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Abstract  

In this article, first we present a new approach based on Green’s formula, to describe the uniqueness 
and existence of a solution of the Helmholtz equation. By imposing at infinity the outgoing wave condition 
or also called Sommerfeld radiation condition, we show how it is possible to define in a natural way an 
outgoing solution of the Helmholtz equation based on physical arguments. Then, we resolve the exterior 
problem, given by the scattering of time-harmonic acoustic wave by sound-soft obstacle, which leads to 

find a radiating solution 𝑢 ∈ 𝐶2 ℝ3\𝐷 ∩ 𝐶 ℝ3\𝐷  to the Helmholtz equation. 
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1. Introduction 

Time harmonic wave propagations appear in many applications [5, 6, 8, 9, 10, 11], e.g. wave scattering and 

transmission, noise reduction, fluid-solid interaction and earthquake wave propagation. In many situations time 

harmonic wave propagations are governed by the following Helmholtz equation in an exterior domain with the so-

called Sommerfeld radiation boundary condition 

(P1)    

 
 
 

 
 −∆𝑢 𝑥 − 𝑘2𝑢 𝑥 = 𝑓 𝑥         ∀ 𝑥 ∈ ℝ3,

  𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 = 𝑂 1       𝑅 ⟶ +∞,

   𝜕𝑟 − 𝑖𝑘 𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 = 𝑂  
1

𝑅2       𝑅 ⟶ +∞.

  

Where  𝑥  denotes the Euclidean norm, 𝜕𝑟  is the radial derivative and 𝑘 =
𝑤

𝑐
 is the wave number with 𝑤 is a given 

frequency and 𝑐 is the sound speed in the acoustic medium. Formally, the two conditions of the problem (P1) 

consist to make sure that the solution admits the following behavior at infinity 

𝑢 𝑥 =
exp 𝑖𝑘 𝑥  

 𝑥 
 𝑢∞  

𝑥

 𝑥 
 + 𝑂  

1

 𝑥 
  ,              𝑥 ⟶ +∞. 

The scattering of time-harmonic acoustic waves by sound-soft obstacles leads to the following exterior Dirichlet 

boundary value problem for the Helmholtz equation 

(P2)     
−∆𝑢 𝑥 − 𝑘2𝑢 𝑥 = 0        ∀ 𝑥 ∈ ℝ3\𝐷,

𝑢 𝑥 = 𝑔 𝑥                         ∀ 𝑥 ∈ 𝜕𝐷,

lim𝑟⟶+∞ 𝑟 𝜕𝑟𝑢 − 𝑖𝑘𝑢 = 0,

  

Where 𝑔 is a given continuous function on 𝜕𝐷. 
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Exterior Helmholtz problem present a great challenge to numerical analysts and computational scientists [1,2,3] 

because the domain is unbounded and the solution is highly oscillatory (when k is large). In this paper, we try to 

address the problem in the theoretical side, we show the uniqueness and existence of the radiating solution of 

problems (P1) and (P2) by using Green's representation theorem. 

2. The Sommerfeld radiation condition 

    2.1 Green function and existence of outgoing solution 

In this section we show the existence of an outgoing solution of the Helmholtz equation using Green functions and 

we begin our analysis with a reminder of the first and the second Green’s theorem [6]: For any domain D with 

boundary 𝜕𝐷 of class 𝐶2, we introduce the linear space ℜ 𝐷  of all complex-valued functions 𝑢 and 𝑣. Let 𝜂 denote 

the unit normal vector to the boundary 𝜕𝐷 directed into the exterior of 𝐷. Then, for 𝑢 ∈ 𝐶1 𝐷  and 𝑣 ∈ 𝐶2 𝐷  we 

have Green’s first theorem [6], also called Green's formula 

  𝑢∆𝑣 + ∇𝑢.∇𝑣 
𝐷

𝑑𝑥 =  𝑢𝜕𝜂𝜕𝐷
𝑣 𝑑𝑠,                                                                                                                      (1) 

and for  𝑢, 𝑣 ∈ 𝐶2 𝐷  we have Green’s second  theorem 

  𝑢∆𝑣 − 𝑣∆𝑢 
𝐷

𝑑𝑥 =   𝑢𝜕𝜂𝑣 − 𝑣𝜕𝜂𝑢 𝜕𝐷
 𝑑𝑠.                                                                                                         (2) 

Lemma 2.1.  If 𝑢 and ∆𝑢 are in 𝐿𝑙𝑜𝑐
2 (ℝ3) then 𝑢 is in 𝐻𝑙𝑜𝑐

1  ℝ3 . 

