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Fast Wavelet Collocation Methods for Second Kind Integral Equations on

Polygons

Yi Wang

(ABSTRACT)

In this thesis we develop fast wavelet collocation methods for integral equations of the second

kind with weakly singular kernels over polygons. For this purpose, we construct multiscale

wavelet functions and collocation functionals having vanishing moments. Moreover, we pro-

pose several truncation strategies, which lead to fast algorithms, for the coefficient matrix

of the corresponding discrete system. Critical issues for numerical implementation of such

methods are considered, such as choices of practical truncation strategies, numerical inte-

gration of weakly singular integrals, error controls of numerical quadrature and numerical

solutions of resulting compressed linear systems. Numerical experiments are given to demon-

strate proposed ideas and methods. Finally, parallel computing using developed methods is

investigated.

That this work received partial support from the US NSF grant EPSCoR-0132740.
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Chapter 1

Introduction

In this thesis we develop fast wavelet collocation methods for solving Fredholm integral

equations of the second kind on polygons. We consider integral equations of the form

u(t) −
∫

E

K(s, t) u(s) ds = f(t), t ∈ E, (1.1)

where E is a polygon in R
2, and the kernel K(s, t) is a weakly singular function on E × E.

Introducing an operator

(Ku)(t) =

∫

E

K(s, t)u(s)ds, t ∈ E,

(1.1) can be written into

(I − K)u = f. (1.2)

This type of equations has many important applications including boundary integral equa-

tions [At1, At2] and radiosity equations [ACr, AC2]. There have been many theoretical

studies as well as numerical methods on such Fredholm integral equations of the second kind

(cf. [At2, K]).

Using a conventional method such as Galerkin method or collocation method to discretize

an integral equation will lead to a linear system with a full coefficient matrix. It’s compu-

tationally costly to generate the full coefficient matrix. Especially, when higher dimensional

integral equations are considered, the computational cost to generate the full coefficient ma-

trix is formidable. Therefore fast algorithms are extremely crucial for numerical solutions of

1
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integral equations. Recently, wavelet methods have been playing important roles in seeking

fast algorithms for numerical solutions of integral equations.

Wavelet Galerkin methods and Petrov-Galerkin methods were investigated recently by [Al,

BCR, CMX1, CMX2, DPS1, DPS2, MXZ, PS, PSS, R] as well as references cited therein.

A fast multilevel method was developed in [CMX4] using a multilevel decomposition of the

approximation space. [DPS2, MXZ] studied compression strategies with slightly different

focuses. [DPS2] studied wavelet Galerkin methods using periodic wavelets based on refine-

ment equations for periodic problems, while [MXZ] developed wavelet Galerkin methods

using piecewise polynomial wavelets. One advantage of using piecewise polynomial wavelets

is that the wavelet functions have close forms which provide convenience for computation.

The implementation of wavelet Galerkin methods based on refinement equations was done

in [DKPS]. The implementation of wavelet Galerkin methods based on piecewise polynomial

wavelets was done in [FWX]. These methods use L2 analysis and therefore the vanishing

moments of the multiscale basis functions naturally lead to matrix truncation schemes.

Collocation methods due to lower computational cost for evaluations of integrals (for example

, see [At1, AC1, CX]), receive more favorable attention from engineering fields. Yet less

attention has been paid to them. For collocation methods, the appropriate space to work in

is L∞ and, this causes challenging technical obstacles for identifying good matrix truncation

strategies. The recent major work in this area is done in [CMX3]. [CMX3] provides a

theoretical framework of fast wavelet collocation methods for solving integral equations on

invariant domains associated with families of contractive mappings. [CWX2] studies the

actual computation of 1-D integral equations using methods proposed in [CMX3].

Based on the framework discussion in [CMX3], it is the purpose of this thesis to inves-

tigate actual computing methods for 2-D wavelet collocation methods. By constructing

semi-biorthogonal wavelets and collocation functionals for 2-D collocation scheme, practical

matrix truncation strategies are studied. Theses practical strategies lead to fast algorithms

for solving integral equations. The 2-D wavelets are constructed on invariant domains and

have simple expressions. Both wavelet basis functions and associated collocation functionals

have vanishing moments of certain degrees and multilevel structures. The collocation func-
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tionals are constructed through set wavelets. Results from the truncated system have the

same accuracy and convergence order as those from uncompressed ones, yet the computing

cost is dramatically reduced from O(N 2) to O(N logN), where N is the dimension of the

approximation space. The approximation solution has a convergence order of O(N k/2 logN),

where k is the total degree of piecewise polynomials in the approximation space. The con-

dition number of the compressed coefficient matrix is of order O(log2N). The methods

developed in this thesis have application not only to the integral equations, but also can be

used to solve certain 3-D boundary value problems.

More specifically, In chapter 2 we briefly review the methods proposed in [CMX3]. In

Chapter 3, we develop our wavelet collocation methods on the unit triangle. The multilevel

wavelet basis and collocation functionals on the unit triangle are constructed. Properties of

the constructed wavelets and collocation functionals are also investigated. A reconstruction

algorithm of the sought function is also discussed in this chapter. In Chapter 3, we discuss

how to compute the coefficient matrix in detail. Other critical issues are considered too,

such as, compressing schemes, computation of integrals with singular kernels, and solutions

of the resulting linear system. We provide two practical truncation strategies based on the

theoretical truncation strategy proposed in [CMX3]. An efficient adaptive quadrature rule

for computing singular double integrals is also proposed. The control of errors introduced

from the numerical integration is analyzed. Moreover, we develop a multilevel iterative

method solving resulting sparse linear systems by adapting ideas proposed in [FMX]. In

Chapter 5, fast wavelet methods on polygons are developed based on methods on the unit

triangle and triangulations of polygons. In Chapter 6, we combine all proposed methods

together to solve a number of examples to demonstrate accuracies and efficiencies of proposed

methods. Parallel computing algorithms and their implementation in a Beowulf cluster are

also investigated and demonstrated.



Chapter 2

Fast Wavelet Collocation Methods

2.1 Multiscale Collocation Schemes

In this chapter we briefly review the methods developed in [CMX3] for solving Fredholm

integral equations of the second kind. Let E be a compact set with star shape in the d-

dimensional Euclidean space R
d, and let X = L∞(E), V = C(E). Suppose that K is a

weakly singular kernel, that is , for every s ∈ E, K(s, .) ∈ L1(E). Therefore, the operator

K : X → V defined by

(Ku)(s) :=

∫

E

K(s, t)u(t)dt, s ∈ E (2.1)

is compact in X. We consider Fredholm integral equations of the second kind

u−Ku = f, (2.2)

where f ∈ X is a given function and u ∈ X is the unknown to be determined. By Fredholm

alternative theorem, when the corresponding homogeneous equation has only trivial solution,

equation (2.2) has a unique solution in X.

Let the index set N0 := {0, 1, . . .}. Assume that a sequence of approximation spaces Fn, n ∈
N0 of X, satisfying

Fn ⊆ Fn+1, n ∈ N0 (2.3)

4
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and

V ⊆
⋃

n∈N0

Fn. (2.4)

By the nestedness (2.3) Fn can be further decomposed into the direct sum of a family of

spaces

Fn = W0 ⊕ W1 ⊕ . . .⊕ Wn. (2.5)

where spaces Wn have multiscale structures and will be constructed as piecewise polynomial

functions on E. Note F0 = W0. Let w(n) := dimWn and, we have that

f(n) := dimFn =
∑

r∈Zn+1

w(r), (2.6)

where, Zm := {0, 1, . . . ,m − 1}. A multiscale partition of the set E is also needed for the

wavelet collocation method. It consists of a family of partitions {En : n ∈ N0} of E. For each

n ∈ N0 the partition En consists of a family of subsets {Eni : i ∈ Ze(n), e(n) = cw(n), n ≥ 0}
of E with the properties

meas(Eni ∩ Eni′) = 0, i, i′ ∈ Ze(n), i 6= i′, (2.7)

and
⋃

i∈Ze(n)

Eni = E. (2.8)

Where c is a generic constant in this thesis. (We sometimes also use C for the generic

constant). When n = 0 the set E is the only cell in the partition. See Fig. 2.1 for

an example of partitions when E is the unit triangle. Further, the partition En has the

following property. Namely, for some positive constants c−, c+ and all n ∈ N0

c−µ
−n/d ≤ max{d(En,i) : i ∈ Ze(n)} ≤ c+µ

−n/d. (2.9)

where d is the spatial dimension, and µ is a constant positive integer. For a set A ⊂ R
d, d(A)

represents the diameter of A, i.e.,

d(A) := sup{|x− y| : x, y ∈ A}, (2.10)

and |.| denotes the Euclidean norm on the space R
d. The family of partitions {En : n ∈ N0}

is used to specify supports of both basis functions and linear functionals. Specifically, assume

Wn := spanWn, n ∈ N0, (2.11)
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n=1 n=2n=0 

Figure 2.1: Multiscale partitions of the unit triangle Ω

where, Wn := {wnm : m ∈ Zw(n)}. The basis function wnm are required to be locally

supported and their supports are shrinking as level n increases. Denote the support of the

function wnm by Snm. Snm is contained in Eni for some i ∈ Ze(n).

On the other hand, a set of linear functionals in V
∗ given by

Ln := {`nm : m ∈ Zw(n)}, n ∈ N0. (2.12)

is introduced. Where, V
∗ is the dual space of V, and the linear functional `nm is a finite sum

of point evaluations

`nm =
∑

s∈Ênm

csδs, (2.13)

where cs are constants and Ênm is considered as the “support” of the functional `nm. Ênm is

a finite subset of distinct points in Enm with its cardinality bounded independent of n ∈ N.

For any s ∈ E, δs denotes the linear functional in V
∗ defined for v ∈ V by the equation

〈δs, v〉 = v(s). We shall need to evaluate δs on functions in X. Therefore, as in [AGS] we

take any norm preserving extension of δs to X and use the same notation for the extension.

In particular, this extension allows us to evaluate piecewise polynomials on E.

The linear functionals and multiscale basis functions are constructed such that, for any

n, n′ ∈ N0

〈`n′m′ , wnm〉 = δnn′δmm′ , (n,m), (n′,m′) ∈ U, n ≤ n′, (2.14)
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where U := {(i, j) : i ∈ N0, j ∈ Zw(i)} and δii′ is the Kronecker delta. Moreover, for some

positive constant γ,

∑

m∈Zw(n)

|〈`n′m′ , wnm〉| ≤ γ, (n,m), (n′,m′) ∈ U, n > n′. (2.15)

To solve (2.2) using collocation scheme, a vector un := [uij : (i, j) ∈ Un], where Un is the

set of lattice points in R
2 defined as {(i, j) : j ∈ Zw(i), i ∈ Zn+1}, is sought such that the

function

un :=
∑

(i,j)∈Un

uijwij (2.16)

in Fn satisfies

〈`i′j′ , un −Kun〉 = 〈li′j′ , f〉, (i′, j′) ∈ Un. (2.17)

Equivalently, a linear system of equations

(En − Kn)un = fn, (2.18)

is obtained, where

Kn := [〈`i′j′ ,Kwij〉]f(n)×f(n), (2.19)

En := [〈`i′j′ , wij〉]f(n)×f(n), (2.20)

and

fn := [〈li′j′ , f〉 : (i′, j′) ∈ Un]. (2.21)

2.2 General Construction of Multiscale Functions and

Functionals

We start with a positive integer µ and a family of contractive affine mappings on R
d Φ :=

{φe : e ∈ Zµ}. It is known (see, [H]) that there exists a unique compact subset E ∈ R
d such

that

Φ(E) = E, (2.22)
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where

Φ(E) :=
⋃

e∈Zµ

φe(E). (2.23)

The set E is called the invariant set associated with the family of mappings Φ. Additional

restriction to the family of mappings Φ is made:

(a) For every e ∈ Zµ, φ−1
e is continuous on E;

(b) The set E has non-empty interior and

meas(φe(E) ∩ φe′(E)) = 0, e, e′ ∈ Zµ, e 6= e′. (2.24)

Φ is used to obtain multiscale partitions {En : n ∈ Z0} of the set E. To this end, let

e := (e0, e1, . . . , en−1) ∈ Z
n
µ := Zµ × . . .× Zµ. Define a composite mapping

φe := φe0 ◦ φe1 ◦ . . . ◦ φen−1 (2.25)

and a number

µ(e) := µn−1e0 + . . .+ µen−2 + en−1. (2.26)

Since E is an invariant set with respect to Φ and conditions (a) with (b) it follows that the

collection of sets

En := {En,e : En,e = φe(E), e ∈ Z
n
µ} (2.27)

form a partition of E. Let Fn be the spaces of all functions such that their restriction to any

cell En,e, e ∈ Zn
µ is a polynomial of total degree ≤ k − 1, k ≥ 1. Therefore

m := dimF0 =





k + d− 1

d



 . (2.28)

Let

G0 = {tj : tj ∈ E, and tj 6= ti, for i 6= j, i, j ∈ Zm}, (2.29)

which is refinable relative to the mappings Φ, that is

G0 ⊂ Φ(G0). (2.30)

Set

G1 := Φ(G0), V1 := G1 \G0 = {tm+j : j ∈ Zr} (2.31)
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with r := (µ− 1)m. Now, Assume

F0 := span{ψj : j ∈ Zm}, (2.32)

and ψ0, ψ1, . . . , ψm−1 satisfy unique Lagrange interpolation conditions

ψi(tj) = δij, i, j ∈ Zm. (2.33)

A construction of refinable points {tj : j ∈ Zm} ∈ E that admits a unique d-dimensional

Lagrange interpolation is presented in [MSX1]. Introduce linear operators Te : X → X, e ∈
Zµ defined by

(Tex)(t) := x(φ−1
e (t))χφe(E)(t), (2.34)

where χS denote the characteristic function of the set S. Therefore it follows that

Fn =
⊕

e∈Zµ

TeFn−1, n ∈ Z, (2.35)

where A ⊕ B denotes the direct sum of the spaces A and B. The functions ψm+j ∈ F1 such

that ψm+j(tm+i) = δij, tm+i ∈ V1, i, j ∈ Zr with ψj ∈ F0, j ∈ Zm, defined in (2.33) form

a basis for F1. This basis doesn’t have vanishing moment. So instead another basis for F1

consisting of functions with vanishing moments is constructed. For this purpose, set

w0j := ψj, j ∈ Zm (2.36)

let q := m+ r and for j ∈ Zr find a vector [cjs : s ∈ Zq] ∈ R
q such that

w1j :=
∑

s∈Zq

cjsψs, j ∈ Zr (2.37)

satisfies

(w1j, w0j′) = 0, j ′ ∈ Zm, j ∈ Zr, (2.38)

where ( , ) is the usual L2 inner product of two functions on E. (2.38) leads to a linear

system of rank m with m equations and q unknowns, thus it has r linearly independent

solutions. Denote them by w1j, j ∈ Zr. These functions form a basis for the space W1. To

construct a basis for Wi, i ≥ 2, for e := (e0, . . . , en−1) ∈ Z
n
µ introduce a composite operator

Te by

Te := Te0 ◦ . . . ◦ Ten−1 . (2.39)
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For i = 2, 3, . . . , n, let

wij := Tew1l, j = µ(e)r + l, e ∈ Z
i−1
µ , l ∈ Zr (2.40)

and

Wi := span{wij : j ∈ Zw(i)}. (2.41)

Note that the support of wij is contained in Sij := φe(E), j ∈ Zw(i).

The collocation functionals are defined in a similar manner. Define

`0j := δtj , j ∈ Zm (2.42)

and for j ′ ∈ Zr, find the vector [c′j′s : s ∈ Zq] such that

`1j′ :=
∑

s∈Zq

c′j′sδts , j′ ∈ Zr (2.43)

satisfies equations

〈`1j′ , w0j〉 = 0, j ∈ Zm, j′ ∈ Zr (2.44)

and

〈`1j′ , w1j〉 = δjj′ , j ∈ Zr, j′ ∈ Zr. (2.45)

(2.44) and (2.45) lead to a q × q linear system of equations. The coefficient matrix for this

linear system of equations is

A :=
[〈

δti′j′ , wij

〉]

(i,j),(i′j′)∈U1
. (2.46)

A is proved to be nonsingular in [CMX3]. To generate a multiscale collocation functionals,

introduce for any e ∈ Zµ a linear operator Le : V ∗ → V ∗ defined by the equation

〈Le`, v〉 = 〈`, v ◦ φe〉, v ∈ X, ` ∈ X
∗, (2.47)

Moreover, for e := (e0, . . . , en−1) ∈ Z
n
µ, define a composite operator

Le := Le0 ◦ . . . ◦ Len−1 . (2.48)

Consequently, for any e, e′ ∈ Z
i
µ, w ∈ X and ` ∈ X

∗, we have that

〈Lel, Te′w〉 = 〈l, w〉δee′ . (2.49)
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In addition, for i > 1, j = µ(e)r + l, e ∈ Z
i−1
µ , l ∈ Zr we define

`ij := Le`1l. (2.50)

Note that

〈`ij, v〉 = 〈`1l, v ◦ φe〉 =
∑

s∈Zq

c′lsv(φe(ts)). (2.51)

Observe that the “support” of `ij is also contained in Sij.



Chapter 3

Wavelets and Collocation Functionals

on the Unit Triangle

Our following discussion is on the unit triangle Ω := {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x}. We

first introduce a family of contractive mappings Φ = {φe, e ∈ Z4} to subdivide the domain

Ω. Define

φ0(x, y) =
(x

2
,
y

2

)

,

φ1(x, y) =

(

x+ 1

2
,
y

2

)

,

φ2(x, y) =

(

x

2
,
y + 1

2

)

.

φ3(x, y) =

(

1 − x

2
,
1 − y

2

)

. (3.1)

These four mappings subdivide the unit triangle Ω into four small triangles Ω0, Ω1, Ω2, and

Ω3 (see Fig. 3.1), with Ωi = φi(Ω), i ∈ Z4. We then can define four operators Ti, i ∈ Z4

through the four mappings φi, i ∈ Z4, namely,

(Ti ◦ g)(ξ, η) = g(φ−1
i (ξ, η))χΩi

(ξ, η), i ∈ Z4, (3.2)

12
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Figure 3.1: Original domain–unit triangle Ω

where,

φ−1
0 (x, y) = (2x, 2y),

φ−1
1 (x, y) = (2x− 1, 2y),

φ−1
2 (x, y) = (2x, 2y − 1),

φ−1
3 (x, y) = (1 − 2x, 1 − 2y). (3.3)

We choose as the original collocation points t00 = (1
7
, 4

7
), t01 = (2

7
, 1

7
), and t02 = (4

7
, 2

7
) (see

Fig. 3.1). Note the set G0 := {t0j : j ∈ Z3} is refinable with respect to the family of

mappings Φ := {φe : e ∈ Z4}.
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3.1 The Approximation Spaces

Let W0 be a subspace of X with dimW0 = 3. Assume W0 is a space of linear polynomials

on Ω. Moreover assume

W0 = span{w0j, j ∈ Z3}, (3.4)

where, w0j, j ∈ Z3 are determined by interpolating conditions

w0j(t0k) = δjk, j, k ∈ Z3. (3.5)

To find w0j, j ∈ Z3, write w0j = bj0x+ bj1y + bj2 , j ∈ Z3. Define a matrix B = [bjk] : j, k ∈
Z3, B ∈M3,3 (throughout this thesis Mm,n denotes a m× n matrix over the field R). Let

A =











1
7

4
7

1

2
7

1
7

1

4
7

2
7

1











. (3.6)

Solve

AB = I (3.7)

for B, where, I is the identity matrix in M3,3. We obtain

B =











−1 −2 3

2 −3 1

0 2 −1











. (3.8)

Thus,

w00(x, y) = −x+ 2y,

w01(x, y) = −2x− 3y + 2,

w02(x, y) = 3x+ y − 1. (3.9)

With W0(=F0), we can find

F1 =
⊕

j∈Z4

TjW0. (3.10)

Let W1 be the orthogonal complement of W0 in F1, and define

Wn =
⊕

j∈Z4

TjWn−1, n ≥ 2, n ∈ Z. (3.11)
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We can easily find that

DimFn = 3 · 4n, n ∈ N0, (3.12)

and

DimWn = 32 · 4n−1, n ≥ 1, n ∈ Z. (3.13)

3.2 Initial Wavelets in W1

We proceed in this section to construct a wavelet basis having vanishing moment of W1.

Now,

T0 ◦ w00 = (−2x+ 4y)χΩ0 ,

T0 ◦ w01 = (−4x− 6y + 2)χΩ0 ,

T0 ◦ w02 = (6x+ 2y − 1)χΩ0 ,

T1 ◦ w00 = (−2x+ 4y + 1)χΩ1 ,

T1 ◦ w01 = (−4x− 6y + 4)χΩ1 ,

T1 ◦ w02 = (6x+ 2y − 4)χΩ1 ,

T2 ◦ w00 = (−2x+ 4y − 2)χΩ2 ,

T2 ◦ w01 = (−4x− 6y + 5)χΩ2 ,

T2 ◦ w02 = (6x+ 2y − 2)χΩ2 ,

T3 ◦ w00 = (2x− 4y + 1)χΩ3 ,

T3 ◦ w01 = (4x+ 6y − 3)χΩ3 ,

T3 ◦ w02 = (−6x− 2y + 3)χΩ3 . (3.14)

Note T0w02(t01) = T1w00(t02) = T2w01(t00) = 1. Write

S = [w00, w01, w02, T0w00, T0w01, T1w01, T1w02, T2w00, T2w02,

T3w00, T3w01, T3w02]
T

:= [ψ0, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8, ψ9, ψ10, ψ11]
T .

