3,434 research outputs found

    Optimization as a result of the interplay between dynamics and structure

    Full text link
    In this work we study the interplay between the dynamics of a model of diffusion governed by a mechanism of imitation and its underlying structure. The dynamics of the model can be quantified by a macroscopic observable which permits the characterization of an optimal regime. We show that dynamics and underlying network cannot be considered as separated ingredients in order to achieve an optimal behavior.Comment: 12 pages, 4 figures, to appear in Physica

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization

    Get PDF
    Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to propose a new methodology for extracting spatio-temporal traffic patterns, ultimately for modeling large-scale traffic dynamics, and long-term traffic forecasting. We attack this issue by utilizing Locality-Preserving Non-negative Matrix Factorization (LPNMF) to derive low-dimensional representation of network-level traffic states. Clustering is performed on the compact LPNMF projections to unveil typical spatial patterns and temporal dynamics of network-level traffic states. We have tested the proposed method on simulated traffic data generated for a large-scale road network, and reported experimental results validate the ability of our approach for extracting meaningful large-scale space-time traffic patterns. Furthermore, the derived clustering results provide an intuitive understanding of spatial-temporal characteristics of traffic flows in the large-scale network, and a basis for potential long-term forecasting.Comment: IET Intelligent Transport Systems (2013

    Minimizing Polarization and Disagreement in Social Networks

    Full text link
    The rise of social media and online social networks has been a disruptive force in society. Opinions are increasingly shaped by interactions on online social media, and social phenomena including disagreement and polarization are now tightly woven into everyday life. In this work we initiate the study of the following question: given nn agents, each with its own initial opinion that reflects its core value on a topic, and an opinion dynamics model, what is the structure of a social network that minimizes {\em polarization} and {\em disagreement} simultaneously? This question is central to recommender systems: should a recommender system prefer a link suggestion between two online users with similar mindsets in order to keep disagreement low, or between two users with different opinions in order to expose each to the other's viewpoint of the world, and decrease overall levels of polarization? Our contributions include a mathematical formalization of this question as an optimization problem and an exact, time-efficient algorithm. We also prove that there always exists a network with O(n/Ï”2)O(n/\epsilon^2) edges that is a (1+Ï”)(1+\epsilon) approximation to the optimum. For a fixed graph, we additionally show how to optimize our objective function over the agents' innate opinions in polynomial time. We perform an empirical study of our proposed methods on synthetic and real-world data that verify their value as mining tools to better understand the trade-off between of disagreement and polarization. We find that there is a lot of space to reduce both polarization and disagreement in real-world networks; for instance, on a Reddit network where users exchange comments on politics, our methods achieve a ∌60 000\sim 60\,000-fold reduction in polarization and disagreement.Comment: 19 pages (accepted, WWW 2018

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table
    • 

    corecore