Proof.  Let 𝑆 be the sphere of radius 𝑅 and 𝑆′ the sphere of radius 2𝑅. By density, it suffices to show that there is a 

constant 𝐶 > 0 such that  

 ∇𝑢 𝐿2(𝑆) ≤ 𝐶   𝑢 𝐿2 𝑆 ′  +  ∆𝑢 𝐿2 𝑆 ′   ,          ∀𝑢 ∊ 𝐷 ℝ3 .                                                                                    (3) 

Let 𝐹 ∊ 𝐷 ℝ3  be a function decreasing along r such as 𝐹 𝑥 = 1in S and 𝐹 𝑥 = 0 out of S '. Using Green’s first 

identity, we get 

  ∇𝐹𝑢 2
ℝ3  𝑑𝑥 = − ∆ 𝐹𝑢 𝐹𝑢  𝑑𝑥

ℝ3 ,               ∀𝐹 ∊ 𝐷 ℝ3 .                                                                                    (4) 

We can evaluate the term on the right of equality by developing the Laplacian 

∆ 𝐹𝑢 = 𝐹∆𝑢 + 2∇𝐹.∇𝑢 + 𝑢∆𝐹,                                                                                                                               (5) 

Hence 

𝐹∆ 𝐹𝑢 = 𝐹2∆𝑢 + 2∇𝐹.∇ F𝑢 +  𝐹∆𝐹 − 2∇𝐹.∇𝐹 𝑢.                                                                                             (6) 

Substituting (6) into (4) we obtain 

  ∇𝐹𝑢 2
ℝ3  𝑑𝑥 = − (𝐹2∆𝑢 + 2∇𝐹.∇ F𝑢 + 𝑢 𝐹∆𝐹 − 2∇𝐹.∇𝐹 )𝑢  𝑑𝑥

ℝ3 ,               ∀𝐹 ∊ 𝐷 ℝ3 ,                         (7) 

as  𝐹 𝐿∞ ℝ3 = 1, we get 

 ∇𝐹𝑢 𝐿2 ℝ3 
2 ≤  𝑢 𝐿2 𝑆′  ∆𝑢 𝐿2 𝑆′ + 2𝐶1 ∇𝐹𝑢 𝐿2 𝑆′  𝑢 𝐿2 𝑆′ + 𝐶2 𝑢 𝐿2 𝑆′ 

2 ,                                                        (8) 

with 𝐶1 =  ∇𝐹 𝐿∞ ℝ3  and 𝐶2= ∆𝐹 𝐿∞ ℝ3 . 

As 𝑎𝑏 ≤
𝑎2+𝑏2

2
, we get 
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 ∇𝐹𝑢 𝐿2 ℝ3 
2 ≤

 ∇𝐹𝑢 
𝐿2 ℝ3 
2

2
+  

1

2
+ 2𝐶1

2 + 𝐶2  𝑢 𝐿2 𝑆′ 
2 +

 ∆𝑢 
𝐿2 𝑆′  
2

2
,                                                                         (9) 

it follows that 

 ∇𝐹𝑢 
𝐿2 ℝ3 
2

2
≤  

1

2
+ 2𝐶1

2 + 𝐶2  𝑢 𝐿2 𝑆′ 
2 +

 ∆𝑢 
𝐿2 𝑆′  
2

2
.                                                                                                 (10) 

As 𝐹 = 1 in S, it follows 

 ∇𝑢 𝐿2(𝑆) ≤  ∇F𝑢 𝐿2(ℝ3)                                                                                                                                          (11) 

hence we deduce (3).                                                                                                                    

Definition 2.2. We call Green function  𝜓 𝑥  any solution of the linear partial derivatives equation  

ℌ 𝜓 𝑥 = 𝛿 𝑥                                                                                                                                                           (12) 

with  ℌ presents  a linear differential operator and 𝛿 𝑥  presents a Dirac distribution. 

In the following, we denote for all 𝑘 ∈ ℂ the function 𝜓:ℝ3\{0} ⟶ ℂ, with 𝜓 𝑥 =
𝑒 (𝑖𝑘  𝑥 )

4𝜋 𝑥 
 called a fundamental 

solution to the Helmholtz equation [5]. 

