8 research outputs found

    TOWARDS INTEGRATION OF GRAPHENE IN ADVANCED CMOS INTERCONNECT TECHNOLOGY

    Get PDF
    The integration of graphene into existing state-of-the-art semiconductor manufacturing is a topic of worldwide interest. With its unprecedented electrical, thermal and mechanical properties, graphene is ideally suited for back-end of line (BEOL) technology to boost the performance of on-chip copper (Cu) interconnects. However, the lack of BEOL compatible methods has stymied the true evaluation of Cu/graphene hybrid (Cu-G) technology. The objectives of this thesis proposal are to demonstrate BEOL-compatible graphene growth techniques, and explore various avenues for practical integration of graphene in order to achieve better electrical, thermal and reliability metrics than traditional interconnect technology

    Nanofluid Flow in Porous Media

    Get PDF
    Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized

    Characterization of self-heating effects and assessment of its impact on reliability in finfet technology

    Get PDF
    The systematically growing power (heat) dissipation in CMOS transistors with each successive technology node is reaching levels which could impact its reliable operation. The emergence of technologies such as bulk/SOI FinFETs has dramatically confined the heat in the device channel due to its vertical geometry and it is expected to further exacerbate with gate-all-around transistors. This work studies heat generation in the channel of semiconductor devices and measures its dissipation by means of wafer level characterization and predictive thermal simulation. The experimental work is based on several existing device thermometry techniques to which additional layout improvements are made in state of the art bulk FinFET and SOI FinFET 14nm technology nodes. The sensors produce excellent matching results which are confirmed through TCAD thermal simulation, differences between sensor types are quantified and error bars on measurements are established. The lateral heat transport measurements determine that heat from the source is mostly dissipated at a distance of 1µm and 1.5µm in bulk FinFET and SOI FinFET, respectively. Heat additivity is successfully confirmed to prove and highlight the fact that the whole system needs to be considered when performing thermal analysis. Furthermore, an investigation is devoted to study self-heating with different layout densities by varying the number of fins and fingers per active region (RX). Fin thermal resistance is measured at different ambient temperatures to show its variation of up to 70% between -40°C to 175°C. Therefore, the Si fin has a more dominant effect in heat transport and its varying thermal conductivity should be taken into account. The effect of ambient temperature on self-heating measurement is confirmed by supplying heat through thermal chuck and adjacent heater devices themselves. Motivation for this work is the continuous evolution of the transistor geometry and use of exotic materials, which in the recent technology nodes made heat removal more challenging. This poses reliability and performance concerns. Therefore, this work studies the impact of self-heating on reliability testing at DC conditions as well as realistic CMOS logic operating (AC) conditions. Front-end-of-line (FEOL) reliability mechanisms, such as hot carrier injection (HCI) and non-uniform time dependent dielectric breakdown (TDDB), are studied to show that self-heating effects can impact measurement results and recommendations are given on how to mitigate them. By performing an HCI stress at moderate bias conditions, this dissertation shows that the laborious techniques of heat subtraction are no longer necessary. Self-heating is also studied at more realistic device switching conditions by utilizing ring oscillators with several densities and stage counts to show that self-heating is considerably lower compared to constant voltage stress conditions and degradation is not distinguishable

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Algorithms and methodologies for interconnect reliability analysis of integrated circuits

