1,085 research outputs found

    A Feasibility Study of Internal and External Based System for Pipeline Leak Detection in Upstream Petroleum Industry

    Get PDF
    Offshore underwater pipelines leaks begin at poor joints, corrosions and cracks and slowly progress to a major leakage. Accidents, terror, sabotage, or theft are some of human factor of pipeline leak. The primary purpose of Pipeline Leak Detection Systems(PLDS) is to assist pipeline managers in detecting and locating leaks earlier. PLDS provides an alarm and display other related data to the pipeline engineers for their decision-making. It is also beneficial because of PLDS can enhance their productivity by reduced downtime and inspection time. PLDS can be divided into internally base PLDS and external hardware base PLDS. The purpose of this paper is to study the various types of leak detection systems based on internal and externally system simultaneously.Meanwhile to define a set of key criteria for evaluating the characteristics of this system and provide an evaluation method of leak detection technology as a guideline of choosing the appropriate system in the future

    Structural Health Monitoring of Pipelines in Radioactive Environments Through Acoustic Sensing and Machine Learning

    Get PDF
    Structural health monitoring (SHM) comprises multiple methodologies for the detection and characterization of stress, damage, and aberrations in engineering structures and equipment. Although, standard commercial engineering operations may freely adopt new technology into everyday operations, the nuclear industry is slowed down by tight governmental regulations and extremely harsh environments. This work aims to investigate and evaluate different sensor systems for real-time structural health monitoring of piping systems and develop a novel machine learning model to detect anomalies from the sensor data. The novelty of the current work lies in the development of an LSTM-autoencoder neural network to automate anomaly detection on pipelines based on a fiber optic acoustic transducer sensor system. Results show that pipeline events and faults can be detected by the MLM developed, with a high degree of accuracy and low rate of false positives even in a noisy environment near pumps and machinery

    Pipeline leak detection

    Get PDF
    In the present research two techniques are applied for leak detection in pipelines. The first method is a hardware-based technique which uses ultrasonic wave\u27s emission for pipeline inspection. Ultrasonic waves are propagated in the pipe walls and reflected signal from leakage will be used for pipe analysis. Several Pipes with various dimensions and characteristics are modeled by finite element method using ANSYS. Second order longitudinal modes of ultrasonic waves are emitted in their walls. For this purpose, excited frequency is calculated such that it excites the second order longitude mode. In order to investigate the behavior of emitted wave in contact with leakage, four sensors are used in outer surface of pipe. Waves are reflected when encountering leakage and the leak location is recognized knowing the wave emission speed and flight time of backscattered signals. Wavelet transform is used for processing these signals and recognizing leak location. This method is tested on several pipe models and it presents satisfactory results for short pipes. The second approach is a software-based method which works based on the transient model of the pipeline. In this method the outputs from simulated pipeline are compared to those measured from flow meters and if their difference goes beyond a threshold value, leak is detected. For leak localization a gradient pressure technique is applied which needs pressure slope measurements at inlet and outlet of the pipeline. Several cases with leak at various positions are studied. This method works well with high accuracy for long pipelines. --Abstract, page iii

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Leveraging Optical Communication Fiber and AI for Distributed Water Pipe Leak Detection

    Full text link
    Detecting leaks in water networks is a costly challenge. This article introduces a practical solution: the integration of optical network with water networks for efficient leak detection. Our approach uses a fiber-optic cable to measure vibrations, enabling accurate leak identification and localization by an intelligent algorithm. We also propose a method to access leak severity for prioritized repairs. Our solution detects even small leaks with flow rates as low as 0.027 L/s. It offers a cost-effective way to improve leak detection, enhance water management, and increase operational efficiency.Comment: Accepte

    Localization Techniques for Water Pipeline Leakages: A Review

    Get PDF
    Pipeline leakages in water distribution network (WDN) is one of the prominent issues that has gain an interest among researchers in the past few years. Time and accuracy play an important role in leak localization as it has huge impact to the human population and economic point of view. The complexity of WDN has prompt numerous techniques and methods been introduced focusing on the accuracy and efficacy. In general, localization techniques can be divided into two broad categories; external and internal systems. This paper reviews some of the techniques that has been explored and proposed including the limitations of each techniques. Â

    Brillouin distributed fiber sensors: an overview and applications

    Get PDF
    A review focused on real world applications of Brillouin distributed fiber sensors is presented in this paper. After a brief overview of the theoretical principles, some works to face the two main technical challenges (large dynamic range and higher spatial resolution) are commented. Then an overview of some real and on-field applications is done.This work has been supported by the Spanish TEC2010-20224-C02-02 Project

    Studies on Distributed Brillouin Scattering Technique for Monitoring of Lifeline Structures

    Get PDF
    420-427Pipeline networks are the most efficient means for transporting large quantities of oil and gas through large distances. These pipelines cross different geographical terrains and are subjected to different manmade and natural hazards. Also these pipelines are prone to failures due to aging. Leakage in pipelines, particularly those carrying fuels is very dangerous as it leads to environmental pollution and also fatal accidents. The pipeline infrastructure industry has seen extensive growth in the recent years and hence there is a huge necessity for the development of real time pipeline monitoring technologies for reliable and safe operation of pipeline networks. Presently, health assessment and real time monitoring is gaining popularity among the researchers as it provides quality information on the performance of complex systems during its operation. There are different types of technologies developed for real time monitoring of pipelines using distributed fiber optic sensors, acoustic emission techniques and guided wave techniques. This paper presents in detail the theory of brillouin based distributed optical fiber sensing technology and studies carried out using the distributed fiber sensing for monitoring strain and temperature profiles through laboratory experimental investigations. Experimental investigations were carried out by simulating leakage in pipelines filled with hot water to study the performance of the distributed fiber sensors. Leakage was simulated in pipelines by drilling small holes at predetermined locations. Detection time was from 5 to 10 minutes and location of leakage was exactly detected with the spatial resolution of 80 mm. Brillouin based distributed fiber sensing system is a promising technique for monitoring long distance pipelines
    corecore