Lemma 2.3. [4] For all 𝑘 ∈ ℂ, the function 𝜓 is a fundamental solution of the operator (–Δ − 𝑘2) i.e. 

−Δ 𝜓 − 𝑘2𝜓 = 𝛿 𝑥         𝑖𝑛 𝐷′ ℝ3 .                                                                                                                         (13) 

Proposition 2.4. Let 𝑘 ∈ ℝ and 𝑓 ∈ 𝐿2 ℝ3  with compact support. The function 𝑢 𝑥 = 𝜓 ∗ 𝑓 𝑥  verifies 

 
 
 

 
 

𝑢 ∈ Ηloc
1  ℝ3 ,

−∆𝑢 𝑥 − 𝑘2𝑢 𝑥 = 𝑓 𝑥         ∀ 𝑥 ∈ ℝ3,

  𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 = 𝑂 1       𝑅 ⟶ +∞,

   𝜕𝑟 − 𝑖𝑘 𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 = 𝑂  
1

𝑅2       𝑅 ⟶ +∞.

                                                                                            (14) 

Proof. By definition, function  𝑢:  ℝ3 ⟶ ℂ  is given by 

𝑢 𝑥 = 𝜓 ∗ 𝑓 𝑥 =  
𝑒  𝑖𝑘 𝑥−𝑦  

4𝜋 𝑥−𝑦 ℝ3 𝑓 𝑦  𝑑𝑦.                                                                                                                (15) 

The convolution theory in 𝐷′ ℝ3  allows us to obtain that 𝑢 is a solution of the inhomogeneous Helmholtz equation 

− ∆ + 𝑘2 (𝜓 ∗ 𝑓) 𝑥 = − ∆𝜓 + 𝑘2𝜓 ∗ 𝑓 𝑥 = 𝑓 𝑥 .                                                                                          (16) 

According lemma 2.1., we note that 𝑢 ∈ Ηloc
1  ℝ3 .  As the support of 𝑓 is bounded, there is a positive real 𝜆 such 

that, the ball of radius 𝜆 contains the support of 𝑓. For all 𝑦 in the support of  𝑓 and for all 𝑥 such that  𝑥 > 2𝜆, we 

have 

 𝑥 − 𝑦 ≥   𝑥 −  𝑦 ≥  
 𝑥 

2
+  

 𝑥 

2
−  𝑦 ≥  

 𝑥 

2
+

2𝜆

2
− 𝜆 ≥   

 𝑥 

2
.                                                                      (17) 

By increasing the expression (15), it follows 

 𝑢 𝑥  ≤
1

2𝜋 𝑥 
  𝑓(𝑦) 
ℝ3  𝑑𝑦,                                                                                                                                    (18) 

we integrate this expression on the sphere of radius 𝑅, we get 
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  𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 ≤  
1

𝜋
   𝑓 𝑦  
ℝ3  𝑑𝑦 

2

= 𝑂 1         𝑅 ⟶ +∞.                                                                         (19) 

Similarly, we have for  𝑥 > 2𝜆 

∇𝑢 𝑥 =  
𝑒  𝑖𝑘 𝑥−𝑦  

4𝜋

𝑥−𝑦

 𝑥−𝑦 2ℝ3  𝑖𝑘 −
1

 𝑥−𝑦 
 𝑓 𝑦  𝑑𝑦,                                                                                                 (20) 

𝜕𝑟𝑢 𝑥 =  
𝑒  𝑖𝑘 𝑥−𝑦  

4𝜋

𝑥−𝑦

 𝑥−𝑦 2ℝ3

𝑥

 𝑥 
 𝑖𝑘 −

1

 𝑥−𝑦 
 𝑓 𝑦  𝑑𝑦,                                                                                          (21) 

hence 

 𝜕𝑟 − 𝑖𝑘 𝑢 𝑥 =  
𝑒  𝑖𝑘 𝑥−𝑦  

4𝜋

𝑥−𝑦

 𝑥−𝑦 3ℝ3 .
𝑥

 𝑥 
 𝑓 𝑦  𝑑𝑦 +   

𝑒  𝑖𝑘 𝑥−𝑦  

4𝜋 𝑥−𝑦 
 1 −

𝑥−𝑦

 𝑥−𝑦 
.
𝑥

 𝑥 
 

ℝ3 𝑖𝑘 𝑓 𝑦  𝑑𝑦,                           (22) 

