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Abstract: Over the last few years, the contactless acqui-
sition of cardiovascular parameters using cameras has 
gained immense attention. The technique provides an opti-
cal means to acquire cardiovascular information in a very 
convenient way. This review provides an overview on the 
technique’s background and current realizations. Besides 
giving detailed information on the most widespread appli-
cation of the technique, namely the contactless acquisi-
tion of heart rate, we outline further concepts and we 
critically discuss the current state.
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photoplethysmography; oximetry; perfusion; remote 
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Introduction
Over the last few years, the contactless acquisition of 
cardiovascular parameters using cameras has gained 
immense attention. Similar to the clinically used 
photoplethysmo graphy (PPG), this technique referred to 
as camera-based PPG, imaging PPG (iPPG) or remote PPG 
exploits variations in light modulation due to the cardio-
vascular activity. This work reviews the current state of 
the technique. We aim to give a comprehensive overview 
of the background and current realizations related to 
iPPG together with a critical appraisal of the current state. 
Our work complements earlier reviews on non-contact 
[1, 2] or camera-based [3–7] cardiovascular assessment 
by the integration of current physiological understand-
ing and expanded view on novel developments, even 
beyond heart rate (HR) assessment, in the extremely 

dynamic field of iPPG. It should be noted that this review 
specifically focuses on the assessment of cardiovascular 
parameters. For the assessment of respiration, which is 
feasible by using cameras from body movements, ampli-
tude and baseline variations of extracted PPG signals 
or even from the heartbeat intervals (respiratory sinus 
arrhythmia), we refer readers to [8–14].

The remainder is organized as follows. In the section 
“Physiological background”, we provide a unifying 
theory explaining the origin of iPPG signals that is based 
on recent works directed at principle mechanisms. As, 
on the one hand, most works in iPPG focus on the HR 
and heart rate variability (HRV)1 and, on the other hand, 
extraction of HR often is the first step to further analyses, 
this review first concentrates on such applications. All 
details concerning HR and HRV are given in the section 
“Camera-based assessment of HR and HRV”. In the 
section “Physiologi cal measures beyond HR”, we review 
further opportuni ties to yield cardiovascular parameters 
by iPPG and finally discuss the current state in the section 
“Discussion”.

Physiological background
PPG’s background: PPG measures variations in the 
intensity of transmitted or reflected light. In conventional 
PPG, the blood volume, blood vessel wall movement and 
the orientation of red blood cells affect the amount of 
light at the detector and thus the photoplethysmographic 
signal [15]. In that context, the arterial vasculature con-
tributes the most to the signal’s pulsation component [16]. 
In general, PPG can be operated in a transmissive or a 
reflection mode where the first one is restricted to certain 
areas (ear lobe, fingertip) [15].

Imaging PPG’s background: iPPG also captures light 
intensity variations by an optical sensor. However, the 
basic mechanisms differ (light penetration depth is 
expected to be lower [17, 18] in the remote setting) and other 
factors, most notable movements of the measurement 
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area relative to the sensor, have to be taken into consid-
eration. It is nowadays widely accepted that in iPPG (1) 
blood volume effects and (2) ballistocardiographic effects 
contribute to the pulsating character of the signal.

Blood volume effects denote light modulations due to 
the varying amount of blood in the measurement volume. 
Two theories have been proposed. First, a direct measure-
ment of the periodically changing vessels’ cross-sections 
and an associated blood volume change were assumed 
[19]. This theory is based on the conventional PPG theory. 
Second, based on the assumption that visible light will 
not penetrate down to pulsating arteries, Kamshilin et al. 
and Sidorov et  al. proposed an alternative theory [20, 
21]. They assumed that the oscillating transmural pres-
sure in larger arteries causes a cyclic deformation of the 
connective tissue in the dermis. As a result, the capillary 
density in the papillary dermis varies, which also influ-
ences the blood volume within the measurement volume. 
Both theories assume blood volume changes (actually the 
amount of hemoglobin in the measurement volume) to 
be responsible for the measurement signal. Light is thus 
required to penetrate into the skin. However, the depth 
of penetration differs in both theories as according to 
Kamshilin et al. the light is not expected to interact with 
deeper vessels.