(3.15)
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Define the wavelet basis functions of W1 by w1j, j ∈ Z9. They are supported on Ω. Let

S := {ψj, j ∈ Z12}. Since S is a set of basis functions of F1, we have

w1j =
∑

s∈Z12

cjsψs. (3.16)

To make w1j, j ∈ Z9 have vanishing moment, require that

(w1k, x
iyj) = 0 k ∈ Z9, (3.17)

where, i, j ∈ Z2, i+ j ≤ 1. Observe that

∫

Ω0

f(x, y)dS =

∫ 1
2

0

∫ −x+ 1
2

0

f(x, y)dydx,

∫

Ω1

f(x, y)dS =

∫ 1

1
2

∫ −x+1

0

f(x, y)dydx,

∫

Ω2

f(x, y)dS =

∫ 1
2

0

∫ −x+1

1
2

f(x, y)dydx,

∫

Ω3

f(x, y)dS =

∫ 1
2

0

∫ 1
2

−x+ 1
2

f(x, y)dydx. (3.18)

(3.17) yields the following linear system

Ac = 0, (3.19)

where,

A =











1
6

1
6

1
6

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

1
24

0 1
24

1
8

0 1
192

5
192

7
192

0 1
64

1
48

1
64

1
192

1
8

0 1
24

1
64

0 0 1
192

7
192

5
192

1
192

1
48

1
64











(3.20)

and

c = [c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11]
T . (3.21)

The null space of above linear system has dimension equal to 9, and is spanned by the set

{wi : i ∈ Z9}, where wi corresponds to the ith row vector of the following 9 × 12 matrix
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C := [cjk : j, k ∈ Z12].

C =















































−1
8

−1
8

0 0 0 0 0 0 0 0 0 1

−1
8

0 −1
8

0 0 0 0 0 0 0 1 0

0 −1
8

−1
8

0 0 0 0 0 0 1 0 0

− 9
56

3
56

−1
7

0 0 0 0 0 1 0 0 0

−2
7

3
56

− 1
56

0 0 0 0 1 0 0 0 0

3
56

− 1
56

−2
7

0 0 0 1 0 0 0 0 0

3
56

−1
7

− 9
56

0 0 1 0 0 0 0 0 0

− 1
56

−2
7

3
56

0 1 0 0 0 0 0 0 0

−1
7

− 9
56

3
56

1 0 0 0 0 0 0 0 0















































. (3.22)

Now we can use matrix form to express the nine wavelet basis functions in the space W1.

Let W be the vector of the nine wavelets, i.e.,

W = [w10, w11, w12, w13, w14, w15, w16, w17, w18]
T . (3.23)

For any nonsingular matrix D ∈M9,9,

W = D · C · S (3.24)

is a suitable basis for W1 satisfying (3.17). viz,

w1i =
∑

j∈Z9

dij

∑

k∈Z12

cjkψk. (3.25)

We can take D = diag(1, 1, 1, 1, 1, 1, 1, 1, 1) and obtain

w10(x, y) = 1
8
(−2 + 3x+ y)(χΩ0 + χΩ1 + χΩ2) + 1

8
(22 − 45x− 15y)χΩ3 ,

w11(x, y) = 1
8
(1 − 2x− 3y)(χΩ0 + χΩ1 + χΩ2) + 1

8
(−23 + 30x+ 45y)χΩ3 ,

w12(x, y) = 1
8
(−1 − x+ 2y)(χΩ0 + χΩ1 + χΩ2) + 1

8
(7 + 15x− 30y)χΩ3 ,

w13(x, y) = 1
8
(2 − 3x− 5y)(χΩ0 + χΩ1 + χΩ3) + 1

8
(−14 + 45x+ 11y)χΩ2 ,

w14(x, y) = 1
8
(1 + x− 6y)(χΩ0 + χΩ1 + χΩ3) + 1

8
(−15 − 15x+ 26y)χΩ2 ,

w15(x, y) = 1
8
(2 − 7x− y)(χΩ0 + χΩ2 + χΩ3) + 1

8
(−30 + 41x+ 15y)χΩ1 ,

w16(x, y) = 1
8
(−1 − 2x+ 3y)(χΩ0 + χΩ2 + χΩ3) + 1

8
(31 − 34x− 45y)χΩ1 ,

w17(x, y) = 1
8
(−5 + 6x+ 7y)(χΩ1 + χΩ2 + χΩ3) + 1

8
(11 − 26x− 41y)χΩ0 ,

w18(x, y) = 1
8
(−3 + 5x+ 2y)(χΩ1 + χΩ2 + χΩ3) + 1

8
(−3 − 11x+ 34y)χΩ0

(3.26)

The pictures of w0j, j ∈ Z3 and w1k, k ∈ Z9 are shown in Fig. 3.2 through Fig. 3.13.
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Collocation Points

Figure 3.14: Collocation points of L1

3.3 Initial Collocation Functionals in L1

We define the set of initial collocation functionals at level 0 by

L0 := {`0j = δt0j
, j ∈ Z3}.

To find L1 := {`1j : j ∈ Z9}, introduce a vector

L = [`10, `11, `12, `13, `14, `15, `16, `17, `18]
T , (3.27)

where, for k ∈ Z9,

`1k =
∑

m∈Z12

dkmδt1m , t1m = φit0j, m = 3i+ j, i ∈ Z4, j ∈ Z3. (3.28)

The 12 collocation points t1m, m ∈ Z12 are plotted in Fig. 3.14 (The three points marked

by asterisk are the three initial collocation points t0j, j ∈ Z3). Let matrix C′ ∈M9,12 with

C′ = [dkm : k ∈ Z9, m ∈ Z12]. (3.29)
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Define

δt = [δt1,0 , δt1,1 , δt1,2 , δt1,3 , δt1,4 , δt1,5 , δt1,6 , δt1,7 , δt1,8 , δt1,9 , δt1,10 , δt1,11 ]
T

= [δ( 1
14

, 2
7
), δ( 1

7
, 1
14

), δ( 2
7
, 1
7
), δ( 4

7
, 2
7
), δ( 9

14
, 1
14

), δ( 11
14

, 1
7
), δ( 1

14
, 11
14

), δ( 1
7
, 4
7
), δ( 2

7
, 9
14

),

δ( 3
7
, 3
14

), δ( 5
14

, 3
7
), δ( 3

14
, 5
14

)]
T .

(3.30)

Then we have

L = C′δt. (3.31)

Again, to construct `1k, k ∈ Z9 having vanishing moment, require

〈`1k, 1〉 = 0,

〈`1k, x〉 = 0,

〈`1k, y〉 = 0,

〈`1k, w1j〉 = δkj,

(3.32)

where k, j ∈ Z9. (3.32) leads to nine 12× 12 linear systems. After solving these nine 12× 12

linear systems, we find that

C′ =















































0 0 −1
2

0 0 0 0 −1
2

0 0 0 1

0 0 0 −1
2

0 0 0 −1
2

0 0 1 0

0 0 −1
2

−1
2

0 0 0 0 0 1 0 0

0 0 1
2

−1
2

0 0 0 −1 1 0 0 0

0 0 1
2

0 0 0 1 −3
2

0 0 0 0

0 0 0 −3
2

0 1 0 1
2

0 0 0 0

0 0 −1
2

−1 1 0 0 1
2

0 0 0 0

0 1 −3
2

1
2

0 0 0 0 0 0 0 0

1 0 −1 1
2

0 0 0 −1
2

0 0 0 0















































. (3.33)

To this point we have obtained desired w1j and `1j, j ∈ Z9 having vanishing moment. To

find the remaining multiscale wavelets wij and functionals `ij, for i ≥ 2, j ∈ w(i), simply

apply (2.40) and (2.50).
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3.4 Properties of the Wavelet Basis Functions and the

Collocation Functionals

We examine properties of the wavelet basis functions and the collocation functionals con-

structed above. These properties are crucial for developing fast wavelet collocation methods.

Next several lemmas tells us these properties.

Lemma 3.1 The constructed basis function wij, i ∈ N0, j ∈ Zw(i) are locally supported and

their supports are shrinking as level i increases.

Proof: for i > 1, the support of wij is contained in Sij = φe(E) = Ei−1,µ(e), where j =

9µ(e)+ l, l ∈ Z9. Note φe is a contractive mapping by the contractivity of φi, i ∈ Z4. Hence,

Sij is shrinking as i increases. 2

Lemma 3.2 For any i, i′ ∈ N0,

〈`i′j′ , wij〉 = δii′δjj′ , (i, j), (i′, j′) ∈ U, i ≤ i′, (3.34)

and
∑

j∈Zw(i)

|〈`i′j′ , wij〉| ≤
81

28
, (i, j), (i′, j′) ∈ U, i > i′. (3.35)

Further we have

γ < µk/2 − 1, (3.36)

where, γ is defined in (3.37), and k is the total degree of the pieced polynomial spaces Wn, n ∈
N0.

Proof: (3.34) is proved in Lemma 4.3. Let C1 = [cij, i ∈ Z9, j ∈ Z3], where cij are elements

of C (see (3.22)). Note ‖C1‖1 = 27
28

, and ‖C′‖∞ = 3. Set

γ = max{‖C1‖1, ‖C′‖∞‖C1‖1} =
81

28
. (3.37)

By Lemma 5.2 of [CMX3], which says
∑

j∈Zw(i)
|〈`i′j′ , wij〉| ≤ γ, we have (3.35). Direct

computation shows (3.36) with k = 2. 2
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Lemma 3.3 The constructed wavelets wij and collocation functionals `ij for i ∈ N0, j ∈
Zw(i) have vanishing moment of degree 2.

Proof: From (3.32), we easily see

〈`i′j′ , w0j〉 = 〈`1l′ , w0j ◦ φe′〉 = 0, j ∈ Z3. (3.38)

Now consider Te as an operator from L2(E) to L2(E) and let T ∗
e be the adjoint of Te. It is

easy to see that for y ∈ L2(E)

T ∗
e y = Jφe

y ◦ φe, (3.39)

where Jφe
is the Jacobi of mapping φe. Therefore,

(wij, w0j′) = (Tew1l, w0j′) = (w1l, T ∗
e w0j′) = 0.

The last equality holds because T ∗
e w0j′ is a polynomial of total degree ≤ k−1 = 1, with k = 2

and w1l satisfies (3.17).

Thus for any polynomials p ∈ π2,

〈`ij, p〉 = 0, (wij, p) = 0, (i, j) ∈ U, i ≥ 1, (3.40)

where πk is the space of polynomials total degree less than k. 2

Lemma 3.4 Both basis functions and collocation functionals are uniformly bounded.

Proof: For (i, j) ∈ U, i ≥ 2, j = µ(e)r + l, l ∈ Zr,

|〈`ij, v〉| = |〈`1l, v ◦ φe〉| ≤ ‖C′‖∞‖v‖∞,

and

‖wij‖∞ ≤ ‖w1l ◦ φ−1
e χφe(E)‖∞ ≤ ‖C‖∞maxj∈Z12‖ψj‖∞.

2

Lemma 3.5 The dimension of spaces Fn and Wn grows exponentially in n and the diameters

dn decay exponentially in n too. where

dn := max{d(Snm) : m ∈ Zw(n)}, n ∈ N0.
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Proof: We have dimW0 = 3, dimFn = 3.4n, n ∈ N0, and dimWn = 9.4n−1, n ≥ 1, n ∈ Z.

For the diameters we have d0 =
√

2 and dn =
√

2 1
2n−1 = 23/2−n. 2

Lemma 3.6 There exists constant θ2 and θ3 such that for all n ∈ N0 and v having form

v :=
∑

(i,j)∈Un

vijwij (3.41)

θ2‖v‖∞ ≤ ‖v‖∞ ≤ θ3(n+ 1)‖Env‖∞ (3.42)

where v := [vij : (i, j) ∈ Un]T .

Proof: The first inequality follows from Proposition 5.6 of [CMX3]. For the second

inequality, we provide here a slight different proof. Define {ζij : (i, j) ∈ U} by:

ζ0j := w0j, j ∈ Z3. (3.43)

For j ∈ Z9, find vector c
′′

js := [c
′′

js : s ∈ Z12] such that

ζ1j :=
∑

s∈Z12

c
′′

jsψs (3.44)

satisfies

〈`0j′ , ζ1j〉 = 0, j ′ ∈ Z3, (3.45)

and

〈`1j′ , ζ1j〉 = δjj′ , j′ ∈ Z9. (3.46)

Further define

ζij := Teζ1l. (3.47)

A direct computation shows that

〈`i′j′ , ζij〉 = δii′δjj′ , (i, j), (i′, j′) ∈ U. (3.48)

[CMX3] proves in its Proposition 5.6 that there exists a constant θ3, for all i ∈ N0,

supt∈Ω

∑

j∈Zw(i)

|ζij(t)| ≤ θ3 (3.49)
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For (i, j) ∈ Un, {wij} and {ζij} are two different bases of Fn. So we have

v =
∑

(i,j)∈Un

vijwij =
∑

(i,j)∈Un

ṽijζij. (3.50)

Observe that Env = ṽ, where ṽ := [ṽij : (i, j) ∈ Un]T . Now

‖v‖∞ = ‖
∑

(i,j)∈Un

ṽijζij‖∞ ≤ ‖ṽ∞

∑

(i,j)∈Un

ζij‖∞ ≤ ṽ∞‖
∑

i∈Zn+1

∑

j∈Zw(i)

ζij‖∞ ≤ θ3(n+ 1)‖Env‖∞.

(3.51)

This completes the proof. 2

Lemma 3.7 Let Pn be the projection operator from X onto Fn defined by the requirement

that

〈`ij,Pnx〉 = 〈`ij, x〉, (i, j) ∈ Un. (3.52)

For v ∈ L∞(E) we set

Pnv =
∑

(i,j)∈Un

vijwij

then

lim
n→∞

‖Pnx− x‖∞ = 0. (3.53)

Proof: Since Fn is a space of piecewise polynomials, the operator Pn converges pointwise to

the identity operator I in L∞(E) as n → ∞ by results from [AGS]. In other words, (3.53)

holds. 2

Remark: For x ∈ X, assume Pnx =
∑

(i,j)∈Un
vijwij. If we define a vector Ln := 〈`ij, x〉, (i, j) ∈

Un, then

Env = Ln or v = E−1
n Ln. (3.54)

Lemma 3.8 There exists a positive constant c such that for u ∈ W k,∞(E)

dist(u,Fn) ≤ cµ−kn/2‖u‖k,∞. (3.55)

where for α := [αi ∈ N0 : i ∈ Z2], |α| :=
∑

i∈Z2
αi,

‖u‖k,∞ := max{‖Dαu‖∞ : |α| ≤ k},

and µ is the number of contractive mappings φi, i ∈ Zµ, as in (3.1), µ = 4.
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Proof: Since Fn are the spaces of piecewise polynomials of total degree ≤ k − 1 and our

assumption that E is a star-shaped set, then there exists a positive constant c such that

dist(u, πk) ≤ c(d(E))k‖u‖k,∞. (3.56)

This together with (2.9) competes the proof. 2

3.5 Reconstruction of Functions

Let E be the unit right triangle, P0 = (0, 0), P1 = (1, 0). The vertices of the domain

Ê := φe(E) corresponding to P0, P1 are denoted by P̂i, i ∈ Z2, namely, P̂i = φe(Pi), i ∈ Z2.

Further P̂i = (x̂i, ŷi), i ∈ Z2. Observe that

Ê := φe(E) =







{(s, t) : x̂0 ≤ s ≤ x̂1, ŷ0 ≤ t ≤ −s+ (x̂1 + ŷ1)} if x̂0 ≤ x̂1,

{(s, t) : x̂1 ≤ s ≤ x̂0,−s+ (x̂1 + ŷ1) ≤ t ≤ ŷ0} if x̂0 ≥ x̂1.
(3.57)

Let u be the solution of (2.2) in X, un be the approximation of u sought by wavelet collocation

scheme in Fn. We have known from (2.16) that

un(x) :=
∑

(i,j)∈Un

uijwij(x) (3.58)

where, un = [uij : (i, j) ∈ Un] is found by previously described wavelet collocation scheme.

Since each wavelet wij has compact support, many terms in the summation of (3.58) are

zeros. We need to determine if wij(x) is vanished or not. If not, evaluate the value wij(x).

By (2.40), (2.39) and (2.34) we have

wij(x) = Tew1l(x) = w1l(φ
−1
e (x))χφe(E)(x), (3.59)

where j = µ(e)r + l, e ∈ Z
i−1
µ , l ∈ Zr, r = 9, µ = 4.

We describe a fast algorithm in the following to compute un(x). Assume x is given and

un = [uij : (i, j) ∈ Un] is found.

Algorithm:

1. Compute un(x) :=
∑

(i,j)∈U1
uijwij(x);
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2. for i = 2; i ≤ n; step 1, loop

for j = 0; j < µi−1; step 1, loop

find e ∈ Z
i−1
µ , such that j = µ(e);

if x ∈ φe(E), compute the r evaluations w1l(φ
−1
e (x)), l ∈ Zr, and sum them up.

Then jump out of the j loop, go to the next i loop;

if x /∈ φe(E), continue next j loop;

end loop;

end loop;

Note in (3.58) for each level i ≥ 1 and fixed x ∈ E, , only r terms in the summation are

nonzero, namely, only r terms of χφe(E)(x) = 1. Also note to compute wij(x), instead of

directly using the expression of wij, we always go back to the first level w1l by the recursive

formula (3.59).



Chapter 4

Computation of Discrete Systems and

Their Solutions

We now turn our attention to compute matrices En and Kn of the discretized system (2.18).

Their elements are expressed by (2.19) and (2.20) respectively. To compute these entries, we

shall need to find `ij, wij, for i ≥ 2, j ∈ Zw(i). Although (2.40) and (2.50) give expressions

to find wij, `ij, i ≥ 2, j ∈ Zw(i) respectively, they are not convenient for actual computing.

More direct relations to wavelets and collocation functionals of level 1 are needed to easily

compute wij, `ij, for i ≥ 2, j ∈ Zw(i). Again we set µ = 4 and r = 9. By (2.50) and (3.28)

it is easy to see that

`ij =
∑

m∈Z12

dlmδtim , i ≥ 2, j ∈ Zw(i), (4.1)

where, l = j mod r; dlm, l ∈ Z9, m ∈ Z12 are defined in (3.29), and

tim = φe(t1m), m ∈ Z12, (4.2)

with e ∈ Z
i−1
µ . For wavelets wij, i ≥ 2, j ∈ Zw(i), in view of (2.40) we have

wij = w1l ◦ φ−1
e (t)χφe(E)(t), (4.3)

where j = µ(e)r + l, e ∈ Z
i−1
µ , and l ∈ Zr.

32
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4.1 The Matrix En

Denote the element of En by Ei′j′,ij, where (i, j), (i′, j′) ∈ Un. By (2.20), (4.1) and (4.3), we

obtain

Ei′j′,ij = 〈`i′j′ , wij〉
=

∑

m∈Z12
dl′m〈δti′m , wij〉

=
∑

m∈Z12
dl′m〈δφ

e
′ (t1m), wij〉

=
∑

m∈Z12
dl′mw1l(φ

−1
e ◦ φe′(t1m))χφe(E) (φe′(t1m)) .

(4.4)

where, j = µ(e)r + l, e ∈ Z
i−1
µ , l ∈ Zr and j′ = µ(e′)r + l′, e′ ∈ Z

i′−1
µ , l′ ∈ Zr.

Define

Ei′i := [Ei′j′,ij : j′ ∈ Zw(i′), j ∈ Zw(i)]

as the submatrix of En (Ki′i is similarly defined). We further partition Ei′i ( also Ki′i) into

blocks. Each block of Ei′i corresponds to a pair of supports (Ŝi′j′ , Sij) which are supports of

the pair (`i′j′ , wij) respectively.

Definition 4.1 A set of elements in the submatrix Ei′i (also in Ki′i) is called a block if they

correspond to the same pair of supports (Ŝi′j′ , Sij) associated with the pair (`i′j′ , wij).

Denote by the pair (S(i′), S(i)) the size of blocks in submatrix Ei′i (also in Ki′i), with

S(k) =







m, k = 0

r, otherwise,
(4.5)

where, m = dimF0. In our case m = 3. By Definition 4.1, when i′ = 0 and i = 0, the block

has size m × m, and for i′, i > 0, each block has size r × r. Therefore Ei′i (also Ki′i) has

R(i′) = w(i′)
S(i′)

rows of blocks and C(i) = w(i)
S(i)

columns of blocks. For brevity, we write Ei′i as

Ei′i = [bjk]j∈ZR(i′),k∈ZC(i)
. (4.6)

Following when describing the computation of matrix Ei′i (also Ki′i), we treat each bjk as a

matrix element.
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Definition 4.2 For a matrix A = [ajk]m×n, where m may not be equal to n but one dividing

the other. We call θ = max{m,n}
min{m,n}

the shape index of A. The main diagonal line of matrix A

is defined as the set

{ajk : jθ ≤ k < (j + 1)θ} if m ≤ n, (4.7)

or

{ajk : kθ ≤ j < (k + 1)θ} if m > n. (4.8)

For a given positive integer c the c-th lower diagonal is defined as the set

{ajk : (j − c)θ ≤ k < (j − c+ 1)θ} if m ≤ n, (4.9)

or

{ajk : (k + c)θ ≤ j < (k + c+ 1)θ} if m > n. (4.10)

The c-th upper diagonal is defined as the set

{ajk : (j + c)θ ≤ k < (j + c+ 1)θ} if m ≤ n, (4.11)

or

{ajk : (k − c)θ ≤ j < (k − c+ 1)θ} if m > n. (4.12)

Note, when c = 0 we obtain the main diagonal in any case.