So we get the inequality 

  𝜕𝑟 − 𝑖𝑘 𝑢 𝑥   ≤   
 𝑓 𝑦  

4𝜋 𝑥−𝑦 2ℝ3  𝑑𝑦 + 𝑘  
 𝑓 𝑦  

4𝜋   𝑥−𝑦 ℝ3   1 −
𝑥−𝑦

 𝑥−𝑦 
.
𝑥

 𝑥 
 𝑑𝑦.                                                            (23) 

We note that 

1 −
𝑥−𝑦

 𝑥−𝑦 
.
𝑥

 𝑥 
=  

𝑥

 𝑥 
−

𝑥−𝑦

 𝑥−𝑦 
 .

𝑥

 𝑥 
,                                                                                                                          (24) 

from which and after the inequality of Cauchy-Schwartz , it follows  

 1 −
𝑥−𝑦

 𝑥−𝑦 
.
𝑥

 𝑥 
  ≤   

𝑥

 𝑥 
−

𝑥−𝑦

 𝑥−𝑦 
 .                                                                                                                           (25) 

As 

𝑥

 𝑥 
−

𝑥−𝑦

 𝑥−𝑦 
=  

 𝑥−𝑦 − 𝑥 

 𝑥−𝑦 
 

𝑥

 𝑥 
+

𝑦

 𝑥−𝑦 
,                                                                                                                     (26) 

we get 

 1 −
𝑥−𝑦

 𝑥−𝑦 
.
𝑥−𝑦

 𝑥 
 ≤  

 𝑥−𝑦 − 𝑥 

 𝑥−𝑦 
 
 𝑥 

 𝑥 
+

 𝑦 

 𝑥−𝑦 
,                                                                                                               (27) 

so according to the triangle inequality, we obtain 

 1 −
𝑥−𝑦

 𝑥−𝑦 
.
𝑥

 𝑥 
 ≤

 𝑦 

 𝑥−𝑦 

 𝑥 

 𝑥 
+

 𝑦 

 𝑥−𝑦 
 ≤ 2

 𝑦 

 𝑥−𝑦 
.                                                                                                       (28) 

We deduce from (17) and (23) that 

  𝜕𝑟 − 𝑖𝑘 𝑢 𝑥   ≤   
 1+2𝑘 𝑦   𝑓 𝑦  

4𝜋 𝑥−𝑦 2ℝ3  𝑑𝑦,                                                                                                                (29) 

  𝜕𝑟 − 𝑖𝑘 𝑢 𝑥   ≤   
 1+2𝑘 𝑦   𝑓 𝑦  

𝜋ℝ3  𝑑𝑦 
1

 𝑥 2 .                                                                                                     (30) 

Integrating over the sphere of radius 𝑅, we get 

   𝜕𝑟 − 𝑖𝑘 𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 ≤
4

𝜋𝑅2    𝑓 𝑦  
ℝ3  𝑑𝑦 

2

 1 +
𝑘𝜆

2
 

2

= 𝑂  
1

𝑅2       𝑅 ⟶ +∞.                                     (31) 

This concludes the proof of Proposition 2.4.                                                                             
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 2.2 Uniqueness of the outgoing solution of the Helmholtz equation 

The uniqueness of the outgoing solution of the Helmholtz equation is based on the following theorem due to Rellich 

[11]. 

Theorem 2.5. [11] Let k > 0 and 𝑢 ∈ 𝐿𝑙𝑜𝑐
2  ℝ3  verifies 

 
 

 
−∆𝑢 𝑥 − 𝑘2𝑢 𝑥 = 0        ∀ 𝑥 ∈ ℝ3,

  𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 = 𝑂 1       𝑅 ⟶ +∞,

   𝜕𝑟 − 𝑖𝑘 𝑢 𝑥  2
  𝑥 =𝑅 

  𝑑𝑠 = 𝑂  
1

𝑅2       𝑅 ⟶ +∞.

                                                                                            (32) 

Then 𝑢 = 0 in ℝ3. 