    Get PDF
    The phenomenal progress of computing devices has been largely made possible by the sustained efforts of semiconductor industry in innovating techniques for extremely large-scale integration. Indeed, gigantically integrated circuits today contain multi-billion interconnects which enable the transistors to talk to each other -all in a space of few mm2. Such aggressively downscaled components (transistors and interconnects) silently suffer from increasing electric fields and impurities/defects during manufacturing. Compounded by the Gigahertz switching, the challenges of reliability and design integrity remains very much alive for chip designers, with Electro migration (EM) being the foremost interconnect reliability challenge. Traditionally, EM containment revolves around EM guidelines, generated at single-component level, whose non-compliance means that the component fails. Failure usually refers to deformation due to EM -manifested in form of resistance increase, which is unacceptable from circuit performance point of view. Subsequent aspects deal with correct-by-construct design of the chip followed by the signoff-verification of EM reliability. Interestingly, chip designs today have reached a dilemma point of reduced margin between the actual and reliably allowed current densities, versus, comparatively scarce system-failures. Consequently, this research is focused on improved algorithms and methodologies for interconnect reliability analysis enabling accurate and design-specific interpretation of EM events. In the first part, we present a new methodology for logic-IP (cell) internal EM verification: an inadequately attended area in the literature. Our SPICE-correlated model helps in evaluating the cell lifetime under any arbitrary reliability speciation, without generating additional data - unlike the traditional approaches. The model is apt for today's fab less eco-system, where there is a) increasing reuse of standard cells optimized for one market condition to another (e.g., wireless to automotive), as well as b) increasing 3rd party content on the chip requiring a rigorous sign-off. We present results from a 28nm production setup, demonstrating significant violations relaxation and flexibility to allow runtime level reliability retargeting. Subsequently, we focus on an important aspect of connecting the individual component-level failures to that of the system failure. We note that existing EM methodologies are based on serial reliability assumption, which deems the entire system to fail as soon as the first component in the system fails. With a highly redundant circuit topology, that of a clock grid, in perspective, we present algorithms for EM assessment, which allow us to incorporate and quantify the benefit from system redundancies. With the skew metric of clock-grid as a failure criterion, we demonstrate that unless such incorporations are done, chip lifetimes are underestimated by over 2x. This component-to-system reliability bridge is further extended through an extreme order statistics based approach, wherein, we demonstrate that system failures can be approximated by an asymptotic kth-component failure model, otherwise requiring costly Monte Carlo simulations. Using such approach, we can efficiently predict a system-criterion based time to failure within existing EDA frameworks. The last part of the research is related to incorporating the impact of global/local process variation on current densities as well as fundamental physical factors on EM. Through Hermite polynomial chaos based approach, we arrive at novel variations-aware current density models, which demonstrate significant margins (> 30 %) in EM lifetime when compared with the traditional worst case approach. The above research problems have been motivated by the decade-long work experience of the author dealing with reliability issues in industrial SoCs, first at Texas Instruments and later at Qualcomm.L'espectacular progrés dels dispositius de càlcul ha estat possible en gran part als esforços de la indústria dels semiconductors en proposar tècniques innovadores per circuits d'una alta escala d'integració. Els circuits integrats contenen milers de milions d'interconnexions que permeten connectar transistors dins d'un espai de pocs mm2. Tots aquests components estan afectats per camps elèctrics, impureses i defectes durant la seva fabricació. Degut a l’activitat a nivell de Gigahertzs, la fiabilitat i integritat són reptes importants pels dissenyadors de xips, on la Electromigració (EM) és un dels problemes més importants. Tradicionalment, el control de la EM ha girat entorn a directrius a nivell de component. L'incompliment d’alguna de les directrius implica un alt risc de falla. Per falla s'entén la degradació deguda a la EM, que es manifesta en forma d'augment de la resistència, la qual cosa és inacceptable des del punt de vista del rendiment del circuit. Altres aspectes tenen a veure amb la correcta construcció del xip i la verificació de fiabilitat abans d’enviar el xip a fabricar. Avui en dia, el disseny s’enfronta a dilemes importants a l’hora de definir els marges de fiabilitat dels xips. És un compromís entre eficiència i fiabilitat. La recerca en aquesta tesi se centra en la proposta d’algorismes i metodologies per a l'anàlisi de la fiabilitat d'interconnexió que permeten una interpretació precisa i específica d'esdeveniments d'EM. A la primera part de la tesi es presenta una nova metodologia pel disseny correcte-per-construcció i verificació d’EM a l’interior de les cel·les lògiques. Es presenta un model SPICE correlat que ajuda a avaluar el temps de vida de les cel·les segons qualsevol especificació arbitrària de fiabilitat i sense generar cap dada addicional, al contrari del que fan altres tècniques. El model és apte per l'ecosistema d'empreses de disseny quan hi ha a) una reutilització creixent de cel·les estàndard optimitzades per unes condicions de mercat i utilitzades en un altre (p.ex. de wireless a automoció), o b) la utilització de components del xip provinents de terceres parts i que necessiten una verificació rigorosa. Es presenten resultats en una tecnologia de 28nm, demostrant relaxacions significatives de les regles de fiabilitat i flexibilitat per permetre la reavaluació de la fiabilitat en temps d'execució. A continuació, el treball tracta un aspecte important sobre la relació entre les falles dels components i les falles del sistema. S'observa que les tècniques existents es basen en la suposició de fiabilitat en sèrie, que porta el sistema a fallar tant aviat hi ha un component que falla. Pensant en topologies redundants, com la de les graelles de rellotge, es proposen algorismes per l'anàlisi d'EM que permeten quantificar els beneficis de la redundància en el sistema. Utilitzant com a mètrica l’esbiaixi del senyal de rellotge, es demostra que la vida dels xips pot arribar a ser infravalorada per un factor de 2x. Aquest pont de fiabilitat entre component i sistema es perfecciona a través d'una tècnica basada en estadístics d'ordre extrem on es demostra que les falles poden ser aproximades amb un model asimptòtic de fallada de l'ièssim component, evitant així simulacions de Monte Carlo costoses. Amb aquesta tècnica, es pot predir eficientment el temps de fallada a nivell de sistema utilitzant eines industrials. La darrera part de la recerca està relacionada amb avaluar l'impacte de les variacions de procés en les densitats de corrent i factors físics de la EM. Mitjançant una tècnica basada en polinomis d'Hermite s'han obtingut uns nous models de densitat de corrent que mostren millores importants (>30%) en l'estimació de la vida del sistema comprades amb les tècniques basades en el cas pitjor. La recerca d'aquesta tesi ha estat motivada pel treball de l'autor durant més d'una dècada tractant temes de fiabilitat en sistemes, primer a Texas Instruments i després a Qualcomm.Postprint (published version

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before
    corecore