Ballistocardiographic effects denote the pulsating 
component due to movements and are known to occur 
in iPPG recordings [22, 23]. In this regard, global ballis-
tocardiographic effects and local effects should be dis-
tinguished. Global ballistocardiographic effects denote 
movements of the measurement area due to distant mech-
anisms, e.g. movements of the head due to blood ejection 
to the aorta. Local ballistocardiographic effects denote 
movements, which are caused by local mechanisms, i.e. 
tilting due to a larger artery underneath the measurement 
area. Both global and local effects are superficial effects, 
i.e. they do not require light to penetrate into the skin but 
will, due to the movement of the body, lead to amplitude 
modulations if the region of interest (ROI) is kept statically.

Quantification of effects and relevance: It is difficult to 
argue for either one of the theories that explain the blood 
volume effect. The eminent contribution of Marcinkevics 
et al. [24] proves a behavior that matches the conventional 
PPG theory, namely different behavior in green and infra-
red wavelength according to the vessel types and depths 
that are stimulated. In fact, based on the penetration 
depth and the anatomy of the skin, it can be assumed that 
visible light reaches pulsating vessels (i.e. arterioles) [16, 
25, 26]. In the future, extended investigations as done by 
Marcinkevics et al. and more complex simulations, e.g. as 

in [27], might contribute to a deepened understanding of 
the dominant effects. Similarly, a quantification of ballis-
tocardiographic effects is difficult. Systematic studies on 
iPPG signals’ origin revealed that ballistocardiographic 
effects occur mainly if inhomogeneous and non-orthogo-
nal illumination (incoming light not perpendicular to the 
skin surface) is applied [22, 28]. To what extent global or 
local effects impact the signal is highly dependent on the 
measurement location and hard to quantify.

However, as stated earlier, both theories which explain 
blood volume effects result in an increased amount of 
hemoglobin in the measurement volume, making them, to 
some extent, comparable. Ballistocardiographic effects, 
in turn, differ substantially from blood volume effects. 
They also produce a pulsating signal behavior but the 
phase of the resulting signal as well as its morphology can 
differ substantially compared to the signals, which stem 
from blood volume effects. Averaging areas which hold 
different effects can be destructive. Moreover, some of the 
applied algorithms and assessed variables only apply to 
blood volume effects (e.g. if oxygen saturation is assessed, 
see section “Oximetry”). Against that background, a 
careful selection of suitable areas should be fostered.

One should be aware that, as far as the HR and HRV 
are concerned, obviously even ballistocardiographic 
effects carry usable information. However, to yield a 
ballistocardiogram, it is much more common to exploit 
movements by tracking feature than exploiting intensity 
variations [29–31]. Tracking features can yield HR/HRV as 
well as respiration, but this approach is outside the scope 
of this review.

Camera-based assessment of heart 
rate and heart rate variability
The following section provides a comprehensive overview 
on the most important aspects related to the assessment 
of HR and HRV by iPPG. Table 1 and Figure 1 summarize 
those aspects.

Considered populations and experimental 
protocols

Experimental protocols: Most available works focus on 
algorithmic developments. Recordings typically were made 
under laboratory conditions and were carried out at rest 
or, if motion robustness was addressed, during predefined 
movements (e.g. [32–35]). Some works directed at certain 



S. Zaunseder et al.: Cardiovascular assessment by imaging photoplethysmography – a review      619

applications carried out specific tests, e.g. driving studies 
[36, 37] or the use of fitness devices [38, 39].

Considered populations: The distinct majority of works 
considered healthy subjects only. Investigation invok-
ing patients, i.e. subjects with (cardiovascular) diseases, 
has become more popular as the technique is attract-
ing more attention. For example, Rasche et  al. [40] and 
Couderc et al. [41] applied the technique in patients after 
heart surgery and during atrial fibrillation, respectively, 
showing the principle applicability. Even Amelard et  al. 
recently showed that arrhythmia can be detected by iPPG 
in a wavelet-based time-frequency representation [42]. 
Furthermore, studies in neonatal intensive care units gain 

interest due to the controlled conditions [43–46]. Other 
clinical investigations address intraoperative recordings 
[47], dialysis patients [11, 48] and migraine patients [49].