Proof.  We note, according Lemma 2.1., that 𝑢 ∈  𝐻𝑙𝑜𝑐
1  ℝ3 . Moreover, its three partial derivatives verify 

𝜕𝑖𝑢 ∈ 𝐿𝑙𝑜𝑐
2  ℝ3   and  ∆𝜕𝑖𝑢 + 𝑘2𝜕𝑖𝑢 = 0.                                                                                                                 (33) 

According Lemma 2.1, it follows that  𝜕𝑖𝑢 ∈ 𝐻𝑙𝑜𝑐
1  ℝ3 . So 𝑢 is an element of 𝐻𝑙𝑜𝑐

2  ℝ3 . Following Green's formula 

we have 

  ∇𝑢 𝑥  2
  𝑥 <𝑅 

+ ∆𝑢 𝑥 𝑢 𝑥  𝑑𝑥 =   𝑢(𝑥)
  𝑥 =𝑅 

𝜕𝑟𝑢 𝑥   𝑑𝑠,                                                                             (34) 

hence 

  ∇𝑢 𝑥  2
  𝑥 <𝑅 

− 𝑘2  𝑢 𝑥  2 𝑑𝑥 =   𝑢(𝑥)
  𝑥 =𝑅 

(𝜕𝑟 − 𝑖𝑘)𝑢 𝑥 + 𝑖𝑘 𝑢 𝑥  2  𝑑𝑠.                                              (35) 

We note  𝑢 : ℝ3 ⟶  ℂ  the function defined by  

 𝑢  𝑥 =
𝑢 𝑥 

𝑒  𝑖𝑘 𝑥  
.                                                                                                                                                          (36) 

It follows from the identity ∇𝑢 + 𝑖𝑘𝑢 𝑒 𝑟 = 𝑒𝑥𝑝 −𝑖𝑘 𝑥  ∇𝑢 that 

  ∇ 𝑢 + 𝑖𝑘 𝑢  𝑒 𝑟  
2

  𝑥 <𝑅 
−  𝑘2  𝑢  2 𝑑𝑥 =   𝜕𝑟  𝑥 =𝑅 

𝑢 𝑢 +  𝑖𝑘  𝑢  2  𝑑𝑠.                                                                   (37) 

Equation (37) can be simplified to 

  ∇ 𝑢  2
  𝑥 <𝑅 

+ 𝑖 𝑘  𝑢 𝜕𝑟𝑢 − 𝑢 𝜕𝑟  𝑢   𝑑𝑥 =   𝜕𝑟  𝑥 =𝑅 
𝑢 𝑢 +  𝑖𝑘 𝑢  2 𝑑𝑠.                                                                 (38) 

If we take the imaginary part, we get 

 𝜕𝑟  𝑥 =𝑅 
𝑢 𝑢 − 𝑢 𝜕𝑟𝑢 + 2 𝑖𝑘  𝑢  2  𝑑𝑠 = 0,                                                                                                              (39) 

then, we deduce 

 𝑖𝑘(𝜕𝑟  𝑥 <𝑅 
𝑢 𝑢 − 𝑢 𝜕𝑟𝑢 ) 𝑑𝑥 = 2 𝑘2   𝑢  2

  𝑥 <𝑅 
  𝑑𝑥,                                                                                           (40) 

Consequently 
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  ∇𝑢  2
  𝑥 <𝑅 

+ 2𝑘2  𝑢  2 𝑑𝑥 =   𝜕𝑟  𝑥 =𝑅 
𝑢 𝑢 +  𝑖𝑘  𝑢  2 𝑑𝑠.                                                                                  (41) 

Taking the imaginary part of this expression, we get 

𝑘   𝑢  𝑥  2
  𝑥 =𝑅 

 𝑑𝑠 =  −𝐼𝑚   𝜕𝑟  𝑥 =𝑅 
𝑢  𝑥 𝑢  𝑥  𝑑𝑠 ,                                                                                       (42) 

according to the Cauchy-Schwartz theorem, we get 

𝑘 𝑢  
𝐿   𝑥 =𝑅  

2
2 ≤   𝜕𝑟𝑢  𝐿   𝑥 =𝑅  

2   𝑢  𝐿   𝑥 =𝑅  
2 ,                                                                                                         (43) 

Consequently, we get 

 𝑢  𝐿   𝑥 =𝑅  
2 ≤  

 𝜕𝑟𝑢  𝐿   𝑥 =𝑅  
2

𝑘
 ,                                                                                                                                  (44) 

As 𝑢  𝑥 = 𝑒𝑥𝑝 −𝑖𝑘 𝑥   𝑢 𝑥 ,  then we deduce from the Sommerfeld radiation conditions that 

