90 research outputs found

    Design and modelling of different SRAM's based on CNTFET 32nm technology

    Full text link
    Carbon nanotube field-effect transistor (CNTFET) refers to a field-effect transistor that utilizes a single carbon nanotube or an array of carbon nanotubes as the channel material instead of bulk silicon in the traditional MOSFET structure. Since it was first demonstrated in 1998, there have been tremendous developments in CNTFETs, which promise for an alternative material to replace silicon in future electronics. Carbon nanotubes are promising materials for the nano-scale electron devices such as nanotube FETs for ultra-high density integrated circuits and quantum-effect devices for novel intelligent circuits, which are expected to bring a breakthrough in the present silicon technology. A Static Random Access Memory (SRAM) is designed to plug two needs: i) The SRAM provides as cache memory, communicating between central processing unit and Dynamic Random Access Memory (DRAM). ii) The SRAM technology act as driving force for low power application since SRAM is portable compared to DRAM, and SRAM doesn't require any refresh current. On the basis of acquired knowledge, we present different SRAM's designed for the conventional CNTFET. HSPICE simulations of this circuit using Stanford CNTFET model shows a great improvement in power saving.Comment: 15 Page

    Implementation and Applications of a Ternary Threshold Logic Gate

    Full text link
    Reducing delay, power consumption, and chip area of a logic circuit are the main targets of a designer. Most of the times, the designer sacrifices power consumption and chip area to improve delay for a given technology node. To overcome this problem, we propose a ternary threshold logic gate. We implement the proposed gate by combining threshold logic and ternary logic. Then, we construct basic building blocks of a ternary ALU (as logic gates, comparator, and arithmetic circuits) using the proposed gate. We show that the proposed ternary TLG improves delay, power consumption, and chip area of ternary circuits via simulations. Thus, the proposed gate can be used to improve delay, power consumption, and chip area of ternary circuits

    Power Consumption of Logic Circuits in Ambipolar Carbon Nanotube Technology

    Get PDF
    Ambipolar devices have been reported in many technologies, including carbon nanotube field effect transistors (CNTFETs). The ambipolarity can be in-field controlled with a second gate, enabling the design of generalized logic gates with a high expressive power, i.e., the ability to implement more functions with fewer physical resources. Reported circuit design techniques using generalized logic gates show an improvement in terms of area and delay with respect to conventional CMOS circuits. In this paper, we characterize and study the power dissipation of generalized logic gates based on ambipolar CNTFETs. Our results show that the logic gates in the generalized CNTFET library dissipate 28% less power on average than a library of conventional CMOS gates. Further, we also perform logic synthesis and technology mapping, demonstrating that synthesized circuits mapped with the library of ambipolar logic gates dissipate 57% less power than CMOS circuits. By combining the benefits coming from the expressive power of generalized logic and from the CNTFET technology, we demonstrate that we can reduce the energy-delay-product by a factor of 20× using the ambipolar CNTFET technology

    Determination of key device parameters for short- and long-channel Schottky-type carbon nanotube field-effect transistors

    Get PDF
    The Schottky barrier, contact resistance and carrier mobility in carbon nanotube (CNT) field-effect transistors (FETs) are discussed in detail in this thesis. Novel extraction methods and definitions are proposed for these parameters. A technology comparison with other emerging transistor technologies and a performance projection study are also presented. A Schottky barrier height extraction method for CNTFETs considering one-dimensional (1D) conditions is developed. The methodology is applied to simulation and experimental data of CNTFETs feasible for manufacturing. Y-function-based methods (YFMs) have been applied to simulation and experimental data in order to extract a contact resistance for CNTFETs. Both extraction methods are more efficient and accurate than other conventional approaches. Practical mobility expressions are derived for CNTFETs covering the ballistic as well as the non-ballistic transport regime which enable a straightforward evaluation of the transport in CNTs. They have been applied to simulation and experimental data of devices with different channel lengths and Schottky barrier heights. A comparison of fabricated emerging transistors based on similar criteria for various application scenarios reveals CNTFETs as promising candidates to compete with Si-based technologies in low-power static and dynamic applications. A performance projection study is suggested for specific applications in terms of the studied design parameters