Evaluation: The populations and experimental protocols 
are currently one major limitation of iPPG. Based on previ-
ous studies or the working principle of iPPG, three factors 
are likely to affect the performance of iPPG considerably: 
pathology/age-dependent factors, skin tone and non-sta-
tionary conditions (motion, illumination variations).

As stated earlier, there are works that examined patho-
logical subjects. The actual influence of the respective ill-
nesses on the applicability of iPPG, however, was rarely 
addressed. It is consequently difficult to draw any generally 

Table 1: Aspects related to HR assessment by imaging PPG and the corresponding sections in this work.

Step   Covered aspects   Sections

Recording   Populations, used color channels and 
hardware

  Considered populations and 
experimental protocols, hardware

Image processing   Definition and adaptation of region of interest  Image processing
Channel combination   Spectral or spatial combination of channels   Color channels and their combination
Signal processing   One-dimensional processing of time signal(s)   Signal processing
HR extraction and analysis   Extraction, postprocessing and analysis of HR   HR extraction and analysis

Figure 1 illustrates the basic procedure related to HR assessment by imaging PPG.
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Figure 1: Schematic illustration of the basic procedure to derive the HR by iPPG.
In the example, an RGB video and a rectangular bounding box are used to derive three time varying signals. The transformation from RGB to 
the Lab color space decisively strengthens the pulsation in the L and a channel, visible after applying a bandpass filter (cut-off frequencies 
0.5 and 5 Hz). In the Lab color space, the heart rate (HR) can be easily extracted after applying the Fourier transform.
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valid conclusions. The factor of age was hardly assessed as 
usually exclusively younger subjects are considered. To the 
best of our knowledge, only our group analyzed a larger set 
of individuals where the average age exceeded 70 years [40, 
50]. In this case, however, healthy elderly and younger sub-
jects were not included so that a proper quantification of 
pathology and age is not possible. To reliably quantify the 
effects of pathology and age, larger populations of mixed 
age and health state are needed.

A couple of works considered the impact of skin 
pigmentation [51–54]. Those works show the tendency 
of higher values in the Fitzpatrick scale to degrade the 
results but proper methods might be able to compensate 
for the skin tone. For example, Wang et al. [54] proposed 
such a method. However, the analysis in [54] concerning 
skin tone is based on 15 subjects. To quantitatively esti-
mate the effect of skin tone and to develop generalized 
applicable methods to compensate for it, larger popula-
tions must be considered.

Many works show the dramatic effect of non-station-
ary conditions on the performance of processing methods 
[e.g. a drop of signal-to-noise ratio (SNR) from over 10 dB 
to approximately 5 dB [33], a reduction of more than 50% 
in the correlation of iPPG HR and reference HR [55], etc.]. 
Notably, in many cases, algorithms, which were previ-
ously shown to produce stable results even under non-sta-
tionary conditions, do not yield satisfactory results when 
applied to other data. The most likely explanation is again 
the used data which is not always representative.

As can be seen, a proper quantification of the impact 
of all factors lacks from restricted data. In fact, most often 
only few subjects (the typical number is below 20) were 
invoked. Even worse, the data are hardly comparable 
and, thus, neither is the performance of the proposed 
methods. Fortunately, publicly available data has become 
more popular, e.g. data from [35, 56, 57], the MAHNOB-HCI 
database [58], the UBFC-RPPG database [59] and the DEAP 
dataset [60] are available (on request) or their release has 
been announced.2

Future methodological developments should con-
sequently use this data (at least together with own data) 
to allow more meaningful comparisons and an objective 
assessment of proposed methods. Besides, in situ studies 
featuring the application of iPPG under real-world condi-
tions and applied to a representative sample of the respec-
tive target group are badly needed. Such data are missing 
today (apart from some car driving studies). Obviously, the 

effort is much badly than for laboratory studies but only in 
this way statements beyond principal feasibility, namely 
the ability to sufficiently generalize and even more impor-
tant an added (clinical) value by iPPG, can be shown.