 𝜕𝑟𝑢  𝐿   𝑥 =𝑅  
2 =  𝜕𝑟𝑢 − 𝑖𝑘𝑢 𝐿   𝑥 =𝑅  

2 = 𝑂  
1

𝑅
     𝑅 ⟶ +∞,                                                                                 (45) 

according  to (44), we have 

 𝑢  𝐿   𝑥 =𝑅  
2 = 𝑂  

1

𝑅
     𝑅 ⟶ +∞.                                                                                                                            (46) 

According to the Cauchy-Schwartz theorem, (45) and (46), we note that 

 𝜕𝑟  𝑥 =𝑅 
𝑢  𝑥 𝑢  𝑥 +  𝑖𝑘  𝑢  2 𝑑𝑠 = 𝑂  

1

𝑅2 ,    𝑅 ⟶ +∞.                                                                                      (47) 

We can then pass to the limit in (41) 

  ∇𝑢  2 + 2𝑘2
ℝ3  𝑢  2  𝑑𝑥 = 0.                                                                                                                                     (48) 

Finally, it follows that 𝑢 = 0 and therefore 𝑢 =  0 in ℝ3.                                                           

3. Scattering problem from a Sound-Soft obstacle 

Definition 3.1.  A solution 𝑢 to the Helmholtz equation whose domain of definition contains the exterior of some 

spheres is called radiating if it satisfies the Sommerfeld radiation condition 

lim𝑟⟶+∞ 𝑟 𝜕𝑟𝑢 − 𝑖𝑘𝑢 = 0                                                                                                                                      (49) 

Where 𝑟 =  𝑥  and the limit is assumed to hold uniformly in all direction 
𝑥

 𝑥 
. 

The scattering of time-harmonic acoustic waves by sound-soft obstacles leads to the following exterior Dirichlet 

boundary value problem for the Helmholtz equation 

 

−∆𝑢 𝑥 − 𝑘2𝑢 𝑥 = 0        ∀ 𝑥 ∈ ℝ3\𝐷,

𝑢 𝑥 = 𝑔 𝑥                         ∀ 𝑥 ∈ 𝜕𝐷,

lim𝑟⟶+∞ 𝑟 𝜕𝑟𝑢 − 𝑖𝑘𝑢 = 0,
 

   

where 𝑔 is a given continuous function on 𝜕𝐷. 

Theorem 3.2. [6]  The exterior Dirichlet problem has at most one solution. 
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Lemma 3.3. Let 𝑢 ∈ 𝐶2 ℝ3\𝐷 ∩ 𝐶 ℝ3\𝐷  be a solution to the Helmholtz equation in ℝ3\𝐷 which satisfies the 

homogeneous boundary condition 𝑢 = 0 on 𝜕𝐷. Define 𝐷𝑅 =  𝑦 ∈ ℝ3\𝐷:  𝑦 < 𝑅  and 𝑆𝑅 =  𝑦 ∈ ℝ3\𝐷:  𝑦 =

𝑅  for sufficiently large R. Then ∇𝑢 ∈ 𝐿2(𝐷𝑅) and 

  ∇𝑢 2
𝐷𝑅

𝑑𝑥 − 𝑘2   𝑢 2
𝐷𝑅

𝑑𝑥 =  𝑢𝜕𝜂𝑢𝑆𝑅
 𝑑𝑠.                                                                                                           (50) 

Proof. We first assume that 𝑢 is real valued. We choose an odd function 𝜑 ∈ 𝐶1 ℝ  such that 𝜑 𝑡 = 0 for 

0 ≤ 𝑡 ≤ 1, 𝜑 𝑡 = 𝑡 for 𝑡 ≥ 2 and 𝜑′ 𝑡 ≥ 0 for all t, and set 𝑢𝑛 =
𝜑 𝑛𝑢  

𝑛
. we then have uniform convergence 

 𝑢 − 𝑢𝑛 ∞ ⟶ 0, 𝑛 ⟶ ∞. Since 𝑢 = 0 on the boundary 𝜕𝐷, the function 𝑢𝑛  vanish in a neighborhood of 𝜕𝐷 and 

we apply Green’s theorem (1) to obtain 

 ∇𝑢𝑛𝐷𝑅
.∇𝑢 𝑑𝑥 =  𝑘2  𝑢𝑛𝐷𝑅

𝑢 𝑑𝑥 +  𝑢𝑛𝑆𝑅
𝜕𝜂𝑢 𝑑𝑠.                                                                                                (51) 

