3,285 research outputs found

    Transient Modeling of Ultra Wideband Pulse Propagation

    Get PDF

    Modified UWB Spatio-Temporal Channel Simulation Including Pulse Distortion and Frequency Dependence

    Get PDF
    A modified simulation of ultra-wideband (UWB) multipath channels, combined with cluster classification and physics based pulse distortion mechanisms, is proposed in this letter. Spatiotemporal characteristics of multipath clusters are specifically generated based on 3 x 3 planar array systems with regard to scenario types and are simulated over ten frequency subbands (2–11 GHz). Thus, frequency-dependent characteristics of the propagation channels are also investigated and compared between each scenario. Finally, the probability of the bit-error rate is determined to quantify distortion effects on UWB multipath channels for all frequency subbands.</p

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201

    Detection of PPM-UWB random signals

    Get PDF
    This paper focuses on the symbol detection problem of random pulse-position modulation (PPM) ultrawideband (UWB) signals in the absence of interframe interference. Particular attention is devoted to severely time-varying channels where optimal detectors are proposed for both uncorrelated and correlated scattering scenarios. This is done by assuming the received waveforms to be unknown parameters. In UWB communication systems, the assumption of unknown random waveforms is consistent with the fact that the received waveform has very little resemblance with the original transmitted pulse. In order to circumvent this limitation, a conditional approach is presented herein by compressing the likelihood ratio test with the information regarding the second-order moments of the end-to-end channel response. Both full-rank and rank-one detectors are derived. For the reduced complexity rank-one detector, an iterative procedure is presented that maximizes the J-divergence between the hypotheses to be tested. Finally, simulation results are provided to compare the performance of the proposed detectors in different propagation environments.Peer Reviewe

    High-speed photonic power-efficient ultra-wideband transceiver based on multiple PM-IM conversions

    Get PDF
    We experimentally demonstrate a novel photonic ultra-wideband (UWB) transceiver with pulse spectral efficiency of 50.97% and transmission speed up to 3.125 Gb/s. The UWB generator only consists of a highly nonlinear fiber (HNLF) and a commercial arrayed-waveguide grating (AWG). By using the concept of multiple cross-phase modulation in the HNLF and multiple phase modulation to intensity modulation conversions in the AWG, a power-efficient UWB pulse is combined with incoherent summation of two asymmetric monocycle pulses with inverted polarities. Benefiting from the ultra-fast response of fiber nonlinearities in the HNLF, onoff keying encoded UWB signals generated at 781.25 Mb/s, 1.5625 Gb/s, and 3.125 Gb/s are all error-free transmitted through a 22.5-km single-mode fiber (SMF) with power penalties lower than 1 dB. The bit-error rate is directly measured on down-converted baseband signals by using optical full rectification and electrical low-pass filtering technologies. The measured electrical spectra before and after 22.5-km SMF link transmission both fully comply with the spectral mask specified by the U.S. Federal Communications Commission (FCC) without power attenuation. © 2006 IEEE.published_or_final_versio

    Analog IC Design at the University of Twente

    Get PDF
    This article describes some recent research results from the IC Design group of the University of Twente, located in Enschede, The Netherlands.\ud \ud Our research focuses on analog CMOS circuit design with emphasis on high frequency and broadband circuits. With the trend of system integration in mind, we try to develop new circuit techniques that enable the next steps in system integration in nanometer CMOS technology. Our research funding comes from industry, as well as from governmental organizations. We aim to find fundamental solutions for practical problems of integrated circuits realized in industrial Silicon technologies.\ud \ud CMOS IC technology is dictated by optimal cost and performance of digital circuits and is certainly not optimized for nice analog behavior. As analog designers, we do not have the illusion to be able to change the CMOS technology, so we have to "live with it" and solve the problems by design. In this article several examples will be shown, where problematic analog behavior, such as noise and distortion, can be tackled with new circuit design techniques. These circuit techniques are developed in such a way that they do benefit from the modern technology and thus enable further integration. This way we can improve various analog building blocks for wireless, wire-line and optical communication. Below some examples are given.\ud \u
    • …
    corecore