burned, kept their configura-

tion permanently and were not intended to be modified. Later, physical connections were

replaced by tiny static random-access memories (SRAMs) coupled with multiplexers to

create programmable routing that could be “burned” in a non-destructive process. This

allowed FPGAs to be not only field-programmable but also field-re-programmable. Field-

40

re-programmability became popular not just because it was more forgiving of programmer

mistakes, but because it also enhanced the reconfigurability of the computer, allowing for

the FPGA’s configuration to be modified at run-time based on user needs.

Estrin, in the same article, indicated that separating the fixed from the variable logic is

a trial process and fixed-plus-variable computers will adapt over time as fixed and variable

needs are more fully understood from experience. As FPGAs became more and more used,

common themes kept arising resulting in Xilinx moving more and more functionality into

the fixed side, the hard cores embedded within the FPGA fabric. Modern Xilinx FPGAs

contain not only large arrays of configurable logic blocks (CLBs), which contain 4- or 6-

input LUTs and multiple registers, but also a variety of fixed hard cores connected to the

programmable routing. These hard cores include: DSPs (optimized fixed-point arithmetic

processors), large RAMs, PowerPC processors, ethernet media-access controllers (EMACs),

and high-speed serial interfaces. A typical FPGA architecture is shown in figure A.1.

Xilinx FPGAs are broken into rows and columns. Columns are distinguished by (gener-

ally) homogeneous elements. Rows are grouped by clocking resources and are called “clock

rows.” Each clock row shares a common clock distribution tree and can contain multiple

sub-rows of element types. Figure A.1 shows a simple FPGA with 13 columns and five clock

rows with each clock row having two rows of CLBs. An element’s row and column becomes

a primary addressing mechanism for FPGA configurations.

Xilinx is not the only modern manufacturer of FPGAs, but they are the most prevalent

and are the product of choice for this thesis, so discussion of FPGAs in this appendix will

be limited in scope to their products.

Programming FPGAs can begin with several different methods, including schematic

capture, but typically is done through a hardware-description language (HDL). Figure A.2

shows the Xilinx tool flow that gets input HDL onto the FPGA. Synthesis verifies HDL

syntax and performs device-specific optimizations, generating a netlist description of the

circuit. Translate translates the behavioral primitives in the netlist into an NGD file con-

taining implementation primitives. Map maps the NGD description of the circuit onto

41

Fig. A.1: Typical FPGA architecture. Xilinx FPGAs consist of a fabric of programmable
routing with interspersed logic and hard core components such as multipliers and memories.

device-level components and generates an NCD file. Place and Route (PAR) places the

device-level components identified by Map onto specific components of the specified device,

routes the programmable interconnects, and outputs an NCD file. Finally, Bitgen gener-

ates the bitstream configuration file from the fully-specified NCD file. The bitstream is then

stored and loaded onto the FPGA for configuration.

A.2 Partial Reconfiguration

Modern Xilinx FPGAs provide a means of reconfiguring only a portion of the FPGA

42

Fig. A.2: Xilinx tool flow. The process of translating an HDL circuit into a bitstream
configuration involves five different tools.

43

instead of reprogramming the entire FPGA. This functionality is called partial reconfigura-

tion (PR) or partial, dynamic reconfiguration (PDR) [12]. Instead of generating full-device

bitstreams, partial reconfiguration allows smaller, partial bitstreams to be generated which

modify the configuration of only the region of the FPGA addressed by the bitstream, as in

figure A.3. Additionally, during the process of partial reconfiguration the non-reconfigured

regions are able to remain active, meaning the entire design does not need to stop working

because one portion of the design is being swapped out with an alternate configuration.

Partial reconfiguration has natural application to reconfigurable computing, allowing

the existence of fixed logic on the FPGA with various variable logic blocks that are pop-

ulated at run-time based on current algorithmic needs. Typical applications of partial

reconfiguration target time-sharing and hardware paging. For instance, in linear algebra

applications, partial reconfiguration can be used to swap linear algebra kernels, where only

a single kernel needs to be operating on data at a given time. Matrix data can be stored in a

fixed-side memory with an attached variable-side partial reconfiguration block. The partial

reconfiguration block is then populated at run-time with the desired linear algebra kernel.

