10 research outputs found

    Uniqueness and existence of an outgoing solution of Helmholtz problem using Green's formula

    Get PDF
    In this article,  first we present a new approach based on Green's formula, to describe the uniqueness and existence of the solution of the Helmholtz equation. By imposing at infinity the outgoing wave condition or also called Sommerfeld radiation condition, we show how it is possible to define in a natural way an outgoing solution of the Helmholtz equation based on physical arguments. Then, we resolve the exterior problem, given by the scattering of time-harmonic acoustic wave by sound-soft obstacle, which leads to find a radiating solution  to the Helmholtz equation

    A multiscale method for the double layer potential equation on a polyhedron

    Get PDF
    This paper is concerned with the numerical solution of the double layer potential equation on polyhedra. Specifically, we consider collocation schemes based on multiscale decompositions of piecewise linear finite element spaces defined on polyhedra. An essential difficulty is that the resulting linear systems are not sparse. However, for uniform grids and periodic problems one can show that the use of multiscale bases gives rise to matrices that can be well approximated by sparse matrices in such a way that the solutions to the perturbed equations exhibits still sufficient accuracy. Our objective is to explore to what extent the presence of corners and edges in the domain as well as the lack of uniform discretizations affects the performance of such schemes. Here we propose a concrete algorithm, describe its ingredients, discuss some consequences, future perspectives, and open questions, and present the results of numerical experiments for several test domains including non-convex domains

    Piecewise polynomial collocation for the double layer potential equation over polyhedral boundaries.

    Get PDF
    In this paper we consider a piecewise polynomial method for the solution of the double layer potential equation corresponding to Lapalce's equation in a three-dimensional wedge. We prove the stability for our method in case of special triangulations over the boundaty

    Fast wavelet collocation methods for second kind integral equations on polygons

    Get PDF
    In this thesis we develop fast wavelet collocation methods for integral equations of the second kind with weakly singular kernels over polygons . For this purpose, we construct multiscale wavelet functions and collocation functionals having vanishing moments. Moreover, we propose several truncation strategies, which lead to fast algorithms, for the coefficient matrix of the corresponding discrete system. Critical issues for numerical implementation of such methods are considered, such as choices of practical truncation strategies, numerical integration of weakly singular integrals, error controls of numerical quadrature and numerical solutions of resulting compressed linear systems. Numerical experiments are given to demonstrate proposed ideas and methods. Finally, parallel computing using developed methods is investigated.;That this work received partial support from the US NSF grant EPSCoR-0132740

    Contributions To The Methodology Of Electrocardiographic Imaging (ECGI) And Application Of ECGI To Study Mechanisms Of Atrial Arrhythmia, Post Myocardial Infarction Electrophysiological Substrate, And Ventricular Tachycardia In Patients

    Get PDF
    ABSTRACT OF THE DISSERTATION Contributions to the Methodology of Electrocardiographic Imaging: ECGI) and Application of ECGI to Study Mechanisms of Atrial Arrhythmia, Post Myocardial Infarction Electrophysiological Substrate, and Ventricular Tachycardia in Patients by Yong Wang Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2009 Professor Yoram Rudy, Chair Electrocardiographic Imaging: ECGI) is a noninvasive imaging modality for cardiac electrophysiology and arrhythmia. ECGI reconstructs epicardial potentials, electrograms and isochrones from body-surface electrocardiograms combined with heart-torso geometry from computed tomography: CT). The application of a new meshless method, the Method of Fundamental Solutions: MFS) is introduced to ECGI with the following major advantages: 1. Elimination of meshing and manual mesh optimization processes, thereby enhancing automation and speeding the ECGI procedure. 2. Elimination of mesh-induced artifacts. 3. Simpler implementation. These properties of MFS enhance the practical application of ECGI as a clinical diagnostic tool. The current ECGI mode of operation is offline with generation of epicardial potential maps delayed to data acquisition. A real time ECGI procedure is proposed, by which the epicardial potentials can be reconstructed while the body surface potential data are acquired: \u3c 1msec/frame) during a clinical procedure. This development enables real-time monitoring, diagnosis, and interactive guidance of intervention for arrhythmia therapy. ECGI is applied to map noninvasively the electrophysiological substrate in eight post-MI patients during sinus rhythm: SR). Contrast-enhanced MRI: ceMRI) is conducted to determine anatomical scar. ECGI imaged regions of electrical scar corresponded closely in location, extent, and morphology to the anatomical scars. In three patients, late diastolic potentials are imaged in the scar epicardial border zone during SR. Scar-related ventricular tachycardia: VT) in two patients are imaged, showing the VT activation sequence in relation to the abnormal electrophysiological substrate. ECGI imaging the substrate in a beat-by-beat fashion could potentially help in noninvasive risk stratification for post-MI arrhythmias and facilitate substrate-based catheter ablation of these arrhythmias. ECGI is applied to eleven consecutive patients referred for VT catheter ablation procedure. ECGI is performed either before: 8 patients) or during: 3 patients) the ablation procedure. Blinded ECGI and invasive electrophysiology: EP) study results are compared. Over a wide range of VT types and locations, ECGI results are consistent with EP data regarding localization of the arrhythmia origin: including myocardial depth) and mechanism: focal, reentrant, fascicular). ECGI also provides mechanistic electrophysiological insights, relating arrhythmia patterns to the myocardial substrate. The study shows ECGI has unique potential clinical advantages, especially for hemodynamically intolerant VT or VT that is difficult to induce. Because it provides local cardiac information, ECGI may aid in better understanding of mechanisms of ventricular arrhythmia. Further prospective trials of ECGI with clinical endpoints are warranted. Many mechanisms for the initiation and perpetuation of atrial fibrillation: AF) have been demonstrated over the last several decades. The tools to study these mechanisms in humans have limitations, the most common being invasiveness of a mapping procedure. In this paper, we present simultaneous noninvasive biatrial epicardial activation sequences of AF in humans, obtained using the Electrocardiographic Imaging: ECGI) system, and analyzed in terms of mechanisms and complexity of activation patterns. We performed ECGI in 36 patients with a diagnosis of AF. To determine ECGI atrial accuracy, atrial pacing from different sites was performed in six patients: 37 pacing events), and ECGI was compared to registered CARTO images. Then, ECGI was performed on all 36 patients during AF and ECGI epicardial maps were analyzed for mechanisms and complexity. ECGI noninvasively imaged the low-amplitude signals of AF in a wide range of patients: 97% procedural success). The spatial accuracy in determining initiation sites as simulated by atrial pacing was ~ 6mm. ECGI imaged many activation patterns of AF, most commonly multiple wavelets: 92%), with pulmonary vein: 69%) and non-pulmonary vein: 62%) trigger sites. Rotor activity was seen rarely: 15%). AF complexity increased with longer clinical history of AF, though the degree of complexity of nonparoxysmal AF varied and overlapped. ECGI offers a way to identify unique epicardial activation patterns of AF in a patient-specific manner. The results are consistent with contemporary animal models of AF mechanisms and highlight the coexistence of a variety of mechanisms among patients