Next Lemma shows that En is upper triangular with diagonal blocks equal to identities of

corresponding sizes. Moreover, the upper half of En is sparse already.

Lemma 4.3 For matrix En := [Ei′j′,ij], where i′, i ∈ Zn+1, j ∈ Z(i), and j ′ ∈ Z(i′).

1. Ei′j′,ij = 0, for i′ > i;

2. Ei′j′,ij = δi′iδjj′, for i′ = i;

3. and, if i′ < i, in each submatrix Ei′i with shape parameter θi′i, only elements on the

main diagonal line are possibly nonzero.
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Proof: For (i, j) ∈ Un, with i ≥ 2, there exists a unique pair of e ∈ Z
i−1
µ and l ∈ Zr such

that j = µ(e)r + l and wij = Tew1l. Likewise, for (i′, j′) ∈ Un, with i′ ≥ 2, there exists a

unique pair of e′ ∈ Z
i′−1
µ and l′ ∈ Zr such that j ′ = µ(e′)r + l′ and `i′j′ = Le′`1l′ . When

i = i′, it follows from (2.49) and (2.45) that

〈`i′j′ , wij〉 = 〈Le′`1l′ , Tew1l〉 = 〈`1l′ , w1l〉δe′e = δl′lδee′ = δj′j,

since e = e′. When i < i′, let e′
1 = (e′0, . . . , e

′
i−2), e′

2 = (e′i−1, . . . , e
′
i′−2), then

〈`i′j′ , wij〉 = 〈Le′2
`1l′ , w1l〉δe′1e = 〈`1l′ , w1l ◦ φe′2

〉δe′1e.

Since φe′2
: E → φe′2

(E) is an affine mapping, w1l ◦φe′2
is a polynomial of total degree ≤ k−1

in F0. By using (2.44), we have that

〈`i′j′ , wij〉 = 0, (i, j), (i′, j′) ∈ Un, i < i′.

when i > i′, let e = (e1, e2), where e1 = (e0, . . . , ei′−2) and e2 = (ei′−1, . . . , ei−2), and

〈`i′j′ , wij〉 = 〈Le′`1l′ , Tew1l〉 = 〈`1l′ , Te2w1l〉δe′e1 (4.13)

For the elements on the main diagonal line of submatrix Ei′i, e′ = e1, and for those elements

off the main diagonal line e′ 6= e1. This completes the proof. 2

By (4.4) and (4.13), t for the elements on the main diagonal line of Ei′i,

Ei′j′,ij =
∑

m∈Z12

dl′mw1l ◦ φ−1
e2

(t1m)χφe2 (E)(t1m). (4.14)

(4.14) actually reduces the computation of the elements of En compared to (4.4). Fig. 4.1,

Fig. 4.2 and Fig. 4.3 demonstrate computed full matrices En after discretizing the integral

equation (6.1) with n = 2, 3, 4 respectively. Clearly En is upper-triangular and sparse.

4.2 The Matrix Kn

In view of (2.19), all the elements of Kn involve integrals of type
∫

Ω
K(x, y)wij(y)dy, where,

x ∈ R
2. Following theorem presents a perspective to compute this type of integrals.
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Figure 4.3: Matrix E4

Theorem 4.4

∫

Ω

K(x, y)wij(y)dy = Jφe

∫

Ω

K(x, φe(y))w1l(y)dy, (4.15)

where e ∈ Z
i−1
µ , j = µ(e) + l, l ∈ Zr, Jφe

is the Jacobian of mapping φe. Namely,

Jφe
= Jφe0

· Jφe1
· · · Jφei−3

· Jφei−2
, (4.16)

and wij is obtained by (2.40) for i ≥ 2, i ∈ Z.

Proof: We shall prove Theorem 4.4 by induction on i . Let i = 2, e ∈ Z
1
µ. Assume e = [e0].

Then
∫

Ω
K(x, y)w2j(y)dy

=
∫

Ω
K(x, y)Tew1l(y)dy

=
∫

Ω
K(x, y)Te0w1l(y)dy

=
∫

Ω
K(x, y)w1l(φ

−1
e0

(y))dy

= Jφe0

∫

Ω
K(x, φe0(y))w1l(y)dy.
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The last equality is obtained by changing variable. Hence (4.15) holds for the case i = 2.

Assume (4.15) holds for i < n. for i = n, e ∈ Z
n−1
µ . Denote e = [e0e1 · · · en−2]. We have

∫

Ω
K(x, y)wnj(y)dy

=
∫

Ω
K(x, y)Tew1l(y)dy

=
∫

Ω
K(x, y)Te0,e1,...,en−2w1l(y)dy

=
∫

Ω
K(x, y)Te0Te1,...,en−2w1l(y)dy

= Jφe0

∫

Ω
K(x, φe0(y))Te1,...,en−2w1l(y)dy

= Jφe

∫

Ω
K(x, φe(y))w1l(y)dy.

The last equality obtained by the induction assumption. 2

Theorem 4.4 facilitates us a convenient way to compute the integral on the left side of (4.15).

Note wij has compact support φe(E). But by Theorem 4.4 we don’t need to find the explicit

expression for wij and its support φe(E).

We now look at how to compute elements of Kn. Denote elements of Kn by Ki′j′,ij , where,

(i, j), (i′, j′) ∈ Un. For i, i ≥ 2, let j = µ(e)r + l, and j ′ = µ(e′)r + l′, where, e ∈ Z
i−1
µ ,

e′ ∈ Z
i′−1
µ , and l, l′ ∈ Zr. By (2.19), (4.1), (4.2) and Theorem 4.4

Ki′j′,ij = 〈`i′j′ ,Kwij〉

=

∫

Ω

〈`i′j′ , K(·, y)〉wij(y)dy

=
∑

m∈Z12

dl′m

∫

Ω

K(φe′(t1m), y)wij(y)dy

=
∑

m∈Z12

dl′m|Jφe
|
∫

Ω

K(φe′(t1m), φe(y))w1l(y)dy. (4.17)

For cases of i ≤ 1, or i′ ≤ 1 or both, computation of Ki′j′,ij is easier, and one can slightly

modify (4.17) to obtain the desired formulae. Note, if K(x, y) is a weakly singular kernel with

discontinuity at x = y, in view of the integral in (4.17) the singular points of its integrand

are at

ys = φ−1
e φe′(t1m), m ∈ Z12. (4.18)

We point out that the singular point y is not necessary in the domain Ω. Following lemma

addresses this issue.
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Lemma 4.5 For those elements Ki′j′,ij on the main diagonal line (as defined in Defini-

tion 4.2) of the submatrix Ki′i, with i, i′ ≥ 2, let K(x, y) be a weakly singular kernel with

singularity at y = x,

1. when i′ = i, the singular points are at ys = t1m, where m ∈ Z12;

2. when i > i′ the singular points are at ys = φ−1
e2

(t1m), where e2 ∈ Zi−i′. Note, in this

case y is not necessarily in Ω;

3. when i < i′ the singular points are at ys = φe′2
(t1m), where e′

2 ∈ Zi′−i. In this case y is

always in Ω .

For all other elements off the main diagonal line in each block Ki′i, the integrals in (4.17)

has no singular points.

Proof: We first prove the statements regarding elements on the main diagonal lines in each

submatrix Ki′i with i′, i ≥ 2. Again we assume j = µ(e)r + l, and j ′ = µ(e′)r + l′, where,

e ∈ Z
i−1
µ , e′ ∈ Z

i′−1
µ , and l, l′ ∈ Zr.

When i′ = i, e = e′, so ys = t1m by (4.18).

When i > i′, let e = (e1, e2), where e1 = (e0, . . . , ei′−2) and e2 = (ei′−1, . . . , ei−2). For the

elements on the main diagonal of Ki′i, e′ = e1. Hence,

ys = (φe1φe2)
−1φe′(t1m) = φ−1

e2
φ−1

e1
φe′(t1m) = φ−1

e2
(t1m). (4.19)

As i > i′, the length of e2 ≥ 1. Since φe2 is a contraction, so in this case ys may be outside

of Ω.

When i < i′, let e′ = (e′
1, e

′
2), where, e′

1 = (e′0, . . . , e
′
i−2), and e′

2 = (e′i−1, . . . , e
′
i′−2). Then,

ys = φ−1
e φe′1

φe′2
(t1m) = φe′2

(t1m).

since e = e′
1. Note in this case ys is always inside Ω since φe′2

is a contractive mapping.

For elements which are off the main diagonal lines of Ki′i, Ŝi′j′ and Sij which correspond

to the supports of the pair (`i′j′ , wij) are disjoint except possible common boundary points.

Recall that all the collocation points are interior points of Ŝi′j′ , therefore there are no singular

points inside the domain of integration for integrals associated with those elements. 2
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Although we can compute elements of Kn by (4.17) and Theorem 4.4, when singular points

are outside Ω, it’s not easy for us to pick up appropriate meshes to compute quadratures.

Especially when singular points are very close to Ω but remaining outside of Ω. In this case

if we choose equally spaced meshes to subdivide domains of integration, it is obvious that

it would be improper. If we intend to choose unequally spaced meshes, the question of how

to uniformly deal with all four cases stated in Lemma 4.5 occurs. Next Theorem provides

ways to uniformly treat all different types of integrals associated with elements of Kn with

uniform accuracy.

Theorem 4.6 Let Pk, k ∈ Z3 be vertices of the original triangular domain Ω supported

w1l, l ∈ Zr, where P0 is the vertex of the right angle, and P1, P2 are indexed counterclockwisely

(see Figure 4.4). Denote new vertices of the transformed domain φe(Ω) by P̂k, and P̂k =

φe(Pk), k ∈ Z3, where e ∈ Z
i−1
µ for i ≥ 2. Denote coordinates of P̂k by (x̂k, ŷk). For i, i′ ≥ 2,

the elements Ki′j′,ij of Kn can be computed by the following way:

Ki′j′,ij =
∑

m∈Z12

dl′m

∫ x̂1

x̂0

∫ −x+(x̂1+ŷ1)

ŷ0

K(φe′(t1m), η)w1l(φ
−1
e (η))dydx (4.20)

where, t1m, η, Pk, P̂k ∈ R
2, k ∈ Z3, and η = (x, y).

Proof: Since φe is a contractive affine mapping and also conformal, φe(Ω) is a right triangle

too. The orientation of φe(Ω) is either as the lower left one in Fig. 4.4 or as the lower right

one in Fig. 4.4.

Case 1: The new domain φe(Ω) is as the lower left one in Fig. 4.4. Note the hypotenuse

P̂1P̂2 always has slope −1 and it’s equation is

y = −x+ (x̂1 + ŷ1).

Hence

Ki′j′,ij =
∑

m∈Z12
dl′m

∫

φe(Ω)
K(φe′(t1m), η)wij(η)dη

=
∑

m∈Z12
dl′m

∫

φe(Ω)
K(φe′(t1m), η)w1l(φ

−1
e (η))dη

=
∑

m∈Z12
dl′m

∫ x̂1

x̂0

∫ −x+(x̂1+ŷ1)

ŷ0
K(φe′(t1m), η)w1l(φ

−1
e (η))dydx

(4.21)
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Figure 4.4: Domains of integration
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Case 2: The new domain φe(Ω) is as the lower right one in Fig. 4.4.

Ki′j′,ij =
∑

m∈Z12
dl′m

∫

φe(Ω)
K(φe′(t1m), η)wij(η)dη

=
∑

m∈Z12
dl′m

∫

φe(Ω)
K(φe′(t1m), η)w1l(φ

−1
e (η))dη

=
∑

m∈Z12
dl′m

∫ x̂0

x̂1

∫ ŷ0

−x+(x̂1+ŷ1)
K(φe′(t1m), η)w1l(φ

−1
e (η))dydx

=
∑

m∈Z12
dl′m

∫ x̂1

x̂0

∫ −x+(x̂1+ŷ1)

ŷ0
K(φe′(t1m), η)w1l(φ

−1
e (η))dydx.

This completes the proof. 2

Remark: when i ≤ 1 or i′ ≤ 1 or both, it is easier to compute Ki′j′,ij. Slightly modify

(4.20) if necessary.

Since the point φe′(t1m),m ∈ Z12 is always contained in Ω, (4.20) allows an easy way to get

an unequally spaced mesh on Ω with φe′(t1m) as the singular point. This will be detailly

discussed in Section 4.3. Theorem 4.6 will be the actual method we adopt to compute

elements of Kn. Fig. 4.5 depicts the computed full matrix K3 from example in solving (6.1).

For viewing effect, absolute values of matrix entries are drawn. After the wavelet transform,

the matrix Kn is amazingly numerically sparse. Namely many entries are relatively very

small, and the matrix appears as “finger” shape.

4.3 An Adaptive Quadrature Rule

All the elements of Kn need to compute
∫ b

a

∫ d−y1

c

K(x, y)wij(y)dy2dy1, 0 ≤ a, b, c, d ≤ 1, (4.22)

where, x, y ∈ R
2 with x = (x1, x2), y = (y1, y2). wij, i ∈ N0, j ∈ Zw(i) is a wavelet function.

K(x, y) is a weakly singular function on Ω × Ω. Namely, for x, y ∈ Ω, x 6= y, the kernel K

has continuous partial derivatives Dα
xD

β
yK(x, y) for |α| ≤ k, |β| ≤ k. Moreover, there exists

positive constants σ and θ1 with σ < 2 such that for |α| = |β| = k there holds

∣

∣Dα
xD

β
yK(x, y)

∣

∣ ≤ θ1

|x− y|σ+|α|+|β|
. (4.23)

While K(x, y) is singular when x = y. Note wij for i ≥ 1, j ∈ Zw(i) is a piecewise polynomial

and has shrinking supports as i increases. In general, there are two different cases:
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Figure 4.5: Full Matrix K3
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1. the singular point x is within the support of wij,

2. x is not in the support of wij.

We want to have a uniform scheme to deal with these two cases and the shrinking supports of

wij, nevertheless, uniform accuracies are desired for all cases. [KX] provides a good quadra-

ture method for 1-D integrals with weakly singular kernels. we adapt the idea proposed

therein to develop an efficient adaptive algorithm to compute double integrals equipped

with weakly singular kernels. Rewrite (4.22) into

I :=

∫ b

a

h(x; y1)dy1, (4.24)

where, h(x; y1) :=
∫ d−y1

c
K(x, y)wij(y)dy2. Denote max{x1, 1− x1} by cmax and min{x1, 1−

x1} by cmin. Note 1 ≥ cmax ≥ 1
2

and 0 ≤ cmin ≤ 1
2
. We first obtain an uneven partition of

[a, b] by the following Algorithm:

1. Subdivide [0, cmax] into n subintervals by the following way:

t̂j = cmax

(

j

n

)q

, j ∈ Zn+1, (4.25)

where n is determined by

n = bmcmax

1/2
= 2mcmaxc. (4.26)

Note t̂0 = 0 and t̂n = cmax. m is a prescribed integer. q = 2k+1
1−α

(see [KX] for detail).

k is the total degree of the interpolatory piecewise polynomial used in the compound

quadrature. For a function g, α ∈ (0, 1) is called the index of singularity. It’s defined

by

|g(β)(x)| ≤ C|x|(−α−β), for x 6= 0.

This notation was first introduced by Rice in [Ri].

2. Determine the number of subintervals J in the shorter interval [0, cmin]. Require that

cmax ·
(

J

n

)q

= cmin. (4.27)

By (4.27), we can take

J =

⌈

(

cmin

cmax

) 1
q

n

⌉

. (4.28)
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3. if x1 ≤ 1 − x1

Set t′0 = 0. Let

t′J−j = x1 − t̂j, j ∈ ZJ , (4.29)

and

t′J+i = x1 + t̂i, i ∈ Zn+1. (4.30)

Note t′J = x1, and t′J+n = 1.

4. if x1 > 1 − x1

t′n−j = x1 − t̂j, j ∈ Zn+1, (4.31)

and

t′n+i = x1 + t̂i, i ∈ ZJ . (4.32)

Note t′0 = 0, t′n = x1 and we set t′n+J = 1.

Define that 4y1

t′ := {t′i : i ∈ Zn+J+1}. Let 4(wij) be the set of discontinuous points of wij

along y1-direction. Define

4b
a := 4y1

t′ ∪4(wij) ∪ {a, b} ∩ [a, b].

Reorder the points in 4b
a by an increasing order and rename them as

a = t0 < t1 < · · · < tm1 = b.

This is an desired partition of [a, b]. Now (4.24) becomes into

I =

m1−1
∑

i=0

∫ ti+1

ti

h(x; ξ)dξ =

∫ 1

−1

H(s)ds, (4.33)

where,

H(s) =

m1−1
∑

i=0

t̄−i h
(

x; t̄−i s+ t̄+i
)

, (4.34)

with

t̄+i =
ti+1 + ti

2
, t̄−i =

ti+1 − ti
2

. (4.35)
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Using Gaussian quadrature method with the interpolating polynomial of degree k ′, we obtain

the quadrature value of I

Im =
∑

j∈Zk′

wjH(uj), (4.36)

where, {ui}, i ∈ Zk′ are the k′ zeros of the Legendre polynomial of degree k′ on (−1, 1), and

wi =

∫ 1

−1

li(x)dx with li(x) =
∏

j 6=i

x− uj

ui − uj

, i ∈ Zk′ .

Remark: We set h(x; ξ) = 0 if ξ ∈ [t′J−1, t
′
J+1) when x1 ≤ 1 − x1 or if ξ ∈ [t′n−1, t

′
n+1) when

x1 > 1 − x1.

We need to evaluate H(ue), e ∈ Zk′ . To this end, in turn we shall need to compute h(x; yie),

where

yie = t̄−i ue + t̄+i .

Now

h(x; yie) =
∫ d−yie

c
K(x; (yie, η))f(yie, η)dη

:=
∫ d′

c
g(x; (yie, η))dη,

(4.37)

where

g(x; (yie, η)) = K(x; (yie, η))f(yie, η). (4.38)

We use exactly the same idea as to compute I to compute h(x; yie). Denote the quadrature

value of h(x; yie) by hm(x; yie). Let 4d′

c := {c = s1 < s2 < · · · < sm2} obtained similarly as

we obtain 4b
a, with x2 as the shifting parameter. Then

h(x; yie) :=

m2−1
∑

j=0

∫ sj+1

sj

g(x; (yie, ξ))dξ =

∫ 1

−1

G(ξ)dξ, (4.39)

with,

G(ξ) =

m2−1
∑

j=0

s̄−j g
(

x; (yie, s̄
−
j ξ + s̄+

j )
)

(4.40)

Again, using Gaussian quadrature method with the interpolating polynomial of degree k ′,

we obtain

hm(x; yie) =
∑

j∈Zk′

wjG(uj), (4.41)

where, G(ue), e ∈ Zk′ are computed by (4.40).

Remark: We set g(x; (yie, ξ)) = 0 if ξ ∈ [s′J−1, s
′
J+1) when x2 ≤ 1 − x2 or if ξ ∈ [s′n−1, s

′
n+1)
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when x2 > 1 − x2, where, 4y2

s′ := {s′j : j ∈ Zn+J+1} is similarly obtained as 4y1

t′ .

The numerical quadrature rule proposed here is extremely efficient, in the sense that not only

it can automatically adjust the degree of fineness for the mesh regarding different domains

of integration, but also use less and less grid points to compute the quadrature value when

the domain is getting smaller and smaller. Nevertheless, in all cases it gives exactly same

accuracies. We next show that the numerical integral Im computed by (4.36) for the weakly

singular double integral I in (4.22) is of order 2k, i.e.,

|Im − I| = O(δm
2k), (4.42)

where

δm := min

(

1

2m
, max(b− a, d− c)

)

.

4.4 Error Analysis of the Adaptive Quadrature Rule

Let us first recall for F ∈ C2k(0, 1),

• The k-point Gauss-Legendre rule:

∫ 1

−1

F (x)dx =
∑

i∈Zk

wiF (ui) + CkF
(2k)(εc), (4.43)

where εc is some number in (−1, 1), Ck is a constant independent of F , {ui}, i ∈ Zk

are k zeros of the Legendre polynomial of degree k on (−1, 1), and

wi =

∫ 1

−1

li(x)dx with li(x) =
∏

j 6=i

x− uj

ui − uj

, i ∈ Zk.

Next we establish a composite k-point Gauss-Legendre rule for singular integrals with m

non-uniform subdivisions (see [KX] for more related results).

Lemma 4.7 Suppose that f defined on (0, 1) with

|f (2k)(x)| ≤ Cx−α−2k, for all x ∈ (0, 1) and some α ∈ (0, 1). (4.44)
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Then, for any given integer m > 0, there holds

∫ 1

0

f(x)dx =
∑

i∈Zk

wi

(

m−1
∑

j=1

x̄−j f(x̄−j ui + x̄+
j )

)

+O

(

1

m2k

)

, (4.45)

where

xj =

(

j

m

)q

, q =
2k + 1

1 − α
,

for j ∈ Zm+1.