Hardware

Color channels: According to data from the cameras used 
the vast majority of works rely on information from red, 
green and blue (RGB). As shown later, static and dynamic 
methods allow to combine color channels. The green 
channel turned out to be the one with the highest SNR [61]. 
Therefore, some works use only this channel from RGB or 
even apply monochromatic cameras [49, 62, 63] with green 
color filters (such cameras typically provide a higher SNR). 
In an attempt to figure out beneficial color combinations, 
McDuff et  al. used a five-band camera and showed the 
best combination to be cyan, green and orange [10]. Even 
near-infrared (NIR) cameras have been used [42, 64–67]. 
NIR systems operate without visible illumination, which is 
advantageous for applications like driver monitoring and 
sleep studies [2]. The drawback of using NIR is the lower 
absorption by hemoglobin [25] and a resulting low SNR.

Camera technique: Initially industrial cameras and 
today, due to their high availability, more frequently low-
cost cameras, i.e. consumer electronics like web-cams, are 
used. The color depth is typically 8 bit per color channel. 
Higher color depths of 14, 12 and 10 bit, for example, found 
application in [65, 66] and [23, 40] as well as [68], respec-
tively. Applied resolutions vary greatly, ranging from 
1920 × 1080, e.g. in [36, 52], down to 300 × 300 pixels [43] 
and 320 × 240 pixels [69], respectively. The most common 
resolution is 640 × 480 pixels. The sampling frequencies 
are typically at 30 fps or below. For specific purposes, 
higher sampling frequencies up to 420 fps have been 
evaluated [70–74]. In general, higher sampling frequen-
cies are assumed to better resolve temporal characteris-
tics. Particularly concerning HRV, for applications which 
try to access the morphology of the signal or for spatio-
temporal applications (see also Section “Physiological 
measures beyond HR”), a higher temporal resolution 
is advantageous. Most researchers make use of a single 
camera. However, for example, Estepp et  al. [71] and 
Blackford et  al. [75] showed in a nine and three camera 
setup, respectively, the advantage of multiple cameras. 
Particularly in the case of motion, multiple cameras might 
be able to compensate for the resulting variations. Videos 
are typically stored in an uncompressed format. McDuff 
et al. recently showed that physiological information can 

2 Note that most often only compressed data are available, which im-
plies some limitations but still allows for HR detection.
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be extracted despite compression though the quality is 
degraded [57].

Polarization: The usage of polarization, i.e. polarized illu-
mination and polarization filters, can help to reduce arti-
facts, particularly superficial reflections. Some works make 
use of polarization filtration [24, 76, 77] but past statements 
on the effectiveness of polarization differ (Hülsbusch [17] 
stated no improvement whereas Sidorov et al. [63] found an 
improved reliability regarding the application of orthogo-
nal polarization). A recent work, however, demonstrated 
that orthogonal polarization filtration yields higher signal 
qualities, helps to separate blood volume effects and bal-
listocardiographic effects and generally increases the 
understanding about iPPG signal’s origin [28]. Such find-
ings strongly suggest to use the filter technique. It requires, 
however, a much more complex setup including polarized 
illumination which is problematic for many applications.

Illumination: Hülsbusch [17] and Moco et al. [22] showed 
that a homogeneous illumination should be applied and 
some authors optimize illumination, e.g. Guazzi et al. [78] 
used spatial light sources and reflecting materials yielding 
a diffuse and homogeneous illumination. Amelard et al. 
used a temporally coded illumination sequence in order to 
compensate and measure active and ambient illumination 
[70]. However, most often common ambient illumination, 
artificial light, natural light or their combination are used.

Evaluation: The used hardware reflects the availability and 
ease of use of consumer cameras with integrated optics and 
off-the-shelf illumination. In many situations, particularly 
to prove algorithmic concepts, simple setups are sufficient. 
However, concerning real-life applications and consider-
ing deepened knowledge on the technique, e.g. concerning 
beneficial color channels or even the benefit of polariza-
tion, more specific systems might be applied in the future. 
To define minimal requirements or optimal values, e.g. on 
the resolution or illumination, regarding the used hardware 
is difficult. Although some investigations try to do so (e.g. 
[72, 79, 80]), the complex interdependence of measurement 
distance, illumination and used camera technique raises 
doubts on the significance of the said investigations.