Throughout the life of the circuit, various operations in various sequences may be performed

on the data including transpositions, inversions, determinant calculation, domain mapping

and, and least squares solving. Without partial reconfiguration each of these tasks would

need to statically exist in the fabric of the FPGA. With partial reconfiguration they all

utilize a common area. Thus, partial reconfiguration allows the use of smaller, lower power

FPGAs than might otherwise be required.

Like as in linear algebra applications, partial reconfiguration is naturally applicable

to signal processing and software-defined radio. Signal processing generally consists of a

collection of kernel operations that are performed on data in various sequences to perform

various tasks. Statically enumerating each possible operation in the FPGA circuit is phys-

ically unpractical, especially since only one or a handful of operations are ever active on

a given stream of data. Partial reconfiguration allows the design of a reconfigurable com-

puter where data is fed to signal processing operational blocks, but the specific operation

44

Fig. A.3: Partial reconfiguration. In Xilinx FPGAs, partial reconfiguration allows reconfig-
uring only a portion of the FPGA with different configurations while the remainder of the
FPGA remains active.

being performed by each block is varying and not specified until run-time. A library of sig-

nal processing kernels is then created that can be used to populate each operational block

according the temporally varying needs of the system.

An alternative to partial reconfiguration is total reconfiguration, where the entire de-

vice is reprogrammed. Total reconfiguration is appropriate in many cases and, because of

simplicity, is generally used whenever possible. Some applications utilizing partial reconfig-

uration can still work with total reconfiguration, but full-bitstreams must be generated for

every desired combination of modules in each of the reconfigurable regions. This may prove

unbearable in terms of bitstream storage memory. Partial reconfiguration allows the storage

of only the individual modules and eliminates the need to enumerate each combination of

modules in multiple-reconfigurable-region systems.

45

A.3 Bitstream Relocation

In Xilinx FPGAs, bitstream configurations are generated for specific locations (ad-

dresses) on the device, not for specific resource regions across the device. However, the

bitstream configurations between two different regions of identical composition is generally

the same. Researchers have utilized this structure to allow relocation of a bitstream initially

built for one address to be moved to another address on the FPGA [25–28], as in figure A.4.

While bitstream relocation is not generally required for a particular task, bitstream

relocation does offer some substantial advantages over the alternative, strictly partial re-

configuration. Without relocation, separate configuration bitstreams must be generated

for each possible placement location of a module. This can result in libraries of several to

dozens of bitstreams describing the same circuit and only varying, typically, in their desti-

nation addresses. This results in a large amount of replication and memory waste. Also,

the process of generating each bitstream is laborious and time-intensive; generating only

one instance per module saves time and effort.

While the key functionality is provided by partial reconfiguration, bitstream relocation

assists in a practical realization of partial reconfiguration. Bitstream relocation creates a

more stream-lined, efficient method of managing partial reconfiguration modules and, once

implemented and integrated, greatly reduces the complexity and memory requirements of

partial reconfiguration use.

46

Fig. A.4: Relocation. While not officially supported by Xilinx, relocation allows moving a
module generated for one region to other identically shaped and constituted regions.

47

Appendix B

Xilinx EDK Design

The System Controller, Reconfiguration Controller, and EPIC blocks were all imple-

mented as a Microblaze soft-processor system using Xilinx’s EDK tool [29]. Due to lack of

time, the software for the processor was not implemented, but the system was completely

designed and integrated using EDK in order to get accurate sizing estimates. Figures B.1

and B.2 show the block diagram of the designed system.

48

Fig. B.1: EDK controller system block diagram part 1. EDK was used to design and
implement the static controller logic including the system controller, the reconfiguration
controller, and the EPIC. This block diagram, generated by EDK, shows the architecture
of the generated soft-processor, its peripherals and busses (continued to figure B.2).

49

Fig. B.2: EDK controller system block diagram part 2. EDK was used to design and
implement the static controller logic including the system controller, the reconfiguration
controller, and the EPIC. This block diagram, generated by EDK, shows the architecture
of the generated soft-processor, its peripherals and busses (continued from figure B.1).

50

Appendix C

Architecture Source Code

Complete source code for the xc5vlx110t implementation of the architecture at the

time of publication is available on the Appendix CD.

	Design of an Adaptable Run-Time Reconfigurable Software-Defined Radio Processing Architecture
	Recommended Citation

	tmp.1293126762.pdf.hxdUo