Proof: It follows from (4.44) that |f(x)| ≤ Cx−α for x ∈ (0, 1), and thus we have

∣

∣

∣

∣

∫ x1

0

f(x)dx

∣

∣

∣

∣

≤ Cx1−α
1 = C

1

m2k+1
. (4.46)

Since
∫ 1

0

f(x)dx =

∫ x1

0

f(x)dx+

∫ 1

x1

f(x)dx, (4.47)

and
∫ 1

x1

f(x) =
m−1
∑

j=1

∫ xj+1

xj

f(x)dx =

∫ 1

−1

F (x)dx, (4.48)

where

F (x) =
m−1
∑

j=1

x̄−j .f
(

x̄−j x+ x̄+
j

)

, (4.49)

Hence, applying the k-point rule (4.43) to (4.48), yields

∫ 1

x1

f(x)dx =

∫ 1

−1

F (x)dx =
∑

i∈Zk

wiF (ui) + CkF
(2k)(εc). (4.50)

Note the first term on the right side of (4.50) is exactly the first term on the right side of

(4.45), therefore it suffices to verify that the second term on the right side of (4.50) is of

O
(

1
m2k

)

. From (4.49),

F (2k)(x) =
m−1
∑

j=1

(

x̄−j
)2k+1

f (2k)
(

x̄−j x+ x̄+
j

)

,
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and thus, by condition (4.44) on f (2k),

|F (2k)(εc)| ≤
m−1
∑

j=1

(

x̄−j
)2k+1 ∣

∣f (2k)
(

x̄−j εc + x̄+
j

)∣

∣

≤ C

m−1
∑

j=1

(2x̄−j )2k+1(xj)
−α−2k

=
C

mq(1−α)

m−1
∑

j=1

((j + 1)q − (j)q)2k+1(j)−q(α+2k)

≤ C

mq(1−α)

m−1
∑

j=1

q2k+12(q−1)(2k+1)(j)(q−1)(2k+1)(j)−q(α+2k)

=
C

m2k+1

m−1
∑

j=1

1 ≤ C

m2k
,

(4.51)

where we have used the inequality

(j + 1)q − (j)q = qξq−1 ≤ q(j + 1)q−1 ≤ q2q−1(j)q−1 (4.52)

with some ξ ∈ (j, j + 1) and q ≥ 1. Combining (4.47), (4.46), (4.50) and (4.51), we obtain

(4.45). 2

Theorem 4.8 Suppose that f defined on (0, 1) × (0, 1) satisfies

∣

∣

∣

∣

∂2kf

∂x2k
(x, y)

∣

∣

∣

∣

≤ Cx−α−2k,

∣

∣

∣

∣

∂2kf

∂y2k
(x, y)

∣

∣

∣

∣

≤ Cy−α−2k (4.53)

for all (x, y) ∈ (0, 1) × (0, 1) and some α ∈ (0, 1). Let β ∈ C2k[0, 1] satisfying

0 ≤ β(x) ≤ 1 on (0, 1). (4.54)

Then, for any given integer m > 0, there holds

∫ 1

0

∫ β(x)

0

f(x, y)dy dx =
∑

i∈Zk

wi

(

m−1
∑

j=1

x̄−j Fij

)

+O

(

1

m2k

)

,

with Fij =
∑

µ∈Zk

wµ

(

mij−1
∑

ν=1

ȳ−ν f(vij, ȳ
−
ν uµ + ȳ+

ν )

)

,

(4.55)

where

xj =

(

j

m

)q

, j ∈ Zm+1, q =
2k + 1

1 − α
,
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vij = x̄−j ui + x̄+
j , mij =

⌈

(β(vij))
1
q m
⌉

,

yν =
( ν

m

)q

, ν ∈ Zmij
and ymij

= β(vij).

Moreover the computational complexity N (Im) is

N (Im) ≤ Cm2, (4.56)

where, N (Im) is the number of the point evaluations of the integrand f , and Im is the first

term in (4.55), namely the numerical approximation of the integral.

Proof: Let

F (x) =

∫ β(x)

0

f(x, y) dy.

Note

F (2k)(x) =

∫ β(x)

0

∂2kf

∂x2k
(x, y)dy+combination of lower partial derivatives of f with respect to x.

By (4.53)-(4.54), we have that

|F (2k)(x)| ≤ Cx−α−2k for x ∈ (0, 1).

From Lemma 4.7,

∫ 1

0

∫ β(x)

0

f(x, y) dydx =

∫ 1

0

F (x)dx =
∑

i∈Zk

wi

(

m−1
∑

j=1

x̄−j F (vij)

)

+O

(

1

m2k

)

. (4.57)

Each evaluation of F (vij) requires another quadrature. Using Lemma 4.7 (4.45) again yields:

F (vij) =

∫ β(vij)

0

f(vij, y) dy = Fij +O

(

1

m2k

)

(4.58)

It remains to estimate the sum

Eij =
m−1
∑

j=1

x̄−j
1

m2k
.

While

|Eij| ≤ 2
m−1
∑

j=1

2x̄−j
1

m2k
=

2

m2k

m−1
∑

j=1

(j + 1)q − jq

mq

≤ C
m2k

m−1
∑

j=1

jq

mq
≤ C

m2k
,

(4.59)
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Singular point 

Figure 4.6: Domain of integration for Example 4.9

where we have used the inequality (4.52) again. Therefore, (4.55) follows from (4.57)-(4.59).

In view of (4.55), it is clear that (4.94) holds. 2

We now present several numerical examples using above scheme. We shall considerK(x, y) =

1
x−y

. The Gauss quadrature with interpolating polynomial of order k = 2 is employed.

Consequently, we choose q = 5 for the non-uniform partition. The theoretical order of

accuracy (2k = 4) by this quadrature rule is verified in Example 4.9 and Example 4.10. The

convergent rate is computed by log2
|Im−I2m|
|I2m−I4m|

in these two examples.

Example 4.9 Consider following integral

I =

∫ 1

0

∫ 1−x

0

x+ y + 1
√

(x− 0.3)2 + (y − 0.2)2
dydx (4.60)

In this example the singular point (0.3, 0.2) is inside the domain of integration-the unit

triangle Ω (see Fig. 4.6). We tabulate our computation results in Table 4.1. It is clearly

shown that the quadrature rule gives accurate results, and its order of convergence is also

verified.

Example 4.10 Consider following integral

I =

∫ 1

0.5

∫ 1−x

0

x+ y + 1
√

(x− 0.3)2 + (y − 0.2)2
dydx. (4.61)
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m Numerical Im |Im − I2m| Convergent rate

5 3.714414251744

10 3.721811162863 7.3969e-03

20 3.722373749843 5.6259e-04 3.7168

40 3.722412249476 3.8500e-05 3.8692

80 3.722414764040 2.5146e-06 3.9365

160 3.722414924162 1.6012e-07 3.9731

320 3.722414934272 1.0110e-08 3.9853

640 3.722414934906 6.3451e-10 3.9940

1280 3.722414934946 3.9740e-11 3.9970

2560 3.722414934948 2.4864e-12 3.9985

Table 4.1: Quadrature computing results for Example 4.9

Note, in this example, the singular point (0.3, 0.2) is outside the domain of integration (see

Fig. 4.7). We tabulate the computing results in Table 4.2.

Example 4.11 In this example, we test if our quadrature rule is good enough in solving the

actual integral equation (6.1), the linear system of equations are solved by standard Gaussian

elimination method. No compression is assumed. The results are tabulated in Table 4.3.

Order of convergence is computed by log2
‖u−un‖∞

‖u−un+1‖∞
, where n stands for level number of the

resolution, u is the exact solution and un is the approximation to u in space Fn; The theo-

retical convergent rate is 2. We can see from the results that results by using our quadrature

rule are very close to those obtained without quadrature rule.

Remark: The adaptive strategy of the proposed quadrature rule can be applied to any

similar case.

Following theorem tells us that the adaptive strategy dramatically reduces the computational

complexity for integration.
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Singular point 

Domain  of integration

Figure 4.7: Domain of integration for Example 4.10

m Numerical Im |Im − I2m| Convergent rate

5 0.6337498001541

10 0.6344202251264 6.7042e-04

20 0.6344713062075 5.1081e-05 3.7142

40 0.6344745338648 3.2277e-06 3.9842

80 0.6344747360404 2.0218e-07 3.9968

160 0.6344747488410 1.2801e-08 3.9813

320 0.6344747496463 8.0531e-10 3.9905

640 0.6344747496970 5.0714e-11 3.9891

1280 0.6344747497002 3.1701e-12 3.9998

2560 0.6344747497004 1.9855e-13 3.9970

Table 4.2: Quadrature computing results for example 4.10
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without quadrature with quadrature

n L∞-error order m L∞-error order

1 1.513187e-1 40 1.513184e-1

2 3.599605e-2 2.0717 40 3.599379e-2 2.0718

3 7.499082e-3 2.2631 40 7.496564e-3 2.2634

4 1.849162e-3 2.0198 40 1.850269e-3 2.0185

5 4.650610e-4 1.9914 40 4.657219e-4 1.9902

Table 4.3: Comparison of uncompressed solutions by the wavelet collocation

method, with and without numerical quadratures for matrix entries.

Theorem 4.12 In solving (2.2), if the basis functions of the approximation space are cho-

sen as constructed in Chapter 3, and if the adaptive quadrature rule proposed in this section

is employed, the complexity to compute all matrix entries in the discrete linear system is:

N (Im) ≤ Cf(n) log f(n)m2, (4.62)

where, N (Im) is the number of function evaluations of integrands, f(n) is the dimension of

the approximation space, and n is a resolution level of the approximation space.

Proof: The proof is done by direct counting. For any row i′j′, (i′, j′) ∈ Un, in view of (2.19),

each entry in this row is computed through a wij, for (i, j) ∈ Un. We divide the elements in

row i′j′ into (n + 1) subgroups according to their i value. Namely, the elements of row i′j′

is divided into subgroups

Ki′j′,0j, j ∈ Zw(0),

Ki′j′,1j, j ∈ Zw(1),
...

...

Ki′j′,nj, j ∈ Zw(n).

When i = 0, w0j, j ∈ Zw(0) are all supported on Ω. There are w(0) elements to be evaluated

through integration, and each integration needs Cm2 function evaluations by Theorem 4.8.

Hence the number of function evaluations is

N0(Im) = Cw(0)m2.



Yi Wang Chapter 4. Computation of Discrete Systems and its Solution 55

When i = 1, w1j, j ∈ Zw(1) are all supported on Ω. The number of function evaluations is

(note w(1) = r)

N1(Im) = C.w(1)m2 = C.rm2.

For 1 < i ≤ n, since the supports of basis functions of Wn safisfies (2.7) and (2.8), then the

number of function evaluations of the integrand is

Ni(Im) = C.rm2.

Thus,

N (Im) = f(n)(N0(Im) + N1(Im) + · · · + Nn(Im))

= f(n)(Cw(0)m2 + Crm2 + Crm2 + . . .+ Crm2)

= f(n)(Cw(0)m2 + n · Crm2)

≤ Cf(n) log f(n)m2.

2

4.5 Compression Schemes-Distance Computing

The matrix Kn in general is non-symmetric and numerical sparse. [CMX3] gives following

theoretical truncation criterion.

Let K̃n := [K̃i′j′,ij : (i′, j′), (i, j) ∈ Un] be the truncation matrix whose entries are defined in

terms of a matrix truncation parameter εi′i by

K̃i′j′,ij :=







Ki′j′,ij if dist(Ŝi′j′ , Sij) ≤ εi′i,

0 otherwise,
(4.63)

where dist(Si′j′ , Si,j) denotes the geometric distance between the support Ŝi′j′ of a collocation

functional `i′j′ and the support Sij of a wavelet function wij. The truncation parameter εi′i

is chosen such that for some positive constants a and ν > 1,

εi′i = max{aµ[−i+b′(n−i′)]/2, ν(di + di′)} i, i′ ∈ Zn+1, (4.64)

where,
k − σ′

2k − σ′
< b′ ≤ 1, with 0 < σ′ < 2 − σ.
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strategies Level n

2 3 4 5 6 7 8 9

strategy 1(ν = 1) 1.0000 0.9780 0.6766 0.3172 0.1198 0.0408 0.0135 0.0045

strategy 2(ν = 1) 1.0000 0.8945 0.5202 0.2276 0.0857 0.0302 0.0105 0.0037

strategy 3(ν = 1) 1.0000 0.8857 0.4488 0.1699 0.0572 0.0189 0.0066 0.0025

block truncation 1.0000 0.7583 0.4166 0.1810 0.0677 0.0230 0.0073 0.0022

(pi′i =
√

3)

Table 4.4: Comparison of compression rates of different strategies

di := O(µ−(i/2)) is the diameter of Sij, j ∈ Zw(i). n is the level number of the approximation

space. Note the truncating parameter εi′i (4.64) changes as i, i′ change. We present here

several different practical strategies. Three strategies are investigated in this section. For

strategy 1 we choose

εi′i = ν(di′ + di). (4.65)

For strategy 2 we choose

εi′i = νmax{di′ , di}. (4.66)

For strategy 3 we choose

εi′i = νmin{di′ , di}. (4.67)

A comparison of compression rates of different strategies is depicted in Fig. 4.8, their actual

numbers are also listed in Table 4.4 (We take ν = 1 for strategy 1, 2, 3). The compression

rate is computed as the ratio of the number of nonzero entries in the compressed matrix K̃n

over the total number of entries of Kn. Observe that the compression rate of strategy 2 is

in between of those of strategy 1 and strategy 3.

Moreover, we test these different strategies solving the integral equation (6.1) with ν =

1. In order to exclude other affecting factors, we use standard Gaussian elimination to

solve the resulting system. All the matrix entries are computed exactly. The results are

tabulated in Table 4.5, Table 4.6 and Table 4.7. Order of convergence is computed by

log2
‖u−un‖∞

‖u−un+1‖∞
, where n stands for level number of the resolution, u is the exact solution

and un is an approximation to u in space Fn; The theoretical convergent rate is 2. The
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Figure 4.8: Compression rates of different strategies
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Figure 4.9: Convergent rates of different strategies

comparison of their convergent rates for different strategies is plotted in Figure 4.9. By

comparing with the theoretical convergent rate 2, from Fig. 4.9 we can tell that strategy

1 is relatively conservative and strategy 3 is somewhat insufficient. While strategy 2 gives

relatively satisfied results.

We further investigate computing results by choosing different parameter ν. The results are

tabulated in Table 4.8, Table 4.9 and Table 4.10. The convergent rates of strategy 3 with

different ν are depicted in Figure 4.10, and the convergent rates of strategy 2 with different

ν are depicted in Figure 4.11. From those tabulated results and the two figures Fig. 4.10

and Fig. 4.11, we see that for the adopted strategy 2, ν = 1 gives satisfied results. While

smaller ν doesn’t give satisfied results.

The matrix Kn after compression is quite sparse when n is relatively large (See Fig. 4.12,

Fig. 4.13 and Fig. 4.14. These sparse matrices are computed for integral equation (6.1).

Special sparse matrix storage is used when doing the actual computing. Not only this

speeds up computing, but also this dramatically saves computer memory. In fact when n
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Strategy 1: εi′i = ν(di′ + di)

full collocation solution un compressed solution ũn

n L∞-error order L∞-error order compression rate

1 1.513187e-1 1.513187e-1 1.000000

2 3.599605e-2 2.0717 3.599605e-2 2.0717 1.000000

3 7.499082e-3 2.2631 7.499309e-3 2.2630 0.978027

4 1.849162e-3 2.0198 1.849060e-3 2.0200 0.676590

5 4.650610e-4 1.9914 4.652252e-4 1.9908 0.317277

Table 4.5: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (strategy 1 with ν = 1).

Strategy 2: εi′i = νmax{di′ , di}
full collocation solution un compressed solution ũn

n L∞-error order L∞-error order compression rate

1 1.513187e-1 1.513187e-1 1.000000

2 3.599605e-2 2.0717 3.599605e-2 2.0717 1.000000

3 7.499082e-3 2.2631 7.501118e-3 2.2627 0.894531

4 1.849162e-3 2.0198 1.847625e-3 2.0214 0.520172

5 4.650610e-4 1.9914 4.650882e-4 1.9901 0.227601

Table 4.6: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (strategy 2 with ν = 1).
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Strategy 3: εi′i = νmin{di′ , di}
full collocation solution un compressed solution ũn

n L∞-error order L∞-error order compression rate

1 1.513187e-1 1.513187e-1 1.000000

2 3.599605e-2 2.0717 3.599605e-2 2.0717 1.000000

3 7.499082e-3 2.2631 7.514074e-3 2.2602 0.885742

4 1.849162e-3 2.0198 1.848971e-3 2.0229 0.448761

5 4.650610e-4 1.9914 4.737033e-4 1.9647 0.169880

Table 4.7: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (strategy 3 with ν = 1).

Strategy 3: εi′i = νmin{di′ , di}
ν = 1 ν = 0.8

n L∞ error order comp. rate L∞ error order comp. rate

1 1.513187e-1 1.0000 1.513187e-1 1.0000

2 3.599605e-2 2.0717 1.0000 3.599605e-2 2.0717 1.0000

3 7.514074e-3 2.2602 0.885742 7.406683e-3 2.2809 0.674805

4 1.848971e-3 2.0229 0.448761 1.879626e-3 1.9784 0.301544

5 4.737033e-4 1.9647 0.169880 6.657693e-4 1.4974 0.111790

Table 4.8: Comparison of solutions obtained from strategy 3 with different ν

Strategy 2: εi′i = νmax{di′ , di}
ν = 1 ν = 0.8

n L∞ error order comp. rate L∞ error order comp. rate

1 1.513187e-1 1.000000 1.513187e-1 1.000000

2 3.599605e-2 2.0717 1.000000 3.599605e-2 2.0717 1.000000

3 7.501118e-3 2.2627 0.894531 7.494318e-3 2.2640 0.753906

4 1.847625e-3 2.0214 0.520172 1.850194e-3 2.0181 0.407013

5 4.650882e-4 1.9901 0.227601 4.689467e-4 1.9802 0.174738

Table 4.9: Comparison of solutions obtained from strategy 2 with different ν
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Strategy 2: εi′i = νmax{di′ , di}
ν = 0.6 ν = 0.4

n L∞ error order comp. rate L∞ error order comp. rate

1 1.513187e-1 1.0000 1.513187e-1 1.0000

2 3.599605e-2 2.0717 1.0000 3.599605e-2 2.0717 1.0000

3 7.510530e-3 2.2609 0.712158 7.409970e-3 2.2803 0.641846

4 1.855561e-3 2.0171 0.360596 1.887554e-3 1.9729 0.297562

5 4.784063e-4 1.9555 0.148113 5.564827e-4 1.7621 0.118184

Table 4.10: Comparison of solutions obtained from strategy 2 with different ν
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Figure 4.10: Convergent rates of strategy 3 with different ν
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Figure 4.11: Convergent rates of strategy 2 with different ν

is relatively large, we are forced to use the sparse storage scheme to store the matrix (On

our computer cluster.math.wvu.edu, with AMD Athlon(tm) MP Processor 1600+ and 1

Gigabyte of RAM, if serial codes are used, we have to use sparse storage when n > 5 ).

For comparison of the compressed matrix K̃n with the full matrix Kn, in Fig. 4.15, we plot

both K̃3 and K3. Note in Fig. 4.15, for viewing effect, we use the absolute values of entries

of the matrix K̃3 and K3.

Next several theorems claim that if the constructed wavelets and collocation functionals on

the unit triangle are employed to solve (2.2) on Ω, then similar results as in [CMX3] continue

to hold.

Theorem 4.13 If the constructed wavelets and collocation functionals on the unit triangle

in Chapter 3 are employed to solve (2.2) on the unit triangle Ω, and if the truncation pa-

rameters εni′i, i, i
′ ∈ Zn+1 are chosen as (4.64) then there exists a positive constant c and a

positive integer M such that when n ≥M and for x ∈ Fn,

‖(I − K̃n)x‖∞ ≥ c‖x‖∞,
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Figure 4.12: The sparse matrix K3 after compression
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Figure 4.13: The sparse matrix K4 after compression
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Figure 4.14: The sparse matrix K5 after compression

i.e., the compressed scheme (4.64) is stable, where, K̃n : Fn 7→ Fn is a linear operator relative

to the basis {wij : (i, j) ∈ Un} with E−1
n K̃n as its matrix representation.

Proof: Since the constructed wavelet basis and collocation functionals have properties

Lemma 3.1 through Lemma 3.7 and the kernel considered satisfying (4.23), the theorem

follows from Theorem 4.3 of [CMX3]. 2

In Particular, this theorem allows for n ≥M ,

(I − K̃n)ũn = Pnf (4.68)

has a unique solution given by ũn =
∑

(i,j)∈Un
ũijwij.

Theorem 4.14 Use the constructed wavelets and collocation functionals on the unit trian-

gle in Chapter 3 to solve (2.2) on Ω. Let εni′i, i, i
′ ∈ Zn+1, be chosen as in (4.64). Then there

exists a positive constant c and a positive integer M such that for all n ≥M ,

‖u− ũn‖∞ ≤ cf(n)−k/2(log f(n))‖u‖k,∞.
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Figure 4.15: The Full matrix K3 and the compressed matrix K̃3
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Proof: Since the constructed wavelet basis and collocation functionals have properties

Lemma 3.1 through Lemma 3.8 and the kernel considered satisfying (4.23), the theorem

follows from Theorem 4.4 of [CMX3]. 2

Theorem 4.15 If the conditions in Theorem 4.13 hold, then there exists a positive con-

stant c such that the condition number of the matrix Ãn := En − K̃n satisfies

cond∞(Ãn) ≤ c log2(f(n)),

where cond∞(A) denotes the condition number of a matrix A in `∞ matrix norm.

