522 research outputs found

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    A Study on Comparison of Classification Algorithms for Pump Failure Prediction

    Get PDF
    The reliability of pumps can be compromised by faults, impacting their functionality. Detecting these faults is crucial, and many studies have utilized motor current signals for this purpose. However, as pumps are rotational equipped, vibrations also play a vital role in fault identification. Rising pump failures have led to increased maintenance costs and unavailability, emphasizing the need for cost-effective and dependable machinery operation. This study addresses the imperative challenge of defect classification through the lens of predictive modeling. With a problem statement centered on achieving accurate and efficient identification of defects, this study’s objective is to evaluate the performance of five distinct algorithms: Fine Decision Tree, Medium Decision Tree, Bagged Trees (Ensemble), RUS-Boosted Trees, and Boosted Trees. Leveraging a comprehensive dataset, the study meticulously trained and tested each model, analyzing training accuracy, test accuracy, and Area Under the Curve (AUC) metrics. The results showcase the supremacy of the Fine Decision Tree (91.2% training accuracy, 74% test accuracy, AUC 0.80), the robustness of the Ensemble approach (Bagged Trees with 94.9% training accuracy, 99.9% test accuracy, and AUC 1.00), and the competitiveness of Boosted Trees (89.4% training accuracy, 72.2% test accuracy, AUC 0.79) in defect classification. Notably, Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbors (KNN) exhibited comparatively lower performance. Our study contributes valuable insights into the efficacy of these algorithms, guiding practitioners toward optimal model selection for defect classification scenarios. This research lays a foundation for enhanced decision-making in quality control and predictive maintenance, fostering advancements in the realm of defect prediction and classification

    A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning.

    Get PDF
    Centrifugal pumps are the most vital part of any process industry. A fault in centrifugal pump can affect imperative industrial processes. To ensure reliable operation of the centrifugal pump, this paper proposes a novel automated health state diagnosis framework for centrifugal pump that combines a signal to time-frequency imaging technique and an Adaptive Deep Convolution Neural Network model (ADCNN). First, the vibration signals corresponding to different health conditions of the centrifugal pump are acquired. Vibration signals obtained from the centrifugal pump carry a great deal of information and generally, statistical features are extracted from the vibration signals to retain meaningful fault information. However, these features are either insensitive to weak incipient faults or unsuitable for tracking severe faults, thus, decreasing the fault classification accuracy. To tackle this problem, a signal to time-frequency imaging technique is applied to the pump vibration signals. For this purpose, Continuous Wavelet Transform (CWT) is applied to decompose the vibration signals over different time-frequency scales and extract the pump fault information in both the time and frequency domains. The CWT scales form two-dimensional time-frequency images commonly referred to as scalograms. The CWT scalograms are then converted into grayscale images (SGI). Over the past few decades, CNN models have been established as an effective practice to process images for classification and pattern recognition. Consequently, the extracted CWTSGIs are finally provided as inputs to the proposed ADCNN architecture to achieve feature extraction and classification for centrifugal pump faults. The performance of the proposed diagnostic framework (CWTSGI + ADCNN) is validated with a vibration dataset collected from a testbed specifically designed for centrifugal pump diagnosis. The experimental results suggest that the proposed technique based on CWTSGI and ADCNN outperformed existing methods with an average performance improvement of 4.7 - 15.6%

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Detecting and Diagnosing Incipient Building Faults Using Uncertainty Information from Deep Neural Networks

    Full text link
    Early detection of incipient faults is of vital importance to reducing maintenance costs, saving energy, and enhancing occupant comfort in buildings. Popular supervised learning models such as deep neural networks are considered promising due to their ability to directly learn from labeled fault data; however, it is known that the performance of supervised learning approaches highly relies on the availability and quality of labeled training data. In Fault Detection and Diagnosis (FDD) applications, the lack of labeled incipient fault data has posed a major challenge to applying these supervised learning techniques to commercial buildings. To overcome this challenge, this paper proposes using Monte Carlo dropout (MC-dropout) to enhance the supervised learning pipeline, so that the resulting neural network is able to detect and diagnose unseen incipient fault examples. We also examine the proposed MC-dropout method on the RP-1043 dataset to demonstrate its effectiveness in indicating the most likely incipient fault types

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging

    A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study

    Get PDF
    Rotor bars are one of the most failure-critical components in induction machines. We present an approach for developing a rotor bar fault identification classifier for induction machines. The developed machine learning-based models are based on simulated electrical current and vibration velocity data and measured vibration acceleration data. We introduce an approach that combines sequential model-based optimization and the nested cross-validation procedure to provide a reliable estimation of the classifiers’ generalization performance. These methods have not been combined earlier in this context. Automation of selected parts of the modeling procedure is studied with the measured data. We compare the performance of logistic regression and CatBoost models using the fast Fourier-transformed signals or their extracted statistical features as the input data. We develop a technique to use domain knowledge to extract features from specific frequency ranges of the fast Fourier-transformed signals. While both approaches resulted in similar accuracy with simulated current and measured vibration acceleration data, the feature-based models were faster to develop and run. With measured vibration acceleration data, better accuracy was obtained with the raw fast Fourier-transformed signals. The results demonstrate that an accurate and fast broken rotor bar detection model can be developed with the presented approach

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    A novel bearing multi-fault diagnosis approach based on weighted permutation entropy and an improved SVM ensemble classifier

    Get PDF
    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section
    • 

    corecore