    Piecewise polynomial collocation for boundary integral equations

    No full text
    Abstract. This paper considers the numerical solution of boundary integral equations of the second kind, for Laplace's equation u = 0 on connected regions D in R 3 with boundary S. The boundary S is allowed to be smooth or piecewise smooth � and we let f K j 1 K N g be a triangulation ofS. The numerical method is collocation with approximations which are piecewise quadratic in the parametrization variables, leading to a numerical solution uN: Superconvergence results for uN are given for S a smooth surface and for a special type of re nement strategy for the triangulation. We show u; uN is O ( 4 log) at the collocation node points, with the mesh size for f Kg. Error analyses are given are given for other quantities � and an important error analysis is given for the approximationofS by piecewise quadratic interpolation on each triangular element, with S either smooth or piecewise smooth. The convergence result we prove isonlyO ( 2) � but the numerical experiments suggest the result is O ( 4) for the error at the collocation points, especially for S a smooth surface. The numerical integration of the collocation integrals is discussed, and extended numerical examples are given for problems involving both smooth and piecewise smooth surfaces. Key words. Integral equations, quadrature interpolation, Laplace's equation, numerical integration AMS subject classi cations. 65R20, 35J05, 45L10, 65D05, 65D3

    Indirect boundary element methods for modelling bubbles under three dimensional deformation

    Get PDF
    The nonlinear behaviour of gas and vapour bubbles is a complex phenomenon which plays a signi cant role in many natural and man-made processes. For example, bubbles excited by an acoustic eld play important roles in lithotripsy, drug delivery, ultrasonic imaging, surface cleaning and give rise to the phenomenon of sonoluminescence (light emission from a bubble excited by sound). In such contexts, the oscillation of even a single bubble is not yet fully understood, let alone the behaviour of multiple bubbles interacting with each other. An essential part of understanding such problems is un- derstanding the complex and sometimes unpredictable coupling between the oscillation of the bubble volume and the bubble shape, a problem requiring experimental research, theoretical work and numerical studies. In this Thesis we focus on numerical simulation of a single gas bubble oscillating in a free liquid. Previously, such numerical simulations have al- most exclusively assumed axisymmetry and small amplitude oscillations. To avoid these assumptions we build upon and extend previous boundary ele- ment methods used for three dimensional simulations of other bubble prob- lems. We use high order elements and parallel processing to yield an indirect boundary element method capable of capturing ne surface e ects on three dimensional bubbles subjected to surface tension, over extended periods of time. We validate the method against the classical Rayleigh-Plesset equation for spherical oscillation problems before validating the indirect boundary el- ement method and the method used by Shaw (2006), against each other, on several small amplitude axisymmetric oscillation problems. We then proceed to study near-resonant non-axisymmetric shape oscillations of order 2 and 4 and the e ect these oscillations have on higher order modes, with a level of detail we believe has not been achieved in a non-axisymmetric study before. We also con rm some predictions made by Pozrikidis' on resonant interac- tions between the second order modes and the volume mode in addition. Finally we study the spherical instability of a bubble trapped in a uniform acoustic eld, demonstrating, as expected, that instabilities show up in all resonant shape modes, including non-axisymmetric ones.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore