171 research outputs found

    What is new in microcirculation and tissue oxygenation monitoring?

    Get PDF
    Ensuring and maintaining adequate tissue oxygenation at the microcirculatory level might be considered the holy grail of optimal hemodynamic patient management. However, in clinical practice we usually focus on macro-hemodynamic variables such as blood pressure, heart rate, and sometimes cardiac output. Other macro-hemodynamic variables like pulse pressure or stroke volume variation are additionally used as markers of fluid responsiveness. In recent years, an increasing number of technological devices assessing tissue oxygenation or microcirculatory blood flow have been developed and validated, and some of them have already been incorporated into clinical practice. In this review, we will summarize recent research findings on this topic as published in the last 2 years in the Journal of Clinical Monitoring and Computing (JCMC). While some techniques are already currently used as routine monitoring (e.g. cerebral oxygenation using near-infrared spectroscopy (NIRS)), others still have to find their way into clinical practice. Therefore, further research is needed, particularly regarding outcome measures and cost-effectiveness, since introducing new technology is always expensive and should be balanced by downstream savings. The JCMC is glad to provide a platform for such research

    Remote Assessment of the Cardiovascular Function Using Camera-Based Photoplethysmography

    Get PDF
    Camera-based photoplethysmography (cbPPG) is a novel measurement technique that allows the continuous monitoring of vital signs by using common video cameras. In the last decade, the technology has attracted a lot of attention as it is easy to set up, operates remotely, and offers new diagnostic opportunities. Despite the growing interest, cbPPG is not completely established yet and is still primarily the object of research. There are a variety of reasons for this lack of development including that reliable and autonomous hardware setups are missing, that robust processing algorithms are needed, that application fields are still limited, and that it is not completely understood which physiological factors impact the captured signal. In this thesis, these issues will be addressed. A new and innovative measuring system for cbPPG was developed. In the course of three large studies conducted in clinical and non-clinical environments, the system’s great flexibility, autonomy, user-friendliness, and integrability could be successfully proven. Furthermore, it was investigated what value optical polarization filtration adds to cbPPG. The results show that a perpendicular filter setting can significantly enhance the signal quality. In addition, the performed analyses were used to draw conclusions about the origin of cbPPG signals: Blood volume changes are most likely the defining element for the signal's modulation. Besides the hardware-related topics, the software topic was addressed. A new method for the selection of regions of interest (ROIs) in cbPPG videos was developed. Choosing valid ROIs is one of the most important steps in the processing chain of cbPPG software. The new method has the advantage of being fully automated, more independent, and universally applicable. Moreover, it suppresses ballistocardiographic artifacts by utilizing a level-set-based approach. The suitability of the ROI selection method was demonstrated on a large and challenging data set. In the last part of the work, a potentially new application field for cbPPG was explored. It was investigated how cbPPG can be used to assess autonomic reactions of the nervous system at the cutaneous vasculature. The results show that changes in the vasomotor tone, i.e. vasodilation and vasoconstriction, reflect in the pulsation strength of cbPPG signals. These characteristics also shed more light on the origin problem. Similar to the polarization analyses, they support the classic blood volume theory. In conclusion, this thesis tackles relevant issues regarding the application of cbPPG. The proposed solutions pave the way for cbPPG to become an established and widely accepted technology

    Video-based patient monitoring system application of the system in intensive care unit

    Full text link
    The paper presents the video-based monitoring system to assess the physiological parameters and patient state in intensive care unit. It allows to measure thoracic and abdominal breathing movements, remote plethysmography signals, tissue perfusion, patient activity and changes in psycho-emotional state. Thus, the system provides a comprehensive assessment of patient state without contact. The system works in usual illumination conditions of intensive care unit and consists of a personal computer with specialized software and two low-cost Logitech C920 webcams with RGB sensors (8 bit per channel), 30 Hz sampling frequency and 640x480 pixel resolution. The webcams were placed at a distance of 80 cm above the patient’s body. The software provides automatic assessment of psychophysiological parameters and determination the following patterns: heart rate, heart rate variability, asystole and arrhythmias, breathing rate, spontaneous breathing recovery, breathing muscle tone and patient consciousness recovery, motor activity and control of ventilation parameters. The proposed system can be used as an additional diagnostic tool of anesthesia equipment for non-invasive patient monitoring in intensive care unit. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedThe work was partially supported by Act 211 Government of the Russian Federation, contract 02.A 03.21.0006

    Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Get PDF
    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are in fluenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance

    The latest applications of photoplethysmography

    Get PDF
    The development of medicine and the ability to conduct effective therapy in increasingly severe cases createthe need to develop new methods of continuous and non-invasive monitoring of the patient’s condition. One ofthe techniques that is widely used in many fields of medicine is photoplethysmography (PPG). The analysis ofthe latest research indicates that PPG can have much more applications than the measurement of heart rateand arterial saturation of the patient — as shown by the latest research, it can be used in the measurementof many other key parameters.The optimism is the multitude of areas in which PPG monitoring is attempted. There are more and more attemptsto use photoplethysmography in diagnosis and evaluation of peripheral vascular diseases, assessment ofcirculation in diabetic patients and assessment of endothelial function. Authors are focusing on new applicationsof PPG, its advantages and limitations. Most of them agree that PPG can provide useful knowledge about thepatient’s condition while being a quick, easy-to-use and cost-effective technique.The following review was created to critically analyze the latest technical developments and uses of PPG inclinical practice. Sources for the following article were found using the PubMed database using keywords suchas “photoplethysmography”, “oxygen saturation” and “pulse oximeter”
    • 

    corecore