    A Holistic Solution for Reliability of 3D Parallel Systems

    Full text link
    As device scaling slows down, emerging technologies such as 3D integration and carbon nanotube field-effect transistors are among the most promising solutions to increase device density and performance. These emerging technologies offer shorter interconnects, higher performance, and lower power. However, higher levels of operating temperatures and current densities project significantly higher failure rates. Moreover, due to the infancy of the manufacturing process, high variation, and defect densities, chip designers are not encouraged to consider these emerging technologies as a stand-alone replacement for Silicon-based transistors. The goal of this dissertation is to introduce new architectural and circuit techniques that can work around high-fault rates in the emerging 3D technologies, improving performance and reliability comparable to Silicon. We propose a new holistic approach to the reliability problem that addresses the necessary aspects of an effective solution such as detection, diagnosis, repair, and prevention synergically for a practical solution. By leveraging 3D fabric layouts, it proposes the underlying architecture to efficiently repair the system in the presence of faults. This thesis presents a fault detection scheme by re-executing instructions on idle identical units that distinguishes between transient and permanent faults while localizing it to the granularity of a pipeline stage. Furthermore, with the use of a dynamic and adaptive reconfiguration policy based on activity factors and temperature variation, we propose a framework that delivers a significant improvement in lifetime management to prevent faults due to aging. Finally, a design framework that can be used for large-scale chip production while mitigating yield and variation failures to bring up Carbon Nano Tube-based technology is presented. The proposed framework is capable of efficiently supporting high-variation technologies by providing protection against manufacturing defects at different granularities: module and pipeline-stage levels.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168118/1/javadb_1.pd

    An Efficient Gate Library for Ambipolar CNTFET Logic

    Get PDF
    Recently, several emerging technologies have been reported as potential candidates for controllable ambipolar devices. Controllable ambipolarity is a desirable property that enables the on-line configurability of n-type and p-type device polarity. In this paper, we introduce a new design methodology for logic gates based on controllable ambipolar devices, with an emphasis on carbon nanotubes as the candidate technology. Our technique results in ambipolar gates with a higher expressive power than conventional complementary metal-oxidesemiconductor (CMOS) libraries. We propose a library of static ambipolar carbon nanotube field effect transistor (CNTFET) gates based on generalized NOR-NAND-AOI-OAI primitives, which efficiently implements XOR-based functions. Technology mapping of several multi-level logic benchmarks that extensively use the XOR function, including multipliers, adders, and linear circuits, with ambipolar CNTFET logic gates indicates that on average, it is possible to reduce the number of logic levels by 42%, the delay by 26%, and the power consumption by 32%, resulting in a energy-delay-product (EDP) reduction of 59% over the same circuits mapped with unipolar CNTFET logic gates. Based on the projections in [1], where it is stated that defectfree CNTFETs will provide a 5× performance improvement over metal-oxide-semiconductor field effect transistors, the ambipolar library provides a performance improvement of 7×, a 57% reduction in power consumption, and a 20× improvement in EDP over the CMOS library

    Recent Advances in Molecular Electronics Based on Carbon Nanotubes

    Get PDF
    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field

    Multiple bit error correcting architectures over finite fields

    Get PDF
    This thesis proposes techniques to mitigate multiple bit errors in GF arithmetic circuits. As GF arithmetic circuits such as multipliers constitute the complex and important functional unit of a crypto-processor, making them fault tolerant will improve the reliability of circuits that are employed in safety applications and the errors may cause catastrophe if not mitigated. Firstly, a thorough literature review has been carried out. The merits of efficient schemes are carefully analyzed to study the space for improvement in error correction, area and power consumption. Proposed error correction schemes include bit parallel ones using optimized BCH codes that are useful in applications where power and area are not prime concerns. The scheme is also extended to dynamically correcting scheme to reduce decoder delay. Other method that suits low power and area applications such as RFIDs and smart cards using cross parity codes is also proposed. The experimental evaluation shows that the proposed techniques can mitigate single and multiple bit errors with wider error coverage compared to existing methods with lesser area and power consumption. The proposed scheme is used to mask the errors appearing at the output of the circuit irrespective of their cause. This thesis also investigates the error mitigation schemes in emerging technologies (QCA, CNTFET) to compare area, power and delay with existing CMOS equivalent. Though the proposed novel multiple error correcting techniques can not ensure 100% error mitigation, inclusion of these techniques to actual design can improve the reliability of the circuits or increase the difficulty in hacking crypto-devices. Proposed schemes can also be extended to non GF digital circuits

    Energy Efficient Design of Four-operand Multiplier Architecture using CNTFET Technology

    Get PDF
    Multiplication is an essential part of digital arithmetic, due to its application in video and voice processing, FIR filters, cryptography and other related concepts. Reducing the power consumption and increasing the speed of multipliers will affect the performance of any VLSI system. An approach to accomplish the desired objective for the researchers is applying nano-technologies in implementing VLSI circuits. Carbon nanotube technology is an appropriate option among emerging nano-devices, due to its similarities to the preceding technology, MOSFET. Three new architectures are proposed for a four-bit four-operand multiplier. These multipliers and the conventional four-bit four-operand multiplier are designed, implemented and simulated through carbon nanotube field effect transistors. Evaluations and comparisons are run through HSPICE simulator, through using carbon nanotube technology. These multipliers outperform the common four-operand multiplication run on computers nowadays, referred to as conventional multiplier in this article
    corecore