It can be easily seen that 

0 ≤ ∇𝑢𝑛 𝑥 .∇𝑢 𝑥 = 𝜑′ 𝑛𝑢 𝑥   ∇𝑢 𝑥  2 →  ∇𝑢 𝑥  2,    𝑛 → +∞,                                                                      (52) 

for all 𝑥 not contained in  𝑥 ∈ 𝐷𝑅 :𝑢 𝑥 = 0, ∇u x ≠ 0 . Since as a consequence of the implicit function theorem 

the latter set has Lebesgue measure zeros, Fatou’s lemma tells us that ∇𝑢 ∈ 𝐿2 𝐷𝑅 . 

Now assume 𝑢 = 𝑣 + 𝑖𝑤 with real functions 𝑣 and 𝑤. Then, since v and w also satisfy the assumptions of our 

lemma, we have  ∇𝑣,∇𝑤 ∈ 𝐿2 𝐷𝑅 .  From 

∇𝑣𝑛 + 𝑖∇𝑤𝑛 = 𝜑′ 𝑛𝑣 ∇𝑣 + 𝑖𝜑′ 𝑛𝑤  ∇𝑤                                                                                                                 (53) 

we can estimate 

  ∇𝑣𝑛 + 𝑖∇𝑤𝑛 .∇𝑢 ≤ 2 𝜑′ ∞    ∇v 2 +  ∇w 2 .                                                                                                     (54) 

Hence, by the Lebesgue dominated convergence theorem, we can pass to the limit 𝑛 → +∞ in Green’s theorem 

   ∇𝑣𝑛 + 𝑖∇𝑤𝑛 .∇𝑢 +  𝑣𝑛 + 𝑖𝑤𝑛 ∆𝑢 𝐷𝑅
𝑑𝑥 =   𝑣𝑛 + 𝑖𝑤𝑛 𝑆𝑅

𝜕𝜂𝑢 𝑑𝑠                                                                    (55) 

to obtain  (50).                                                                                                                            

Theorem 3.4. [6] Let 0 < 𝛼 < 𝛽 ≤ 1 and let G be compact. Then the imbedding operators 

𝐼𝛽 : 𝐶0,𝛽 𝐺 → 𝐶 𝐺 ,       𝐼𝛼 ,𝛽 : 𝐶0,𝛽 𝐺 →  𝐶0,𝛼 𝐺  

are compact. 

Theorem 3.5. [6] Let  𝜕𝐷 be of class 𝐶2. Then the single- and double-layer operators 𝑀 and 𝐾, given by 

 𝑀𝜇  𝑥 = 2 𝜓 𝑥, 𝑦 
𝜕𝐷

𝜇 𝑦  𝑑𝑠 𝑦 ,           𝑥 ∈ 𝜕𝐷, 

 𝐾𝜇  𝑥 = 2 𝜕𝜂(𝑦)𝜓 𝑥, 𝑦 
𝜕𝐷

𝜇 𝑦  𝑑𝑠 𝑦 ,    𝑥 ∈ 𝜕𝐷, 

are bounded operators from  𝐶 𝜕𝐷  into 𝐶0,𝛼 𝜕𝐷 , the operators 𝑀 and 𝐾 are also bounded from  𝐶0,𝛼 𝜕𝐷  into  

𝐶1,𝛼 𝜕𝐷 .  The normal derivative operators 𝐾 ′,𝑇 given by 
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 𝐾′𝜇  𝑥 = 2 𝜕𝜂 (𝑥)𝜓 𝑥, 𝑦 
𝜕𝐷

𝜇 𝑦  𝑑𝑠 𝑦 ,    𝑥 ∈ 𝜕𝐷, 

 𝑇𝜇  𝑥 = 2𝜕𝜂 (𝑥)   𝜕𝜂(𝑦)𝜓 𝑥, 𝑦 
𝜕𝐷

𝜇 𝑦  𝑑𝑠 𝑦  ,    𝑥 ∈ 𝜕𝐷, 

where operator 𝑇 is bounded from 𝐶1,𝛼 𝜕𝐷  into 𝐶0,𝛼 𝜕𝐷 . 