Proof: Since the constructed wavelet basis and collocation functionals have properties

Lemma 3.1 through Lemma 3.7 and the kernel considered satisfying (4.23), the theorem

follows from Theorem 4.5 of [CMX3]. 2

Theorem 4.16 Use the constructed wavelets and collocation functionals on the unit tri-

angle in Chapter 3 to solve (2.2) on Ω. Let the truncation parameters εni′i, i
′, i ∈ Zn+1, be

chosen as in (4.64). Then

N (Ãn) = O(f(n) log f(n)),

Proof: Since the constructed wavelet basis and collocation functionals have property Lemma

3.1 and property Lemma 3.4, the theorem follows from Theorem 4.6 of [CMX3]. 2

4.6 Block Truncation Schemes

We describe in this section a block truncation scheme. This idea is also studied by [CWX1]

in their study of 1-D wavelet collocation methods. By this scheme, the actual geometric

distance dist(Ŝi′j′ , Sij) is not needed to determine if an element Ki′j′,ij , (i′, j′), (i, j) ∈ Un

needs to be truncated. We first note

Sij = φe(Ω), (4.69)



Yi Wang Chapter 4. Computation of Discrete Systems and its Solution 67

and

Ŝi′j′ = φe′(Ω). (4.70)

Ŝi′j′ and Sij are both right triangles transformed from the original unit triangle Ω. For Sij,

denote its vertex of right angle by P0(x0, y0), and counterclockwisely, denote the other two

vertices by P1(x1, y1) and P2(x2, y2) (see Fig. 4.4). It is not difficult to find the centroid of

the Sij is at

C =

(

x0 +
x1 − x0

3
, y0 +

x1 − x0

3

)

:= (Cx, Cy). (4.71)

We assign a multi-index q := (q1, q2) to Sij, and q is determined by

q1 =

⌊

Cx

µ(i−1)/2

⌋

and q2 =

⌊

Cy

µ(i−1)/2

⌋

. (4.72)

This can be written as

q = γ(e) (4.73)

where γ is a function defined by γ : Z
i−1
µ 7→ Z

2
µ(i−1)/2 .

If i ≥ i′, let e = (e0e1 . . . ei−2) and e′ = (e′0e
′
1 . . . e

′
i′−2). Denote ec = (e0e1 . . . ei′−2). We then

have

q′ = (q′1, q
′
2) = γ(e′), (4.74)

and

q = (q1, q2) = γ(ec). (4.75)

If i < i′, denote e′
c = (e′0e

′
1 . . . e

′
i−2). We have

q′ = (q′1, q
′
2) = γ(e′

c), (4.76)

and

q = (q1, q2) = γ(e). (4.77)

Now define a block Ki′i
q′q by

Ki′i
q′q := {Ki′j′,ij : q′,q are determined by (4.74) − (4.77)}. (4.78)

We have, in both cases, that

Ki′i =
[

Ki′i
q′q : q′,q ∈ Z

2
µ(i0−1)/2

]

, (4.79)
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Figure 4.16: Distance of two triangles Si′j′ and S

where i0 := min{i′, i}. Figure 4.16 shows the idea of the block truncation scheme. If the

support Ŝi′j′ of the collocation functional `i′j′ is in a finer level comparing with the support

Sij of the wavelet function wij, then the support of the same level as that of the wavelet

containing Ŝi′j′ is considered when q′ is assigned. Similar idea is applied if the support Sij

of the wavelet wij is in a finer level. Denote S = φec(Ω) if i ≥ i′ and S = φe′c
(Ω) if i < i′.

We have following lemma:

Lemma 4.17 Assume that Ki′j′,ij is an entry of Ki′i
q′q. Then, for i ≥ i′,

|q − q′|
µ(i′−1)/2

≥ dist(Ŝi′j′ , S) ≥ |q − q′| −
√

2

µ(i′−1)/2
, (4.80)

and for i < i′,
|q − q′|
µ(i−1)/2

≥ dist(Sij, S) ≥ |q − q′| −
√

2

µ(i−1)/2
. (4.81)

Proof: We present a proof for the case i ≥ i′. The proof for the case i < i′ is similar.

Without loss of generality, assume vertices of Ŝi′j′ are Pi, i ∈ Z3 with P0 = (0, 0) (see Figure

4.16). Note Ŝi′j′ is a right triangle with two equal sides. Each side is of length 1 unit, where

the unit is 1
µ(i′−1)/2 . Following we only use the number of units to describe the length. With
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this assumption, we have q′ = (0, 0). Assume q = (m,n), where m, n are integers. Define

P̂0 = q, P̂1 = (m+ 1, n), P̂2 = (m,n+ 1), and P̂3 = (m+ 1, n+ 1). Note S is either triangle

P̂0P̂1P̂2 or triangle P̂3P̂2P̂1. We use |Pi − Pj| to denote the distance between points Pi and

Pj. Observed that

dist(S, Si′j′) ≤ min{|P1 − P̂1|, |P2 − P̂1|, |P1 − P̂2|, |P2 − P̂2|}. (4.82)

Now, |q − q′| =
√
m2 + n2,

|P1 − P̂1| =
√

(m)2 + (n)2 = |P2 − P̂2|,
|P1 − P̂2| =

√

(m− 1)2 + (n+ 1)2; |P2 − P̂1| =
√

(m+ 1)2 + (n− 1)2.

Combining with (4.82), the first inequality follows. We now turn to prove the second in-

equality. If Ŝi′j′ and S are not in the same row or column (see Figure 4.16), we have

dist(Si′j′ , S) ≥
√

(m− 1)2 + (n− 1)2 ≥
√
m2 + n2 −

√
2

On the other hand, when Ŝi′j′ and S are in the same row or column, by the triangle inequality,

we have

dist(Ŝi′j′ , S) + 1 ≥ |q − q′|,

i.e.,

dist(Ŝi′j′ , S) ≥ |q − q′| − 1 ≥ |q − q′| −
√

2,

This completes the proof. 2

Lemma 4.18 Assume that Ki′j′,ij is an entry of Ki′i
q′q. Then

|q − q′| −
√

2

µ(i0−1)/2
≤ dist(Ŝi′j′ , Sij) <

|q − q′| +
√

2

µ(i0−1)/2
(4.83)

Proof: We present a proof for the case i ≥ i′. The proof for the case i < i′ is similar. First

note that

Si′j′ = φe′(Ω) and Sij = φe(Ω) (4.84)

by (4.75) we have

q = γ(ec), with ec = (e0, . . . , , ei′−2). (4.85)
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Figure 4.17: Block truncation scheme

Observe that

Sij ⊂ S := φec(Ω). (4.86)

For q 6= q′, by Lemma 4.17

|q − q′|
µ(i′−1)/2

≥ dist(Ŝi′j′ , S) ≥ |q − q′| −
√

2

µ(i′−1)/2
. (4.87)

This yields

dist(Ŝi′j′ , S) ≤ dist(Ŝi′j′ , Sij) < dist(Ŝi′j′ , S) +

√
2

µ(i′−1)/2
. (4.88)

2

We now are ready to present the block truncation scheme. Define p := [pi′i : pi′i > 0, i′, i ∈
Zn+1] and let

K̃i′i =
[

Ki′i
q′q(p) : q′,q ∈ Z

2
µ(i0−1)/2

]

(4.89)

with

Ki′i
q′q(p) =







Ki′i
q′q, |q − q′| ≤ pi′i

0, otherwise.
(4.90)
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Next theorem shows that solutions of (4.68) by this block truncation scheme has the same

order of convergence and computational complexity as those by adopting the theoretical

truncation scheme (4.64), provided that the truncation parameters p is properly chosen.

Theorem 4.19 Assume that u ∈ W k,∞(Ω). For some a > 0 and ν ′ > 0, let

pi′i := max{aµ[b′(n−i′)+(i′−i−1)]/2, ν ′(µ(−i+i′)/2 + 1)} −
√

2, for i′ < i (4.91)

of

pi′i := max{aµ[b′(n−i′)−1]/2, ν ′(µ(i−i′)/2 + 1)} −
√

2, for i′ ≥ i. (4.92)

Assume scheme (4.89), then there exists a positive constant c such that

‖u− ũn‖∞ ≤ cf(n)−k/2 log f(n)‖u‖k,∞ (4.93)

and

N (Ãn) = O (f(n) log f(n)) , (4.94)

where N (Ãn) denotes the number of nonzero entries in matrix Ãn.

Proof: As proved in [CMX3] if the truncation parameter εi′i is chosen by (4.64), and

scheme (4.63) is applied, then estimate (4.93) holds. It suffices to show that if the block

truncation scheme (4.89) is assumed, scheme (4.63) is preserved. Namely, we need to show

for appropriate p, if |q − q′| ≤ pi′i, then

dist(Ŝi′j′ , Sij) ≤ εi′i. (4.95)

From (4.78) we have for each pair (i′, j′), (i, j) ∈ Un, there exists q′, q ∈ Z
2
µ(i0−1)/2 such that

Ki′j′,ij is an entry of the block Ki′i
qq′ . If

|q − q′| < pi′i

in view of (4.91), (4.92) and (4.64), we have

|q − q′| +
√

2

µ(i0−1)/2
≤ εi′i.
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It follows from Lemma 4.18 that

dist(Ŝi′j′ , Sij) ≤ εi′i. (4.96)

According to the block truncation strategy (4.89), we have that

K̃i′i = [Ki′i
q′q(p) : |q − q′| ≤ pi′i] (4.97)

which guarantees the scheme (4.63) and hence (4.93) follows. It remains to prove (4.94). To

this end we set

Λ1 := {(i′, j′), (i, j) ∈ Un : |q′ − q| ≤ pi′i}, (4.98)

Λ2 := {(i′, j′), (i, j) ∈ Un : dist(Ŝi′j′ , Sij) ≤ εi′i}, (4.99)

Λ3 := {(i′, j′), (i, j) ∈ Un : εi′i < dist(Ŝi′j′ , Sij) and |q′ − q| ≤ pi′i}. (4.100)

We estimate the cardinality card(Ω1). we have seen inequality |q′ − q| ≤ pi′i implies that

dist(Si′j′ , Sij) ≤ εi′i. Thus, we have that

card(Λ1) = card(Λ2) + card(Λ3).

It is proved in [CMX3] that

card(Λ2) = O(f(n) log f(n)). (4.101)

Now for any fixed i′, i ∈ Zn+1, there are at most cµi0−1 sub-blocks Ki′i
qq′ in Ki′i for some

positive constant c, satisfying that both εi′i < dist(Ŝi′j′ , Sij) and |q′ − q| ≤ pi′i. While each

sub-block Ki′i
q′q has at most 2r2µ|i−i′| entries. Therefore

card(Λ3) ≤ 4cr2
∑

i∈Zn+1

∑

i′∈Zi+1

µ|i−i′|+i0−1 = O(f(n) log f(n)).

This with (4.101) establishes (4.94). 2

For any given triangle Ŝi′j′ associated with index q′, the block truncation scheme is expected

to catch any triangle S associated with index q surrounding Ŝi′j′ . On the other hand, we

don’t want too many triangles are caught by the scheme. A simple analysis shows that for

triangles which are surrounding Ŝi′j′ , |q′ − q| ≤
√

2, hence
√

2 < pi′i ≤
√

3, i′, i ∈ Zn+1
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would be a very good choice. Following examples demonstrates this.

For the compression rates of the block truncation scheme with pi′i =
√

3 please see Table

4.4. For comparing compression rates with those of other schemes, please see Figure 4.8.

Note the block truncation scheme is not contained in any of the schemes discussed in the

previous section. While for distance computing scheme: strategy 1 contains strategy 2 and

in turn strategy 2 contains strategy 3. When level n < 5, the block truncation scheme has

maximum compression rate, yet, the convergence rate is very satisfactory. When n > 5,

the compression rate of block truncation scheme is between that of strategy 2 and that

of strategy 3, nevertheless, block truncation scheme remains to give good solution. This

suggests that, even compared to strategy 2, block truncation scheme can give more or less

the same good solution but with less computational effort. In view of Figure 4.9 and the

computing results in Table 6.1 and Table 6.2 in solving the integral equations (6.1), when

n = 8, the block truncation scheme can give amazing satisfactory results. Therefore, we

conclude, the block truncation scheme is the best one among all the practical compression

strategies we discussed so far.

Example 4.20 In this example, we solve the integral equation (6.1). To test if the proposed

block truncation strategy is good enough, all the elements are computed by analytical method

and the linear system of equations are solved by standard Gaussian elimination method. The

results are tabulated in Table 4.11. We can see that the compressed solutions by block trun-

cation scheme follow very closely the uncompressed solution. The block truncation parameter

pi′i is set as
√

3. The convergent rates for different levels are plotted in Figure 4.9.

4.7 Quadrature Error Control

After discretizing the integral equation (2.2) with compression applied , we obtain a linear

system

En − K̃n = fn. (4.102)

Since the nonzero entries of the coefficient matrix K̃n (obtained after compression) are usually

obtained by quadrature, we actually solve a perturbed version of the linear system (4.102),
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Block truncation scheme with pi′i =
√

3

full collocation solution un compressed solution ũn

n L∞-error order L∞-error order compression rate

1 1.513187e-1 1.513187e-1 1.000000

2 3.599605e-2 2.0717 3.599605e-2 2.0717 1.000000

3 7.499082e-3 2.2631 7.493692e-3 2.2641 0.758301

4 1.849162e-3 2.0198 1.851165e-3 2.0172 0.416626

5 4.650610e-4 1.9914 4.683404e-4 1.9828 0.181021

Table 4.11: Comparison of solutions obtained by the full collocation method

and by the compressed method (with block truncation scheme).

say,

(En − ˜̃
Kn)˜̃un = fn, (4.103)

where
˜̃
Kn = ( ˜̃Ki′j′,ij) with ˜̃Ki′j′,ij = K̃i′j′,ij + δi′j′,ij,

and δi′j′,ij denotes the quadrature error for computing the integral Ki′j′,ij (or equivalently,

K̃i′j′,ij). We wish to control quadrature errors, such that they will not affect the convergent

rate of the approximation solutions. In the following we establish a rule for the quadrature

accuracy so that the solution ˜̃un obtained still satisfies the same order of error estimate as

stated in Theorem 4.14. Let δi′i be the quadrature error for the block matrix K̃i′i, namely

δi′i = maxj′,j|Ki′j′,ij − ˜̃Ki′j′,ij|, j ∈ Zw(i), j
′ ∈ Zw(i′).

Lemma 4.21 Suppose that for a given constant ν > 1 and 0 < σ ′ < 2 − σ, the quadrature

rule have an accuracy such that

δi′i ≤ cε−η
i′i d

2+k
i dk

i′ , i′, i ∈ Zn+1, (4.104)

for some constant c. Then there exist a constant c1 whenever εi′i ≥ r(di + di′) then

‖Ki′i − ˜̃
Ki′i‖∞ ≤ c1ε

−η
i′i (didi′)

k, i′, i ∈ Zn+1, (4.105)

where εi′i is the truncation parameter for the block matrix Ki′i and η := 2k − σ′.
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Proof: We first note

‖Ki′i − ˜̃
Ki′i‖∞ ≤ ‖Ki′i − K̃i′i‖∞ + ‖K̃i′i − ˜̃

Ki′i‖∞.

From Lemma 3.2 of [CMX3] we have

‖Ki′i − K̃i′i‖∞ ≤ cε−η
i′i (di′di)

k i, i′ ∈ Zn+1

It then follows from (4.104) that

‖K̃i′i − ˜̃
Ki′i‖∞ = max

j′∈Zw(i′)

∑

j∈Zw(i)\Zi′j′ (ε)

|Ki′j′,ij − ˜̃Ki′j′,ij|

≤ maxj′∈Zw(i′)

∑

j∈Zw(i)

|Ki′j′,ij − ˜̃Ki′j′,ij| ≤ cw(i)ε−η
i′i (didi′)

kd2
i

≤ cε−η
i′i (didi′)

k,

where

Zi′j′(ε) := {j : j ∈ Zw(i), dist(Sij, Ŝi′j′) > εi′i}.

The last inequality is obtained by using

w(i) ≤ cµi (4.106)

and

di = cµ−i/2. (4.107)

This completes the proof. 2

Corrolary 4.22 If the truncation parameter εi′i is chosen to be c(di +di′) for some constant

c, then (4.105) is satisfied by choosing

δi′i ≤ c(di)
k+2dk

i′ (4.108)

or equivalently by choosing

δi′i ≤ cµ−k( i
2
+ i′

2
)−i. (4.109)

Proof: From (4.107) and di ≤ c, i ∈ N0, we obtain

c2−η ≤ (di + di′)
−η.
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Now

c(didi′)
kd2

i = c′2−η(didi′)
kd2

i ≤ c(di + di′)
−η(didi′)

kd2
i = cε−η

i′i (didi′)
kd2

i

Thus (4.104) is satisfied, and (4.105) follows. (4.109) follows by directly using (4.108) and

(4.107). 2

Let mi′i be the number used in the quadrature rule (see (4.36) ) to compute entries of

the block matrix ˜̃
Ki′i. Assume that m00 is chosen. If the quadrature rule (4.36) has error

estimate O(m−2k), then mi′i can be chosen as

mi′i = cm00(εi′i)
η/2k(didi′)

−1/2d
− 1

k
i . (4.110)

In particular, if εi′i = c(di + di′), we can choose

mi′i = cm00(didi′)
−1/2(di)

−1/k. (4.111)

Theorem 4.23 Assume that the quadrature rule used to compute entries of ˜̃
Kn has error

estimate O(m−2k). Choose m00 large enough such that (4.104) is satisfied for i′ = i = 0

and identify other mi′i by (4.110) ( in the case of εi′i = c(di′ + di), (4.111) is used), and the

truncation parameter εi′i, i
′, i ∈ Zn+1 are chosen according to (4.64). Then there exists a

positive constant c and a positive integer N such that for all n > N ,

‖u− ˜̃un‖∞ ≤ cf(n)−k/2 log f(n)‖u‖∞,

where, ˜̃un =
∑

(i,j)∈Un

˜̃uijwij, with ˜̃un = [˜̃uij, (i, j) ∈ Un].

Proof: Since the quadrature rule has error estimate O(m−2k), if m00 is large enough to meet

(4.104), there holds

cm−2k
00 ≤ ε−η

00 d
2k+2
0 .

By (4.110) we have

m−2k
i′i = c(m00)

−2k
(

ε
η/2k
i′i (didi′)

−1/2d
−1/k
i

)−2k

≤ cε−η
i′i (didi′)

kd2
i .

Therefore (4.104) is satisfied. For the case when εi′i = c(di + di′), use (4.111), (4.104) is

satisfied. The remaining proof can follow that of [CMX3](see [CMX3] Lemma 4.1, Lemma

4.2 and Theorem 4.4). 2
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We next discuss the quadrature error control from another perspective. Assuming both the

coefficient matrix K̃n and fn are obtained by numerical quadrature. In this case, we solve a

perturbed version of the linear system (4.102),

(En − ˜̃
Kn)˜̃un = ˜̃

fn, (4.112)

where
˜̃
Kn = ( ˜̃Ki′j′,ij) with ˜̃Ki′j′,ij = K̃i′j′,ij + δi′j′,ij,

˜̃
f = ( ˜̃fi′j′) with ˜̃fi′j′ = fi′j′ + δi′j′ .

δi′j′,ij and δi′j′ denote the quadrature error for computing the double integral Ki′j′,ij and

single integral fi′j′ , respectively. We desire the solution ˜̃un still satisfies the same order of

error estimate as the compressed collocation method (see Theorem 4.14). Namely,

‖ũn − u‖∞ = O(nµ−kn/2), (4.113)

where, k is the total degree of piecewise polynomials in Fn. Since wij, (i, j) ∈ U is uniformly

bounded (Lemma 3.4), we have that

‖ũn − ˜̃un‖∞ ≤ C‖ũn − ˜̃un‖∞.

Moreover, because ũn − ˜̃un solves the linear system

(En − K̃n)(ũn − ˜̃un) = fn − ˜̃
fn + (K̃n − ˜̃

Kn)˜̃un,

we conclude that

‖ũn − ˜̃un‖∞ ≤ C‖ũn − ˜̃un‖∞ = O(‖fn − ˜̃
fn‖∞) + O(‖K̃n − ˜̃

Kn‖∞).

Now,

‖fn − ˜̃
fn‖∞ = max

(i′,j′)∈Un

|δi′j′ |,

and

‖K̃n − ˜̃
Kn‖∞ ≤ max

(i′,j′)∈Un

∑

(i,j)∈Un

|δi′j′,ij| ≤ cµn max
(i′,j′),(i,j)∈Un

|δi′j′,ij|.

Thus, by letting

δ(n) := max
(i′,j′),(i,j)∈Un

{|δi′j′ |, |δi′j′,ij|},
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we have

‖ũn − ˜̃un‖∞ = O(µnδ(n)).

In order for ˜̃un to be an approximation to un in the same order as ũn to un in (4.113), we

need to require that the quadrature error δ(n) be reduced in the order of

δ(n) ∼ nµ
−kn

2
−n

as n increases. When apply the quadrature rule presented in Section 4.3, this requirement

implies that the number of subdivisions, mn, according to n need to be increased as

mn ∼ n− 1
2kµ

(k+2)n
4k . (4.114)

That is,

mn+1

mn

=

(

n

n+ 1

) 1
2k

µ
(k+2)

4k , (4.115)

which implies that, as the level of resolution increases by 1, the number of subdivisions in

the quadrature rule should be increased by approximately µ
k+2
4k times, in order to maintain

the error order of the approximation solution of the collocation method as shown in (4.113).

In our examples, k = 2, µ = 4, hence this factor is approximately 41/2 = 2.0. This method

to control the quadrature error is demonstrated in Example 4.25. When the level i ≥ 2,

the domain of integration is no longer the whole domain and getting smaller and smaller. If

the element fi′j′ is obtained also by numerical quadrature, then its domain of integration is

always the whole original domain. In view of Table 4.1 and Table 4.2, in practical computing,

we can expect to use less number of subdivisions to compute elements Ki′j′,ij , for i ≥ 2 to

obtain the same order of convergence rate. This idea is demonstrated in Example 4.26.

We summarize above discussion in the following theorem:

Theorem 4.24 If the number of subdivisions mn used in the adaptive quadrature rule (4.36)

is chosen as (4.114) for solving the perturbed equation (4.112), then

‖u− ˜̃un‖∞ ≤ cf(n)−k/2 log f(n)‖u‖∞.

Example 4.25 In this example, we test different number of subdivisions in the quadrature

rule for different level n when solving the integral equation (6.1). But for fixed n, the com-

puting of all entries assumes the same number of subdivisions mn for the quadrature rule.
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without quadrature with quadrature

n L∞-error order mn L∞-error order

1 1.513187e-1 10 1.512309e-1

2 3.599605e-2 2.0717 10 3.540331e-2 2.0948

3 7.499082e-3 2.2631 10 7.526215e-3 2.2339

4 1.849162e-3 2.0198 20 1.864510e-3 2.0131

5 4.650610e-4 1.9914 40 4.657507e-4 2.0012

Table 4.12: Comparison of uncompressed solutions, with and without numer-

ical quadratures, using different mn for different n.

To eliminate other affecting factors, the linear system of equations are solved by standard

Gaussian elimination method. No compression is assumed. The results are tabulated in Ta-

ble 4.12. We can see from Table 4.12 that the results by using the quadrature control rule

(4.115) are very close to those obtained without quadrature rule.

Example 4.26 In this example, we test for fixed n, different number of subdivisions for

different levels used in the quadrature rule when solving the integral equation (6.1). The linear

system of equations are solved by standard Gaussian elimination method. No compression

is assumed. The results are tabulated in Table 4.13. In Table 4.13, (m1,m2) means that

when the level i, i ∈ Zn+1 corresponding to wavelet functions wij less than 2, the number

of subdivisions used in quadrature is m1, and when i ≥ 2, the number of subdivisions used

in quadrature assumes m2. While for computing fi′j′, the number of subdivisions used is

always m1 . We can see from results in Table 4.13 that the this quadrature control method

also works very well too. But, the computational cost compared to that of Example 4.25 for

quadrature has been dramatically saved.

4.8 Iteration Methods

In this section, we develop multilevel algorithms to solve the resulting linear system by

making use of multilevel structures of the approximation spaces Fn of X. In [CMX4] a two-
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without quadrature with quadrature

n L∞-error order (m1, m2) L∞-error order

1 1.513187e-1 (10,10) 1.512309e-1

2 3.599605e-2 2.0717 (10,10) 3.540331e-2 2.0948

3 7.499082e-3 2.2631 (20,10) 7.548485e-3 2.2296

4 1.849162e-3 2.0198 (20,10) 1.852722e-3 2.0265

5 4.650610e-4 1.9914 (40,20) 4.638874e-4 1.9978

Table 4.13: Comparison of uncompressed solutions , with and without numer-

ical quadratures, using different numbers of subdivisions for different levels.

level method is introduced and analyzed for solving operator equations in a Banach Space.

[CWX1] also provides a two-level method called augmentation method utilizing the multilevel

structure of the approximation space. In [FMX], iterative methods are developed for solving

the linear system resulting from wavelet Galerkin discretization.

Remember that the wavelet collocation scheme for equation (2.2) is to seek un ∈ X (hence

un ∈ Fn) satisfying

(I − PnK)un = Pnf, (4.116)

or equivalently,

(I − PnKPn)un = Pnf, (4.117)

where, Pn is defined in (3.52) and we have

Fn = PnX.

It is well known (cf. [At2]) by the compactness of K and the pointwise convergence (see

Lemma 3.7) of Pn that, for any sufficient large n, there exists a constant C, such that

‖(I − PnK)−1‖ ≤ C (4.118)

and

lim
n→∞

‖K − PnK‖ = lim
n→∞

‖K − KPn‖ = 0. (4.119)

Recall we have required the nestedness of the approximation spaces, namely

Fn ⊂ Fn+1, n ∈ N0, (4.120)
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and the space Fn is decomposed into a direct sum of a family of multiscale spaces, i.e.,

Fn = W0 ⊕ W1 ⊕ . . .⊕ Wn. (4.121)

Note F0 = W0 and

Fn = Fn−1 ⊕Wn, n = 1, 2, . . . . (4.122)

Next lemma shows that

Qn := Pn − Pn−1, n = 1, 2, . . . .

are projections on X.

Lemma 4.27 Let P1, P2 be projections on a Banach space X, Then Q = P2 − P1 is a

projection if and only if

Y1 ⊂ Y2,

where Yj = Pj, j = 1, 2.

Proof: Assume Q = P2 − P1 is a projection, then

P2 − P1 = P2 + P1 − P2P1 − P1P2,

i.e,,

2P1 = P2P1 + P1P2.

Multiply above formula by P2 from left and right respectively, we have

P1P2 = P2P1 = P1.

Thus for x ∈ X, P1x = P2P1x, namely, Y1 ⊂ Y2. Conversely, let Y1 ⊂ Y2, for x ∈ X,

P1x ∈ Y2, thus P2P1x = P1x, hence, P2P1 = P1. We then have P1P2P1 = P1P1, which

is equivalent to (P1P2 − P1)P1 = 0, leading to P1P2 = P1 in any case. This completes the

proof. 2

From Lemma 4.27, we obtain

Wn = QnFn, n = 1, 2, . . .
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This yields, for l, k ≥ 0,

Pk+` = Pk + Qk+1 + · · · + Qk+`.

Observe that (4.122) yields, for k ≥ 0, ` ≥ 1, and n = k + `,

Fn = Fk ⊕ Wk+1 ⊕ · · · ⊕ Wn. (4.123)

For the convenience of description, let’s identify [f0, g1, . . . , g`]
T in Fk × Wk+1 × · · · ×Wk+`

with the vector

f0 + g1 + · · · + g` ∈ Fk ⊕ Wk+1 ⊕ · · · ⊕ Wk+`.

In particular, for uk+` ∈ Fk+`,

uk+` = uk,0 + vk,1 + · · · + vk,` = [uk,0, vk,1, · · · , vk,`]
T ,

where uk,0 ∈ Fk and vk,i ∈ Wk+i (1 ≤ i ≤ `). Now we define , for n,m ≥ 0,

Kn = PnKPn, Kn,m = QnKQm,

Bn,m = PnKQm for n < m, and Cn,m = QnKPm for n > m.

With these notations, the operator Kk+` can be identified with

Ak,` =

















Kk Bk,k+1 · · · Bk,k+`

Ck+1,k Kk+1,k+1 · · · Kk,k+`

...
...

. . .
...

Ck+`,k Kk+`,k+1 · · · Kk+`,k+`

















. (4.124)

This notation was first introduced by [CMX4]. Thus, equation (4.116) or (4.117) can be

written into

uk,` −Ak,`uk,` = fk,`, (4.125)

where uk,` = [uk,0, vk,1, . . . , vk,`]
T and fk,` = [Pkf,Qk+1f, . . . ,Qk+`f ]T . Let

Uk,` =























O Bk,k+1 Bk,k+2 · · · Bk,k+`

O Kk+1,k+2 · · · Kk+1,k+`

. . .
...

. . . Kk+`−1,k+`

O























,
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Lk,` =

















O

Ck+1,k Kk+1,k+1

...
...

. . .

Ck+`,k Kk+`,k+1 · · · Kk+`,k+`

















.

and

Dk,` =

















I − Kk

I
. . .

I

















,

where the I’s on the diagonal are identity operators on the corresponding subspaces Fk,

Wk+1, . . ., Wk+`. Note

Dk,` = I − Ak,` + Uk,` + Lk,`.

and it is in fact the operator I − Kk on X. Now, equation (4.125) becomes

(Dk,` − Uk,` − Lk,`)uk,` = fk,`. (4.126)

(4.126) suggests following two iterative schemes in terms of operator forms:

• Jacobi type iteration:

Dk,`u
(µ+1)
k,` = (Uk,` + Lk,`)u

(µ)
k,` + fk,`, µ ∈ N0 (4.127)

with any initial approximation u
(0)
k,`.

• Gauss-Seidel type iteration:

(Dk,` − Uk,`)u
(µ)
k,` = Lk,`u

(µ)
k,` + fk,`, µ ∈ N0 (4.128)

with any initial approximation u
(0)
k,`.

Following theorem says that above iterative schemes are convergent for appropriately chosen

k.
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Theorem 4.28 Assume that the operator I − K is bijective on a Banach space X with

K being compact on X, and the sequence of projections Pn, n ∈ N0 satisfies the nestedness

property (4.120). Then, for each ` ≥ 1 and sufficiently large k, the iteration schemes (4.127)

and (4.128) for solving the equation (4.116) are convergent.

Proof: This theorem is a generalization of Theorem 3.1 in [FMX]. We consider Banach

space in this thesis instead of Hilbert space in [FMX], hence the projections are different.

Recall the definition of operator Pn, n ∈ N0 (3.52) and the property of pointwise convergence

of Pn (3.53). By (4.119), we have for i > j,

lim
n→∞

‖(Pn+i − Pn+j)K‖ = lim
n→∞

‖K(Pn+i − Pn+j)‖ = 0.

Note that, for all u ∈ X,

Uk,`u = Uk,`(Pk+` − Pk)u,

and

Uk,` u = PkK(Pk+` − Pk)u+
`−1
∑

i=1

Qk+iK(Pk+` − Pk+i)u.

Hence, for each fixed ` ≥ 1,

‖Uk,`‖ ≤ C

`−1
∑

j=0

‖K(Pk+` − Pk+j)‖ → 0 as k → ∞, (4.129)

where we have used the fact that ‖Pj‖ ≤ C, j ≥ 0 and ‖Qi‖ ≤ C, i ≥ 1 (due to the pointwise

convergence of Pn, n ∈ N0 and the principle of uniformly boundedness). Similarly, we have

Lk,` u = (Pk+` − Pk)KPku+
`−1
∑

i=0

(Pk+` − Pk+i)KQk+1+iu,

and thus

‖Lk,`‖ ≤ C
`−1
∑

i=0

‖(Pk+` − Pk+i)K‖ → 0 as k → ∞.

Moreover, since Uk,` + Lk,` = Kk+` −Kk,

‖Uk,` + Lk,`‖ = ‖(Pk+` − Pk)K‖ → 0 as k → ∞. (4.130)

On the other hand,

D−1
k,` = (I − Kk)

−1 and (Dk,` − Uk,`)
−1 = (I − (I − Kk)

−1Uk,`)
−1 (I − Kk)

−1.
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Therefore,

‖D−1
k,`‖ = ‖(I − Kk)

−1‖ and ‖(Dk,` − Uk,`)
−1‖ ≤ ‖(I − Kk)

−1‖
1 − ‖(I − Kk)−1‖‖Uk,`‖

. (4.131)

Since ‖(I − Kk)
−1‖ is uniformly bounded for large enough k, in view of (4.129), these two

inverses are both bounded uniformly for large enough k. Thus, for each fixed ` ≥ 1, the

iteration operators for schemes (4.127) and (4.128) are both convergent to 0 in operator

norm:

‖D−1
k,` (Lk,` + Uk,`)‖ → 0 and ‖(Dk,` − Uk,`)

−1 Lk,`‖ → 0 as k → ∞.

Therefore they can be less than 1 if k is large enough, which in turn yields the convergence

of the iteration schemes (4.127) and (4.128). 2

We now describe above iterative methods in terms of their matrix representations. The

matrix representation of (4.116) is

(En − Kn)un = fn. (4.132)

Let An = En − Kn. We begin with an initial level k: 1 ≤ k < n (we have seen, for the

convergence of the iteration, k needs to not too small), and let ` = n− k be the number of

additional levels from level k to the final level n. Then An is partitioned into (`+1)×(`+1)-

block matrix:

An = [Aij : i, j = k, .., . . . , k + `].

Introduce following notations for the convenience of discussion:

Dk,` =

















Ek − Kk

I

. . .

I

















,

Uk,` =

















O Ek,k+1 − Kk,k+1 · · · Ek,k+` − Kk,k+`

O · · · Ek+1,k+` − Kk+1,k+`

. . .
...

O

















,
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and

Lk,` =

















O

Kk+1,k Kk+1,k+1

...
...

. . .

Kk+`,k Kk+`,k+1 · · · Kk+`,k+`

















.

Accordingly, (4.132) is written as

(Dk,` + Uk,` − Lk,`)uk,` = fk,`. (4.133)

The two multilevel iteration schemes (4.127) and (4.128) in terms of matrix representation

now have forms:

• Jacobi type iteration:

Dk,`u
(µ+1)
k,` = (−Uk,` + Lk,`)u

(µ)
k,` + fk,`, µ ∈ N0 (4.134)

with any initial guess u
(0)
k,`. The iteration matrix for Jacobi type scheme is

MJ
k,` = D−1

k,`(−Uk,` + Lk,`)

• Gauss-Seidel type iteration:

(Dk,` + Uk,`)u
(µ+1)
k,` = Lk,`u

(µ)
k,` + fk,`, µ ∈ N0 (4.135)

with any initial guess u
(0)
k,`. The iteration matrix for Gauss-Seidel type scheme is:

MGS
k,` = (Dk,` + Uk,`)

−1Lk,`

Both (4.134) and (4.135) can be solved easily by “backward substitutions” for all blocks

except the first block of u
(µ+1)
k,` . For the first block of u

(µ+1)
k,` , we need to find (Ek −Kk)

−1. In

comparison with the Jacobi type iterate, Gauss-Seidel type scheme uses previously computed

components within each iteration to compute the next component by backward substitution,

while the Jacobi scheme doesn’t use the new computed components until an iteration is

completed. Both methods require inverting the submatrix Ek − Kk. Hence, we need to

choose k in order that the inverse of Ek − Kk exists and is relatively easy to find, i.e, k
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Multilevel iterate Gaussian elimination

(k, `) µ ‖u(µ)
k,` − u‖∞ order time(sec.) ‖u∗

k+` − u‖∞ order time(sec.)

(3,0) 7.499082e-3 0.16 7.499082e-3 0.16

(3,1) 4 1.845814e-3 2.0230 0.81 1.849162e-3 2.0198 10

(3,2) 8 4.650403e-4 1.9888 8.74 4.650610e-4 1.9914 632

Table 4.14: Comparison of uncompressed solutions using Gaussian elimination

and multilevel iteration methods.

is not too large (for example k = 2 or 3). Conveniently, a good initial guess would be

u
(0)
k,` := [(Ek − Kk)

−1fk, 0, . . . , 0]
T . Another issue is that we need to choose a proper k such

that the iteration scheme is convergent. Namely, we need the spectral radius of MGS
k,` ( or

MJ
k,`) is less than one. This can be achieved by requiring their matrix norms are less than

one. Our experiments shows when the domain of integration is unit triangle Ω, then k must

be ≥ 3, and for other domains of integration (for example, a general triangle, a polygon),

k ≥ 2.

Example 4.29 In this example, we test if the Gauss-Seidel type multilevel iteration method

gives good solution. The results are compared with the results from stand Gaussian elim-

ination. All the entries are computed analytically and no compression is assumed. The

results are tabulated in Table 4.14. We can see that both methods give very close solutions.

Where, µ is the number of iterations. The significant reduction of the computing time is very

impressive.



Chapter 5

Fast Wavelet Collocation Methods on

Polygonal Domains

5.1 On General Triangles

Let 4 denote a planar triangle in the xy-plane, and let vertices of 4 be denoted by {vj, j ∈
Z3}, where, vj := (xj, yj). As before, Ω denotes the unit triangle, i.e.,

Ω = {(s, t)|s, t ≥ 0, s+ t ≤ 1}. (5.1)

The vertices of the unit triangle Ω are

q0 = (0, 0), q1 = (1, 0), q2 = (0, 1). (5.2)

Define an affine mapping

T : Ω
1−17−→
onto

4

by

(x, y) = T (s, t) := (1 − s− t)v0 + sv1 + tv2, (5.3)

namely






x = (1 − s− t)x0 + sx1 + tx2

y = (1 − s− t)y0 + sy1 + ty2

(5.4)

88
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Note T (qi) = vi, i ∈ Z3. The inverse of this mapping is given by solving (5.3) for (s, t), or

equivalently by solving






t(x2 − x0) + s(x1 − x0) = x− x0

t(y2 − y0) + s(y1 − y0) = y − y0

(5.5)

for (s, t). This system is nonsingular since the vertices {vi, i ∈ Z3} are assumed not to be

collinear. Denote the inverse mapping of T by T−1, then

(s, t) = T−1(x, y). (5.6)

T−1 is an affine mapping too. Let

A = det





x1 − x0 x2 − x0

y1 − y0 y2 − y0



 . (5.7)

T−1 has an explicit expression, namely,






s = 1
A
[x(y2 − y0) + y(x0 − x2) + (x2y0 − x0y2)]

t = 1
A
[x(y0 − y1) + y(x1 − x0) + (x0y1 − x1y0)].

(5.8)

Observe that the Jacobian of T is JT = |A| and the Jacobian of T−1 is JT−1 = 1
|A|

= 1
JT

.

Also JT = 2Area(4).

Let X := L∞(4) and V := C(4). We now consider the integral equation

u(x, y) −
∫

E

K(x, y, ξ, η)u(ξ, η)dξdη = f(x, y), (5.9)

where, K(x, y, ξ, η) is a weakly singular kernel. E here is the general triangle 4. Therefore

the operator K : X → V defined by

(Ku)(x, y) :=

∫

4

K(x, y, ξ, η)u(ξ, η)dξdη, (x, y) ∈ 4 (5.10)

is compact in X. u is the unknown in X. Use the transformation (x, y) = T (s, t), (5.9)

changes into

u(s, t) − JT

∫

Ω

K(T (s, t), T (s′, t′))u(s′, t′)ds′dt′ = f(T (s, t)). (5.11)

Note that (5.11) is just an integral equation defined on the unit triangle, thus we can use

the method described in Chapter 3 and Chapter 4 to solve (5.11). Assume the wavelet
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Figure 5.1: The affine mapping Tk

collocation solution to (5.11) on Ω is un(s, t) =
∑

(i,j)∈Un
cijwij(s, t), then the collocation

solution to (5.9) on 4 can be obtained by

un(x, y) =
∑

(i,j)∈Un

cijwij(T
−1(x, y)). (5.12)

5.2 On Polygons

Given a polygonal domain E in the plane R
2, and let 4p := {40, . . . ,4p−1} denote a

triangulation of E. We assume triangles 4j and 4k (j, k ∈ Zp, j 6= k) can intersect only at

vertices or along their common edges. Define affine mappings (see Fig. 5.1)

Tk : Ω 7→ 4k k ∈ Zp. (5.13)

Their expressions can be readily obtained from (5.3) or (5.4). Denote the three vertices of

4k by {vk,i, i ∈ Z3} with

vk,i = Tk(qi), i ∈ Z3, (5.14)

where vk,i = (xk,i, yk,i).