The existence of a solution to the exterior Dirichlet problem can be based on boundary integral equations. In the so-

called layer approach, we seek the solution in the form of acoustic surface potentials. Here, we choose an approach 

in the form of a combined acoustic double- and single-layer potential 

𝑢 𝑥 =   
𝜕𝜓  𝑥 ,𝑦 

𝜕𝜂  𝑦 
− 𝑖𝛽𝜓 𝑥, 𝑦  

𝜕𝐷
𝜇 𝑦 𝑑𝑠 𝑦 ,    𝑥 ∈ ℝ3\𝜕𝐷,                                                                                   (56) 

With a density 𝜇 ∈ 𝐶 𝜕𝐷  and a real coupling parameter 𝛽 ≠ 0. Then from the jump relations of theorem 3.1 given 

by Colton and Kress [6]. We see that the potential 𝑢 given by (56) in ℝ3\𝐷 solves the exterior Dirichlet problem 

provided the density is a solution of the integral equation 

 𝐼 + 𝐾 − 𝑖𝛽𝑀 𝜇 = 2𝑔.                                                                                                                                             (57) 

Combining  Theorems 3.4. and  3.5. given by Colton and Kress [6], the operators 𝑀,𝐾:𝐶 𝜕𝐷 → 𝐶 𝜕𝐷  are seen to 

be compact. Therefore, the existence of a solution to (57) can be established by the Riesz-Fredholm theory for 

equations of the second kind with a compact operator. 

Let 𝜇 be a continuous solution to the homogeneous form of (57). Then the potential 𝑢 given by (56) satisfies the 

homogeneous boundary condition 𝑢+ = 0 on 𝜕𝐷 hence by the uniqueness for the exterior Dirichlet problem 𝑢 = 0 

in ℝ3\𝐷 follows. The jump relations given by Colton and Kress [6] in theorem 3.1 yield 

−𝑢− = 𝜇,       − 𝜕𝜂𝑢− = 𝑖𝛽𝜇   𝑜𝑛 𝜕𝐷.                                                                                                                       (58) 

Hence, using Green’s theorem (1), we obtain 

𝑖𝛽   𝜇 2
𝜕𝐷

 𝑑𝑠 =  𝑢−𝜕𝐷
𝜕𝜂𝑢− 𝑑𝑠 =     ∇𝑢 2 − 𝑘2 𝑢 2 

𝐷
 𝑑𝑥.                                                                                 (59) 

Taking the imaginary part of the last equation shows that 𝜇 = 0. Thus, we have established uniqueness for the 

integral equation (57), i.e., injectivity of the operator 𝐼 + 𝐾 − 𝑖𝛽𝑀: 𝐶 𝜕𝐷 → 𝐶 𝜕𝐷 . Therefore, by the Riesz-

Fredholm theory, 𝐼 + 𝐾 − 𝑖𝛽𝑀 is bijective and the inverse (𝐼 + 𝐾 − 𝑖𝛽𝑀)−1: 𝐶 𝜕𝐷 → 𝐶 𝜕𝐷  is bounded. Hence, 

the inhomogeneous equation (57) possesses a solution and this solution depends continuously of 𝑔 in the maximum 

norm. From the representation (56) of the solution as a combined double- and single-layer potential, with the aid of 

the regularity estimates in theorem 3.1 given by Colton and Kress [6], the continuous dependence of the density 𝜇 

on the boundary data 𝑔 shows that the exterior Dirichlet problem is well-posed, i.e., small deviations in 𝑔 in the 

maximum norm ensure small deviations in u in the maximum norm on ℝ3\𝐷 and small deviations of all its 

derivatives in the maximum norm on closed subsets of ℝ3\𝐷. 

We summarize these results in the following theorem 

Theorem 3.6. The exterior Dirichlet problem has a unique solution and the solution depends continuously on the 

boundary data with respect to uniform convergence of the solution on ℝ3\𝐷 and all its derivatives on closed subsets 

of ℝ3\𝐷. 

Note that for 𝛽 = 0 the integral equation (57) becomes non-unique if k is a so-called irregular wave number or 

internal resonance, i.e., if there exist nontrivial solutions 𝑢 to the Helmholtz equation in the interior domain 

𝐷satisfying homogeneous Neumann boundary conditions 𝜕𝜂𝑢 = 0 on 𝜕𝐷. 
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