We now develop the wavelet collocation method for the integral equation (5.9), but in this

context, E is a polygonal domain and X = L∞(E), V = C(E). Note E =
⋃p−1

k=0 4k. Observe

that

Φ(T−1
k 4k) = T−1

k 4k, k ∈ Zp, (5.15)

where Φ = {φe, e ∈ Z4} is defined as in (3.1). Hence we have

Tk ◦ Φ ◦ T−1
k 4k = 4k. (5.16)
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For convenience, we define

φk,e := Tk ◦ φe ◦ T−1
k , k ∈ Zp, e ∈ Z4, (5.17)

and

Φk := Tk ◦ Φ ◦ T−1
k , k ∈ Zp. (5.18)

We see from (5.16), the set 4k, k ∈ Zp is the invariant set associated with the family of

mappings Φk. Define

Φ̂ := {Φk : k ∈ Zp} (5.19)

Then we readily obtain by (5.16) that

Φ̂(E) = E. (5.20)

Namely, E is an invariant set with respect to the family of contractive mappings Φ̂. We now

determine the initial interpolating points for 4k k ∈ Zp. Let

Gk,0 = {t(k)
0j : j ∈ Z3, k ∈ Zp} (5.21)

with t
(k)
0j = Tkt0j, j ∈ Z3, k ∈ Zp, and t0j ∈ Ω are defined in Chapter 3. Note Gk,0 is refinable

relative to the mappings Φk, k ∈ Zp, i.e., Gk,0 satisfies

Gk,0 ⊂ Φk(Gk,0). (5.22)

Define G0 :=
⋃

k∈Zp
Gk,0. Therefore, we obtain

G0 ⊂ Φ̂(G0). (5.23)

i.e., G0 is refinable relatively with respect to the family of contractive mappings Φ̂. Now, we

construct scaling functions and initial wavelets w
(k)
ij , i ∈ Z2 which are supported on 4k by

w
(k)
ij (x, y) =







wij ◦ T−1
k (x, y) (x, y) ∈ 4k

0 (x, y) ∈ E \ 4k,
(5.24)

where, when i = 0, j ∈ Z3 and, when i = 1, j ∈ Z9. Moreover, define

W0 = span{w(k)
0j : j ∈ Z3, k ∈ Zp} (5.25)
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and

W1 = span{w(k)
1j : j ∈ Z9, k ∈ Zp}. (5.26)

We now construct initial collocation functionals. Let

`
(k)
0j := δ

t
(k)
0j
,with t

(k)
0j = Tk(t0j), j ∈ Z3, k ∈ Zp (5.27)

and

`
(k)
1j =

∑

l∈Z12

c′jlδt(k)
1l
,with t

(k)
1l = Tk(t1l), j ∈ Z9, k ∈ Zp, (5.28)

where, t1l ∈ Ω, l ∈ Z12 are defined in (3.30) of Chapter 3, and c′jl, j ∈ Z9, l ∈ Z12 are elements

of C′ in (3.33). In order to generate the multiscale wavelets for the space Wi, i ≥ 2, we

define linear operators Tk,e : Xk → Xk, e ∈ Z4, k ∈ Zp by

(Tk,ex)(t) := x(φ−1
k,e(t))χφk,e(4k)(t), (5.29)

where, Xk := L∞(4k), k ∈ Zp. For e := (e0, . . . , en−1) ∈ Z
n
4 we introduce a composition

operator Tk,e by

Tk,e := Tk,e0 ◦ . . . ◦ Tk,en−1 . (5.30)

Now, for i = 2, 3, . . . , n, let

w
(k)
ij (x, y) =







Tk,ew
(k)
1l (x, y) (x, y) ∈ 4k

0 (x, y) ∈ E \ 4k,
(5.31)

where, j = 9µ(e) + l, e ∈ Z
i−1
4 , l ∈ Z9. It follows that

Wi := span{w(k)
ij : j ∈ Zw(i), k ∈ Zp}. (5.32)

Observe that the support of w
(k)
ij is contained in S

(k)
ij := φk,e(4k), j ∈ Zw(i). To generate a

multiscale collocation functionals, we introduce for any e ∈ Z4 a linear operator Lk,e : X
∗
k →

X
∗
k defined by the equation

〈Lk,e`, v〉 = 〈`, v ◦ φk,e〉, v ∈ Xk, ` ∈ X
∗
k. (5.33)

Moreover, for e := (e0, . . . , en−1) ∈ Z
n
4 , we define the composite operator

Lk,e := Lk,e0 ◦ . . . ◦ Lk,en−1 . (5.34)
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Consequently, for any e, e′ ∈ Z
i
4, w ∈ Xk and ` ∈ X

∗
k, we have that

〈Lk,el, Tk,e′w〉 = 〈l, w〉δee′ . (5.35)

Now, for i > 1, j = 9µ(e) + l, e ∈ Z
i−1
4 , l ∈ Z9 define

`
(k)
ij := Lk,e`

(k)
1l , (5.36)

and observe that

〈`(k)
ij , v〉 = 〈`(k)

1l , v ◦ φk,e〉 =
∑

s∈Z12

c′lsv(φk,e(t
(k)
1s )). (5.37)

Note that the “support” of `
(k)
ij is also contained in S

(k)
ij . We now discover some close ties

between `
(k)
ij , w

(k)
ij , k ∈ Zp, (i, j) ∈ U defined on 4k and `ij, wij, (i, j) ∈ U defined on Ω.

First observe that from (5.17), for any e ∈ Z
n
µ and k ∈ Zp,

φk,e = Tk ◦ φe ◦ T−1
k (5.38)

and

T−1
k ◦ φk,e ◦ Tk = φe, T−1

k ◦ φk,e ◦ Tk = φe. (5.39)

Following two lemmas are important for the discussion of properties of w
(k)
ij and `

(k)
ij .

Lemma 5.1

〈`(k)
ij , v〉 = 〈`ij, v ◦ Tk〉, (5.40)

where, v ∈ L∞(4k), k ∈ Zp, (i, j) ∈ U.

Proof: For j = µ(e)r + l, l ∈ Zr, with r = 9,

〈`(k)
ij , v〉 = 〈Lk,e`

(k)
1l , v〉

= 〈`(k)
1l , v ◦ φk,e〉 =

∑

s∈Z12

c′lsv ◦ φk,e(t
(k)
1s )

=
∑

s∈Z12

c′lsv ◦ φk,e(Tkt1s) =
∑

s∈Z12

c′lsv ◦ Tk ◦ φe ◦ T−1
k ◦ Tk(t1s)

=
∑

s∈Z12

c′ls(v ◦ Tk) ◦ φe(t1s) = 〈`ij, v ◦ Tk〉.

(5.41)

2
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Lemma 5.2

w
(k)
ij (x, y) = wij ◦ T−1

k (x, y). (5.42)

Proof: For j = µ(e)r + l, l ∈ Zr, with r = 9,

w
(k)
ij (x, y) = Tk,ew

(k)
1l (x, y)

= w
(k)
1l ◦ φ−1

k,e(x, y)χφk,e(4k)(x, y)

= (w
(k)
1l ◦ Tk ◦ φ−1

e ) ◦ T−1
k (x, y)χTk◦φe◦T

−1
k (4k)(x, y)

= (w1l ◦ φ−1
e ) ◦ T−1

k (x, y)χTk◦φe◦T
−1
k (4k)(x, y)

= (w1l ◦ φ−1
e χφe(Ω)) ◦ T−1

k (x, y)

= wij ◦ T−1
k (x, y),

(5.43)

where we have used χTkφeT−1
k (4k)(x, y) = χφe(Ω)(s, t) with (x, y) = Tk(s, t), (x, y) ∈ 4k, (s, t) ∈

Ω. 2

Remark: Lemma 5.1 and Lemma 5.2 provide alternative ways to construct `ij and wij for

(i, j) ∈ Un, i ≥ 2 as compared to (5.31) and (5.36).

5.3 Computation of Matrix Elements

We now consider in detail the discretization of the integral equation on a polygonal domain

E. Consider

u(x, y) −
∫

E

K(x, y, ξ, η)dξdη = f(x, y), (5.44)

where E is the polygonal domain, and E has a triangulation 4p such that E = ∪k∈Zp4k.

Let Tk be the mapping associated with each triangle 4k, such that

(x, y) = Tk(s, t), (x, y) ∈ 4k, (s, t) ∈ Ω. (5.45)

Let un be the approximation solution to u in Fn with

un(x, y) =
∑

k∈Zp

∑

i,j

c
(k)
ij w

(k)
ij (x, y), i ∈ Zn+1, j ∈ Zw(i). (5.46)



Yi Wang Chapter 11. Fast wavelet collocation method on a polygonal domain 95

By using (5.45) we then have

un(s, t) =
∑

k∈Zp

∑

i,j

c
(k)
ij wij(s, t), i ∈ Zn+1, j ∈ Zw(i), (s, t) ∈ Ω (5.47)

Now use un replacing u in (5.44), we have

∑

k′∈Zp

∑

(i,j)∈Un

c
(k′)
ij wij(s, t) −

∑

k′∈Zp

JTk′

∑

(i,j)∈Un

c
(k′)
ij

∫

Ω

K(Tk(s, t), Tk′(s′, t′))wij(s
′, t′)ds′dt′

= f ◦ Tk(s, t),

(5.48)

where, k ∈ Zp. Now apply `
(k)
i′j′ , k ∈ Zp, (i

′, j′) ∈ Un to both sides of equation (5.48), we have

〈`(k)
i′j′ ,

∑

k′∈Zp

∑

(i,j)∈Un

c
(k′)
ij wij〉−

∑

k′∈Zp

JTk′

∑

(i,j)∈Un

c
(k′)
ij

∫

Ω

〈

`
(k)
i′j′ , K (Tk(·, ·), Tk′(s′, t′))

〉

wij(s
′, t′)ds′dt′ = 〈`(k)

i′j′ , f ◦ Tk(s, t)〉

(5.49)

After discretization, we obtain a system of linear equations

(En − Kn)un = fn, (5.50)

where

En = [Ek′i′j′,kij] = [〈`(k′)
i′j′ , w

(k)
ij 〉 : k, k′ ∈ Zp, (i, j), (i

′, j′) ∈ Un],

Kn = [Kk′i′j′,kij : k, k′ ∈ Zp, (i, j), (i
′, j′) ∈ Un]

=

[

JTk

∫

Ω

〈`(k′)
i′j′ K(Tk′(·, ·), Tk(s

′, t′))〉wij(s
′, t′)ds′dt′ : k, k′ ∈ Zp, (i, j), (i

′, j′) ∈ Un

]

,

and

fn = [fk′ij] =
[

〈`(k′)
i′j′ , fTk′(s, t)〉 : k′ ∈ Zp, (i

′, j′) ∈ Un

]

.

5.4 Properties of the Wavelet Basis functions and the

Collocation Functionals Over Polygons

Next several lemmas tells us the vanishing moments and orthogonality of the initial colloca-

tion functionals `
(k)
ij and wavelets w

(k)
ij , where (i, j) ∈ U2, k ∈ Zp.
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Lemma 5.3

〈`(k)
0j , w

(k′)
0j′ 〉 = δkk′δjj′ , j, j ′ ∈ Z3, k ∈ Zp. (5.51)

Proof: Clearly, when k 6= k′, 〈`k0j, w
(k′)
0j′ 〉 = 0 by the definition of `

(k)
0j and w

(k′)
0j′ . When k = k′,

〈`(k)
0j , w

(k′)
0j′ 〉 = w

(k)
0j′ (t

(k)
0j ) = w0j′ ◦ T−1

k ◦ Tk(t0j) = w0j′(t0j) = δj′j. 2

Lemma 5.4

〈`(k)
1j , w

(k′)
1j′ 〉 = δkk′δjj′ , j, j ′ ∈ Z9; k, k′ ∈ Zp. (5.52)

Proof: Clearly, when k 6= k′, 〈`k1j, w
(k′)
1j′ 〉 = 0 by the definition of `

(k)
1j and w

(k′)
1j′ . When k = k′,

〈`(k)
1j , w

(k′)
1j′ 〉 = 〈`(k)

1j , w1j′ ◦ T−1
k 〉 =

∑

l∈Z12
c′jlw1j′ ◦ T−1

k ◦ (Tkt1l) = 〈`1j, w1j′〉 = δjj′ . 2

Lemma 5.5

〈w(k)
1j , 1〉 = 0. j ∈ Z9; k ∈ Zp. (5.53)

Proof: 〈w(k)
1j , 1〉 =

∫

4k
w

(k)
1j · 1dxdy =

∫

4k
w1j ◦ T−1

k (x, y)dxdy = JT4k

∫

Ω
w1j ◦ T−1

k ◦
Tk(s, t)dsdt = 0. 2

Lemma 5.6

〈w(k)
1j , x〉 = 0 (5.54)

and

〈w(k)
1j , y〉 = 0 (5.55)

where, j ∈ Z9, k ∈ Zp.

Proof: 〈w(k)
1j , x〉 =

∫

4k
w

(k)
1j xdxdy =

∫

4k
w1j◦T−1

k (x, y)xdxdy = JTk

∫

Ω
w1j◦T−1

k ◦Tk(s, t)[(1−
s − t)xk,0 + sxk,1 + txk,2]dsdt = 0 by the vanishing moment property of w1j on Ω (Lemma

3.3).

Similarly, we can obtain 〈w(k)
1j , y〉 = 0. 2
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Lemma 5.7

〈`(k)
1j , 1〉 = 0, j ∈ Z9; k ∈ Zp. (5.56)

Proof: 〈`(k)
1j , 1〉 = 〈∑l∈Z12

c′jlδt(k)
1l
, 1〉 =

∑

l∈Z12
c′jl〈Tk(t1l), 1〉 =

∑

l∈Z12
c′jl = 0 by Lemma 3.3.

2

Lemma 5.8

〈`(k)
1j , x〉 = 0, (5.57)

and

〈`(k)
1j , y〉 = 0, (5.58)

where j ∈ Z9 and k ∈ Zp.

Proof: First note 〈`(k)
1j , x〉 =

∑

l∈Z12
c′jl〈δTk(t1l), x〉. Now define g(x, y) := x = (1−s−t)xk,0+

sxk,1 + txk,2 := h(s, t), where (s, t) ∈ Ω and (x, y) ∈ 4k. Thus, we have

g(x, y) = h ◦ T−1
k (x, y). (5.59)

Therefore,
∑

l∈Z12

c′jl〈δTk(t1l), x〉 =
∑

l∈Z12

c′jl〈δTk(t1l), h ◦ T−1
k 〉 =

∑

l∈Z12

c′jlh ◦ T−1
k ◦ (Tkt1l) =

∑

l∈Z12

c′jlh(t1l) =

〈`1j, h〉 = 0 by the vanishing moment of `1j (Lemma 3.3) since h(s, t) is linear in s, t. Simi-

larly, we can prove 〈`(k)
1j , y〉 = 0. 2

Lemma 5.9 For matrix En := [Ek′i′j′,kij], where i′, i ∈ Zn+1, j ∈ Zw(i), j
′ ∈ Zw(i′), k, k

′ ∈
Zp,

if k 6= k′, Ek′i′j′,kij = 0. For k = k′,

if i′ > i, Ek,i′j′,kij = 0

if i′ = i, Eki′j′,kij = δi′iδjj′

if i′ < i, in each submatrix Eki′,ki with shape parameter θ, only the elements on the main

diagonal line are possibly nonzero (cf. Lemma 4.3).
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Proof: When k 6= k′, by the definition of the wavelet w
(k)
ij and collocation functional `

(k′)
i′j′ ,

Ek′i′j′,kij = 0. When k = k′ the proof is parallel to the proof of Lemma 4.3. 2

Lemma 5.10 through Lemma 5.17 tells us important properties of the constructed wavelet

basis functions and the collocation functionals on polygons. They are essentially the same

properties as those of the wavelet basis functions and the collocation functionals on the unit

triangle.

Lemma 5.10 The constructed wavelet basis functions w
(k)
ij over the polygon E are locally

supported and their supports are shrinking as level i increases.

Proof: for every i > 1, the support of w
(k)
ij is contained in S

(k)
ij = φk,e(4k) = (4k)i−1,µ(e),

where j = µ(e)r + l, l ∈ Zr, with r = 9. 2

Lemma 5.11 For any i, i′ ∈ N0,

〈`(k′)
i′j′ , w

(k)
ij 〉 = δk′kδii′δjj′ , (i, j), (i′, j′) ∈ U, i ≤ i′, k, k′ ∈ Zp, (5.60)

∑

j∈Zw(i)

|〈`(k)
i′j′ , w

(k)
ij 〉| ≤ 81

28
, (i, j), (i′, j′) ∈ U, i > i′, (5.61)

and if γ := 81
28

, then

γ < µs/2 − 1, with s = 2, (5.62)

where, s is the order of piecewise polynomials in the approximation spaces.

Proof: Lemma 5.9 proves (5.60). We have proved

∑

j∈Zw(i)

|〈`i′j′ , wij〉| ≤
81

28
, (i, j), (i′, j′) ∈ U, i > i′

in Lemma 3.2. In view of Lemma 5.1 and Lemma 5.2, we have

〈`(k)
i′j′ , w

(k)
ij 〉 = 〈`i′j′ , wij〉.

Thus
∑

j∈Zw(i)

|〈`(k)
i′j′ , w

(k)
ij 〉| ≤ 81

28
, (i, j), (i′, j′) ∈ U, i > i′. (5.63)
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Direct computation shows (5.62). 2

Lemma 5.12 The constructed wavelets and collocation functionals have vanishing moment.

Proof: From Lemma 5.7 and Lemma 5.8, we obtain

〈`(k)
i′j′ , w

(k)
0j 〉 = 〈`(k)

1l′ , w
(k)
0j ◦ φk,e′〉 = 0, j ∈ Z3, (5.64)

where, i′ ≥ 2, j ′ ∈ Zw(i′) and j′ = 9µ(e′) + l′, l′ ∈ Z9 with e′ ∈ Z
i′−1
4 . We now consider Tk,e

as an operator from L2(4k) to L2(4k) and Let T ∗
k,e be the adjoint of Tk,e. It is easy to see

that for y ∈ L2(4k)

T ∗
k,ey = Jφk,e

y ◦ φk,e, (5.65)

where Jφk,e
is the Jacobian of mapping φk,e. Therefore, we have that

(w
(k)
ij , w

(k)
0j′ ) = (Tk,ew

(k)
1l , w

(k)
0j′ ) = (w

(k)
1l , T ∗

k,ew
(k)
0j′ ) = 0,

where, i ≥ 2, j ∈ Zw(i) and j = 9µ(e) + l, l ∈ Z9 with e ∈ Z
i−1
4 . The last equality holds

because T ∗
k,ew

(k)
0j′ is a polynomial of total degree ≤ s − 1 = 1, with s = 2 and w

(k)
1l satisfies

Lemma 5.5 and Lemma 5.6. Thus for any polynomials p ∈ π2,

〈`(k)
ij , p〉 = 0, (wk

ij, p) = 0, (i, j) ∈ U, i ≥ 1. (5.66)

2

Lemma 5.13 Both basis functions and collocation functionals are uniformly bounded.

Proof: For (i, j) ∈ U, i ≥ 2, j = µ(e)r + l, l ∈ Z9, Lemma 5.1 and Lemma 3.4 yields

|〈`(k)
ij , v〉| = |〈`ij, v ◦ Tk〉| = |〈`1l, v ◦ Tk ◦ φe〉| ≤ ‖C′‖∞‖v‖∞;

and Lemma 5.2 yields

‖w(k)
ij ‖∞ = ‖wijT

−1
k ‖∞ ≤ ‖C‖∞maxj∈Z12‖ψj‖∞,

The last inequality holds because of Lemma 3.4. 2
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Lemma 5.14 The dimension of spaces Fn and Wn grows exponentially in n and the diam-

eters dn decay exponentially in n too, where

dn := max{d
(

S(k)
nm

)

, (n,m) ∈ U, k ∈ Zp}.

Proof: dimW0 = 3p, dimFn = 3p.4n, n ∈ Z0 and dimWn = 9p.4n−1, n ≥ 1, n ∈ Z.

Let d̂ = max{d(k), k ∈ Zp}, where d(k) is the diameter of each triangle 4k, k ∈ Zp in the

triangulation 4p. For the diameter we have d0 = d̂ and dn ≤ c · d̂ 1
2n−1 = c2−n, where c > 0

is some constant. 2

Lemma 5.15 There exists constant θ2 and θ3 such that for all n ∈ N0 and v having form

v :=
∑

(i,j)∈Un

vk,ijw
(k)
ij , k ∈ Zp, (5.67)

θ2‖v‖∞ ≤ ‖v‖∞ ≤ θ3(n+ 1)‖Env‖∞, (5.68)

where v := [vk,ij : (i, j) ∈ Un, k ∈ Zp]
T .

Proof: Note the constructed wavelets w
(k)
ij and collocation functionals `

(k)
i′j′ , with (i, j), (i′, j′) ∈

U, k ∈ Zp have properties stated in Lemma 5.10 - Lemma 5.13, the proof is then similar to

the proof of Lemma 3.6. 2

Lemma 5.16 Let Pn be the projection operator from X onto Fn defined by

〈`(k)
ij ,Pnx〉 = 〈`(k)

ij , x〉, (i, j) ∈ Un. (5.69)

For v ∈ L∞(E) we set

Pnv =
∑

(i,j)∈Un

vk,ijw
(k)
ij , k ∈ Zp.

Then, for any x ∈ L∞(E), there holds

lim
n→∞

‖Pnx− x‖∞ = 0.

Proof: The proof is similar to that of Lemma 3.7. 2
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Lemma 5.17 There exists a positive constant c such that for u ∈ W k,∞(E)

dist(u,Fn) ≤ cµ−kn/2‖u‖k,∞. (5.70)

Proof: The proof is similar to that of Lemma 3.8. 2

Theorem 5.18 If we use the constructed wavelet basis w
(k)
ij and collocation functionals

`
(k)
ij on a polygon solve (2.2) with the spacial domain being a polygon, then Theorem 4.13,

Theorem 4.14, Theorem 4.15, and Theorem 4.16 continue to hold.

Proof: The theorem follows from the properties Lemma 5.10 through 5.17 of the constructed

wavelet basis functions and collocation functionals over polygons. 2



Chapter 6

Numerical Experiments for Solving

Integral Equations

In this chapter, we use methods proposed in this thesis to solve several typical examples.

As far as compression strategies are concerned, we use both distance computing strategy

2 and block truncation strategy. The block truncation strategy manifests good truncation

effect in terms of presenting satisfactory results. The resulting linear systems are solved

by Gauss-Seidel iterative scheme developed in Section 4.8. When level n is relatively large

(say n ≥ 6), the iterative scheme dramatically reduce the computing time by comparing

with Gaussian elimination method. When the matrix entries are computed numerically, the

quadrature rule presented in Section 4.3 is adopted. All the computation are done using

parallel computing algorithm, which is discussed in Section 6.4.

6.1 On the Unit Triangle

Consider following integral equation of the second kind

u(x) −
∫

Ω

1

|x− y|u(y)dy = f(x), (6.1)

102
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Compression strategy: strategy 2 with ν = 1

without quadrature with quadrature

n L∞-error order (m1, m2) L∞-error order compression rate

1 1.513187e-1 (40,40) 1.513184e-1 1.000000

2 3.599605e-2 2.0717 (40,40) 3.599379e-2 2.0718 1.000000

(3,0) 7.499082e-3 2.2631 (80,40) 7.498160e-3 2.2631 1.000000

(3,1) 1.849142e-3 2.0199 (80,40) 1.849507e-3 2.0194 0.526763

(3,2) 4.644798e-4 1.9932 (80,40) 4.646119e-4 1.9930 0.228013

(3,3) 1.168886e-4 1.9905 (80,40) 1.168323e-4 1.9916 0.085760

(3,4) 2.955001e-5 1.9839 (80,40) 2.982907e-5 1.9696 0.030163

(3,5) 1.081540e-5 1.4501 (80,40) 1.082801e-5 1.4620 0.010460

Table 6.1: Comparison of compressed solutions using multilevel iteration

method, with and without quadrature rule, number of iteration=15.

where x, y ∈ R
2, x = (x1, x2), y = (y1, y2), and Ω is the unit triangle.

We choose

f(x) = x2
1 + x2

2 −
∫

Ω

y2
1 + y2

2

|x− y| dy (6.2)

so that the exact solution to (6.1) is

u(x) = x2
1 + x2

2. (6.3)

Example 6.1 In this example, we apply compression strategy 2 and use Gauss-Seidel type

multilevel iteration method to solve the resulting linear system. The initial level k used for

the multilevel iteration is chosen as k = 3. Note when the level n = k + ` = 3 + 5 = 8, the

matrix size is 196608 × 196608, and the compression rate is about 1%. It’s surprising that

even the matrix entries are computed without quadrature (computed by analytical formula.

Only when the domain of integration is unit triangle, can we find the explicit formula by

Mathematica. When the domain of integration is a general triangle, no explicit formula

is available), for n = 8, the result is far from satisfactory one. This shows the limitation of

strategy 2.
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Compression strategy: block truncation with pi′i =
√

3

without quadrature with quadrature

n L∞-error order (m1, m2) L∞-error order compression rate

1 1.513187e-1 (40,40) 1.513184e-1 1.000000

2 3.599605e-2 2.0717 (40,40) 3.599379e-2 2.0718 1.000000

(3,0) 7.499082e-3 2.2631 (80,40) 7.499123e-3 2.2630 1.000000

(3,1) 1.850492e-3 2.0188 (80,40) 1.850509e-3 2.0188 0.431732

(3,2) 4.648565e-4 1.9931 (80,40) 4.648294e-4 1.9931 0.181965

(3,3) 1.171548e-4 1.9884 (80,40) 1.174169e-4 1.9851 0.067760

(3,4) 2.999366e-5 1.9657 (80,40) 2.980252e-5 1.9781 0.023004

(3,5) 8.010510e-6 1.9047 (80,40) 7.920534e-6 1.9118 0.007332

Table 6.2: Comparison of compressed solutions using multilevel iteration

method, with and without quadrature rule, number of iteration=15.

Example 6.2 In this example, we apply block truncation strategy and use Gauss-Seidel type

multilevel iteration method to solve the resulting linear system. The initial level k used for

the multilevel iteration is chosen as k = 3. The block truncation parameter pi′i =
√

3, i′, i ∈
Zn+1. Note compression rates in this case are even smaller than their counterparts using

strategy 2. What’s most amazing is that when n = 8, the block truncation scheme continues

to give satisfied solution. This suggests block truncation scheme is superior to strategy 2 in

order to catch critical elements.

6.2 On General Triangles

We consider the triangle 4 with three vertices (0, 0), (1, 0) and (0.5, 1). As before, we take

the kernel

K(x, y, ξ, η) =
1

√

(x− ξ)2 + (y − η)2
, (x, y), (ξ, η) ∈ 4, (6.4)

and

f(x, y) = x2 + y2 −
∫

4

ξ2 + η2

√

(x− ξ)2 + (y − η)2
dξdη, (x, y) ∈ 4 (6.5)
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Results for the general triangle 4: strategy 2 with ν = 1

full collocation solution un compressed solution ũn

n L∞-error order (m1, m2) L∞-error order compression rate

1 1.100676e-1 (40,40) 1.100676e-1 1.000000

(2,0) 2.081240e-2 2.4029 (80,40) 2.081280e-2 2.4028 1.000000

(2,1) 4.972866e-3 2.0653 (80,40) 4.973775e-3 2.0651 0.894531

(2,2) 1.285098e-3 1.9522 (80,40) 1.286323e-3 1.9511 0.520172

(2,3) 3.230465e-4 1.9921 (80,40) 3.232655e-4 1.9925 0.227601

(2,4) (80,40) 7.800080e-5 2.0512 0.085734

(2,5) (80,40) 2.100672e-5 1.8926 0.030162

(2,6) (80,40) 5.914368e-6 1.8286 0.010460

Table 6.3: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (strategy 2, on a general triangle).

so that u(x, y) = x2 + y2, (x, y) ∈ 4 is the exact solution to equation (5.9). In this case,

no analytical formula is available for computing the matrix entry. All entries are computed

by quadrature method proposed in Section 4.3. For the uncompressed solution, the linear

system is solved by stand Gaussian elimination method, and the number of subdivision m

used in the quadrature is taken as m = 40. While, for the compressed solution, the linear

system is solved by Gauss-Seidel type iterative method presented in Section 4.8 (number of

iteration=20), and the number of subdivision used in quadrature is as shown in Table 6.3

and Table 6.4.

Example 6.3 In this example, we use the truncation strategy 2 with ν = 1. The computa-

tional results are listed in Table 6.3.

Example 6.4 In this example, we use the block truncation strategy with parameters pi′i =
√

3. The results are listed in Table 6.4.
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Results for the general triangle 4: block truncation with pi′i =
√

3

full collocation solution un compressed solution ũn

n L∞-error order (m1, m2) L∞-error order compression rate

1 1.100676e-1 (40,40) 1.100676e-1 1.000000

(2,0) 2.081240e-2 2.4029 (80,40) 2.081280e-2 2.4028 1.000000

(2,1) 4.972866e-3 2.0653 (80,40) 4.974875e-3 2.0647 0.758301

(2,2) 1.285098e-3 1.9522 (80,40) 1.285873e-3 1.9519 0.416626

(2,3) 3.230465e-4 1.9921 (80,40) 3.257940e-4 1.9807 0.181021

(2,4) (80,40) 7.869679e-5 2.0496 0.067701

(2,5) (80,40) 2.195469e-5 1.8418 0.023000

(2,6) (80,40) 7.829137e-6 1.4876 0.007331

Table 6.4: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (block truncation, on a general

triangle).

6.3 On Polygons

In the following examples, as before, we take kernel as K(x, y, ξ, η) = 1√
(x−ξ)2+(y−η)2

, and

f(x, y) = x2 + y2 −
∫

E
ξ2+η2√

(x−ξ)2+(y−η)2
dξdη so that u(x) = x2 + y2, where (x, y) ∈ E, is the

exact solution to (5.44). For the uncompressed solution, the linear system is solved by stand

Gaussian elimination method, and the number of subdivision mn used in the quadrature

is taken as mn = 40. While, for the compressed solution, the linear system is solved by

Gauss-Seidel type iterative method presented in Section 4.8 (number of iteration=20), and

the number of subdivision used in quadrature is mn = 80. In Example 6.5 and Example 6.6,

we consider the quadrangle E with four vertices (0, 0), (1, 0), (2, 1.2), (0.5, 1) (see Fig. 6.1).

Example 6.5 In this example, for the compressed solution, the truncation strategy 2 with

ν = 1 is applied. The computational results are listed in Table 6.5.

Example 6.6 In this example, for the compressed solution, the block truncation strategy

with parameters pi′i =
√

3 is applied. The computational results are listed in Table 6.6.
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Figure 6.1: Computational domains of Example 6.5 and Example 6.7

Results for the integral equation over a quadrangle: strategy 2 with ν = 1

full collocation solution un compressed solution ũn

n mn L∞-error order mn L∞-error order compression rate

1 40 3.607234e-1 40 3.607234e-1 1.000000

(2,0) 40 9.443242e-2 1.9335 80 9.443194e-2 1.9335 1.000000

(3,0) 40 2.282575e-2 2.0486 80 2.282116e-2 2.0489 0.894531

(4,0) 40 5.735749e-3 1.9926 80 5.753102e-3 1.9880 0.520172

(5,0) 40 1.456519e-3 1.9775 80 1.449515e-3 1.9888 0.227601

(6,0) 80 4.190603e-4 1.7903 0.085734

Table 6.5: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (strategy 2, on a quadrangle).
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Results for the integral equation over a quadrangle: block truncation with pi′i =
√

3

full collocation solution un compressed solution ũn

n mn L∞-error order mn L∞-error order compression rate

1 40 3.607234e-1 40 3.607234e-1 1.000000

(2,0) 40 9.443242e-2 1.9335 80 9.443194e-2 1.9335 1.000000

(3,0) 40 2.282575e-2 2.0486 80 2.272426e-2 2.0550 0.758301

(4,0) 40 5.735749e-3 1.9926 80 5.891051e-3 1.9476 0.416626

(5,0) 40 1.456519e-3 1.9775 80 1.492354e-3 1.9809 0.181021

(6,0) 80 9.469365e-4 0.6563 0.067701

Table 6.6: Comparison of solutions obtained by the full collocation method and

by our compressed collocation method (block truncation, on a quadrangle).

In Example 6.7 and Example 6.8, we consider the pentagon E with five vertices (0,0), (1,0),

(1.2,1), (0.4,1.2), (-0.7,0.6) (see Fig. 6.1).

Example 6.7 In this example, for the compressed solution, the truncation strategy 2 with

ν = 1 is applied. The computational results are listed in Table 6.7.

Example 6.8 In this example, for the compressed solution, the block truncation strategy

with parameters pi′i =
√

3 is applied. The computational results are listed in Table 6.8.

6.4 Parallel Computing

As we see, when the level of the resolution is higher (for our case, when n > 7), even a sparse

storage scheme is adopted, due to the fast increasing of nonzero elements, the computation

can not be fulfilled on one stand alone computer. The problem encountered is the limit of

the physical memory of the available machine. The other problem is the painful lengthy

computing time when the level is getting higher. Therefore if we want to compute higher

level’s solution, one definitely good answer is to appeal to parallel computing.

To achieve parallel computing using methods proposed in previous chapters, one must con-
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Results for the integral equation over a pentagon: strategy 2 with ν = 1

full collocation solution un compressed solution ũn

n mn L∞-error order mn L∞-error order compression rate

1 40 2.015684e-1 2.0157e-1 1.000000

(2,0) 40 4.076680e-2 2.3058 80 4.076633e-2 2.3058 1.000000

(2,1) 40 1.017880e-2 2.0018 80 1.017623e-2 2.0022 0.894531

(2,2) 40 2.593854e-3 1.9724 80 2.596571e-3 1.9705 0.520172

(2,3) 40 6.440248e-4 2.0099 80 6.434862e-4 2.0126 0.227601

(2,4) 80 1.587823e-4 2.0189 0.085734

(2,5) 80 5.511457e-5 1.5265 0.030162

Table 6.7: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (strategy 2, on a pentagon).

Results for the integral equation over a pentagon: block truncation with pi′i =
√

3

full collocation solution un compressed solution ũn

n mn L∞-error order mn L∞-error order compression rate

1 40 2.015684e-1 2.0157e-1 40 1.000000

(2,0) 40 4.076680e-2 2.3058 80 4.076633e-2 2.3058 1.000000

(2,1) 40 1.017880e-2 2.0018 80 1.019395e-2 1.9997 0.758301

(2,2) 40 2.593854e-3 1.9724 80 2.624460e-3 1.9576 0.416626

(2,3) 40 6.440248e-4 2.0099 80 6.675855e-4 1.9750 0.181021

(2,4) 80 1.939918e-4 1.7830 0.067701

(2,5) 80 9.054316e-5 1.0993 0.023000

Table 6.8: Comparison of solutions obtained by the full collocation method

and by our compressed collocation method (block truncation, on a pentagon).
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sider two factors:

• to be able to simultaneously generate the coefficient matrix of the discrete linear system,

henceforth the coefficient matrix needs to be partitioned into pieces distributed on

different machines

• to be able to simultaneously solve the resulting linear system using the distributed

matrix on different machines

It turns out that we can easily design our algorithm, taking advantage of both sparse storage

and parallel computing. The main idea is that we will partition the coefficient matrix along

row direction. Thus on different machines, disjoint partitions of the matrix are simulta-

neously computed. To solve the linear system, we adopt the Gauss-Seidel type multilevel

iteration methods proposed in Section 4.8. The algorithm is as follows:

A Parallel computing algorithm:

1. Allocate the computing loads roughly evenly to different computers. Let np ≥ 2 be

the number of processes. Compute the quota of rows

Q =

⌊

f(n)

np

⌋

(6.6)

where, as before f(n) is the dimension of the approximation space Fn, i.e., the order of

the matrix An = Kn − En. Remember we are trying to generate and solve the linear

system (2.18) or (4.102). Recall we denote elements of Kn by Ki′j′,ij , elements of En

by Ei′j′,ij , and elements of fn by fi′j′ , where (i′, j′), (i, j) ∈ Un. Let ri be the number

of rows to be allocated for process i = 0, 1, · · · , np− 1, then

ri = Q, for i ∈ Znp−1 and rnp−1 = f(n) −
np−2
∑

i=0

ri; (6.7)

2. Simultaneously compute nonzero coefficient elements Ki′j′,ij and Ei′j′,ij (by applying

matrix compression) and the right handed vector fn on each distributed machines. No

communication between the computing nodes is needed at this step.

As we know, any element Ki′j′,ij and Ei′j′,ij are completely determined by its index
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(i′j′, ij). Denote the algorithm to compute Ki′j′,ij by Kelt(i′, j′, i, j), the algorithm

to compute Ei′j′,ij by Eelt(i′, j′, i, j), and the algorithm to compute fi′j′ by felt(i′, j′).

Note differences between local indices of matrix elements on each machine and the

global indices of the elements in the original matrix. All algorithms Kelt(i′, j′, i, j),

Eelt(i′, j′, i, j) and felt(i′, j′) assumes the global indices.

3. Employ the Gauss-Seidel multilevel iteration method (see Section 4.8) to solve the

linear system simultaneously on different machines. Communications between nodes

are assumed.

(a) Obtain the initial solution x0 on process 0. Then Broadcast x0 to all other

processes 1, 2, · · · , np− 1.

(b) On each nodes, simultaneously do matrix-vector multiplication to obtain a locally

updated partial solution x
(i)
ν , where, i represents the index of process, i ∈ Znp, and

ν stands for the number of iteration, and ν > 1. Let A(i) = [A
(i)
jk : j ∈ Zri

, k ∈
Zf(n), i ∈ Znp] be the partial matrix computed on process i, and x

(i)
ν = [x

(i)
ν (j) :

j ∈ Zf(n), i ∈ Znp] be the local solutions on process i, and f (i) = [f
(i)
j : j ∈ Zri

].

Then for each ν > 1,

x(i)
ν (j) = f

(i)
j +

f(n)−1
∑

k=0

A
(i)
jkxν−1(k), j ∈ Zri

, (6.8)

where i ∈ Znp, and xν−1 = [xν−1(k) : k ∈ Zf(n)] is the previous computed global

solution.

(c) Assemble the updated solution xν on node 0 from the local partial segments

x
(i)
ν , i ∈ Znp and compute the current approximation error.

(d) Broadcast the newest solution xν to all other nodes in the current communicator.

(e) Do step 3b-step 3d again until satisfied solution is achieved.

All the examples using above parallel algorithm are computed on energy.cluster.wvu.edu.

The cluster has one frontend node and 27 computing nodes. Each node has 1.2 Ghz Pentium,

Dual processors, 1 Gbyte of memory shared by the two processors and 18 Gbyte of disk and

has a 100 Mb ethernet interconnect.
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Example 6.9 To demonstrate the ideas proposed in the above algorithm, we solve the inte-

gral equation (6.1) again using parallel algorithm. For the example of n = 7, compression is

assumed. While for the example of n = 5, no compression is assumed. The linear system

is solved by Gauss-Seidel type multilevel iteration method. All the entries are computed by

analytical formula. We tabulate in Table 6.9 the computing time for different number of

processes np. tm is the average time consumed by each process to generate the sparse coef-

ficient matrix. ts is the average time spent by each process to solving the linear system by

Gauss-Seidel type multilevel iteration method. When n = 7, the computing requires the same

number of computing nodes as number of processes np. While when n = 5, we require all the

two processors on each node.

The results are also plotted in Figure 6.2 and Figure 6.3. From both figures, we clearly see,

as the number of processes increase, the average time tm needed for each process to generate

the partial matrix is decreasing. As described in the parallel computing algorithm, no com-

munication between nodes is assumed for this purpose. While, the average time needed for

each process to solve the linear system by iteration method (matrix-vector multiplication) is

more or less the same as when there is only one process (the serial computing). This is as

expected. The reason is as follows:

The matrix-vector multiplication time needed in each process only differs by a very insignif-

icant factor when np increases. While more and more communications among processes are

caused due to more processes are introduced into the whole communicator. The increased

communication time more or less offset the reduced time for matrix-vector multiplication.

Therefore, almost equal time for solving the system observed when different number of pro-

cesses are required. The fluctuation of each curve is apparently due to the dynamical load of

the cluster. Since a number of other jobs are also simultaneously running in the cluster. I

imagine that if only one job is running in the cluster before it’s done, then the fluctuation

won’t be observed.
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level n = 7 level n = 5

np tm(sec) ts(sec) tm(sec) ts(sec)

1 14023 1349 917 103

2 5101 1345 687 140

3 2934 1317 406 134

4 2258 2611 229 89

5 2335 2122 256 131

6 1282 1289 204 136

7 1069 1283 205 172

8 891 1281 143 85

9 793 1352 148 85

10 713 1275 120 127

11 648 1274 121 127

12 594 1272 102 127

13 548 1271 92 84

14 509 1270 84 84

15 539 1902 85 84

16 471 1268 71 84

17 443 1266 73 87

18 418 1267 59 167

19 440 1894 62 84

20 415 1892 50 84

21 367 1264

22 375 1890

23 361 1891

24 321 1263

Table 6.9: Comparison of times consumed when number of processes varies.
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Figure 6.2: Time needed vs. number of processes: level n = 5
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[DPS2] W. Dahmen, S. Prössdorf and R. Schneider, Wavelet approximation meth-

ods for psuedodifferential equations II: Matrix compression and fast solutions, Adv.

Comput. Math., 1 (1993), 259-335.

[FMX] W. Fang, F. Ma and Y. Xu, Multilevel Iteration Methods for solving Integral

Equations of the Second Kind, J. Integral Equations Appl., (to appear)

[FWX] W. Fang, Y. Wang and Y. Xu, An Implementation of Fast Wavelet Galerkin

Methods for Integral Equations of the Second Kind, J. Scientific Computing (to

appear)

[H] J.E. Hutchinson, Fractals and self similarity, India Univ. Math. J. 30 (1981),

713-747.

[K] R. Kress, Linear Integral Equations, 2nd ed., Springer-Verlag, New York, 1999

[KX] H. Kaneko and Y. Xu, Gauss-Type Quadratures for Weakly Singular Integrals

and Their Application to Fredholm Integral Equations of the Second Kind, Math.

Comp. 62 (1994) 739-753

[MSX1] C. A. Micchelli, T. Sauer and Y. Xu , A construction of refinable sets for

interpolating wavelets, Result. Math. 34 (1998) 359-372

[MSX2] C. A. Micchelli, T. Sauer and Y. Xu, Subdivision schemes for iterated funcion

systems,, Proc. Amer. Math. Socl, 129 (2001), pp. 1861-1872

[MX1] C. A. Micchelli, and Y. Xu , Using the matrix refinement equation for the

construciton of wavelets on invariant sets, Appl, Comput. Harmon. Anal., 1 (1994),

pp. 391-401



Yi Wang Bibliography 118

[MX2] C. A. Micchelli, and Y. Xu , Reconstruction and decomposition algorithms

for biorthogonal multiwavelets, Multidimen. Systems Signal Process., 8 (1997), pp.

31-69

[MXZ] C. A. Micchelli, Y. Xu and Y. Zhao, Wavelet Garlerkin Methods for Second-

Kind Integral Equations, J. Comp. and Appl. Math. 86 (1997) 251-270

[PS] T. Von Petersdorff and C. Schwab, Wavelet approximation of first kind

integral equations in a polygon, Numer. Math., 74 (1996), pp. 479-516

[PSS] T. Von Petersdorff, C. Schwab, and R. Schneider, Multiwavelets for

second-kind integral equations, SIAM J. Numer. Anal., 34 (1997), pp. 2212-2227

[R] A. Rathsfeld, A wavelet algorithm for the solution of a singular integral equaiton

over a smooth two-dimensional manifold, J. Integral Equaitons Appl., 10 (1998),

pp. 445-501

[Ri] J. R. Rice, On the degree of convergence of nonlinear spline approximaton, Ap-

prox. with Emphasis on Spline Functions (I.J. Schoenberg, ed.), Academic Press,

New York, 1969, pp. 349-365

[XZ] Y. Xu and Y. Zhao, An Extrapolation Method for a Class of Boundary Integral

Equations, Math. Compu. 65 (1996), 587-610


	Fast wavelet collocation methods for second kind integral equations on polygons
	Recommended Citation

	yiwang_ thesis.dvi

		www.wvu.edu/~thesis
	2003-07-28T12:49:39-0400
	West Virginia University Libraries
	John H. Hagen
	I am approving this document