Image processing

ROI definition: Most of the proposed works make use of 
the face or parts of it as the ROI. The face is typically not 
covered and well perfused providing an ideal measure-
ment location. Face detection, thus, is an essential step 

in iPPG. The Viola-Jones face detector is the most common 
choice for this task [81]. Differences exist regarding the 
facial parts to be used, i.e. using the whole face or only 
parts of it. Works investigating the spatial distribution 
of the signal quality showed the forehead and cheeks to 
provide promising results [23, 56, 68, 82]. Even the area 
around the mouth/lips was reported to yield good results 
[30]. A definition of such regions based on not only the 
facial features (e.g. [35, 83–86]) but also the usage of the 
whole face, e.g. defined by a rectangular bounding box or 
a predefined percentage of it, is common (e.g. [35, 87–90]). 
More complex models have been used to segment the face, 
i.e. facial landmark localization. For example, Bousefsaf 
et al. [32] used the method proposed in  [91], Stricker et 
al. [35] used the deformable model fitting by regularized 
landmark mean-shift by Saragih et  al. [92], and McDuff 
et al. [93] used the method proposed in [94].

Besides segmenting regions based on anatomical 
characteristics, some works use non-anatomical image 
information, e.g. gradients, to refine the ROI from a pre-
viously identified facial area [42, 51, 95]. Also, the use of 
color information to refine a previously defined ROI (e.g. 
by applying thresholds [8, 32, 96, 97] or using GrabCut 
[35]) or a refinement by exploiting the temporal pulsating 
behavior of usable pixels/regions was proposed [34, 59, 
98–100]. Approaches exploiting local color characteristics 
and homogeneity can also be applied without explicit face 
detection [50].

Using other regions than the face is not common. 
However, for example, the use of the lower leg [65, 101], 
the palm [9, 20, 72, 101–104] and the forearm [73, 103, 105, 
106] proved the principle feasibility, although signals typi-
cally are of minor quality (see, e.g. [103, 104] where direct 
comparisons are contained).

ROI tracking: To track the ROI most commonly the Kanade-
Lucas-Tomasi [107, 108] algorithm is applied (e.g. in [56, 84, 
109, 110]). Other approaches to track the ROI include more 
complex models, e.g. deformable model fitting by regular-
ized landmark mean-shift by Saragih et al. [92] used in [35]. 
Wang et al. [100] combined a global tracking-by-detection 
method [111] with a local tracking approach using optical 
flow by Farneback [112]. Obviously, tracking is required 
when subjects move in order to keep the ROI in the desired 
location. However, tracking also might introduce some 
jitter in the ROI, which is likely to impair the results at rest 
[23, 110]. Moreover, stronger movements will likely change 
the illumination condition, i.e. the brightness of the ROI. In 
such cases, even perfect tracking will not suffice the needs, 
and additional processing steps are necessary to avoid arti-
facts. Trumpp et al. [50], for example, only tracked areas 
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with a similar intensity distribution. Another possible 
solution is the overlap-add operation, i.e. a weighted sum-
mation of signals to avoid artifacts due to changing ROIs 
[34]. Amelard et al. [42] applied a Bayesian framework to 
track the pulsatile regions of the video.

Evaluation: Both ROI selection and tracking are crucial 
aspects for iPPG. As the selection is the precondition for any 
successful extraction, it is even more distinctive. According 
to current findings, the origin of iPPG, i.e. the existence 
of blood volume effects and ballistocardiographic effects, 
accounts for using homogeneous regions with respect 
to the measured effect. This favors approaches that do a 
refinement of an anatomically motivated ROI (like cheeks 
and forehead). However, under defined laboratory condi-
tions, the signal quality is likely to be sufficient without 
suchlike refinements, but particularly in real world scenar-
ios a careful refinement might become crucial (see, e.g. [32, 
68, 109] for a comparison of ROIs).

Color channels and their combination

Basic idea: The usage of a single color channel, most 
often the green channel, which typically yields the 
highest signal quality [9, 61], as well as a combination of 
color channels are common. For the combination, there 
exist two approaches. On the one hand, channels can be 
combined using a priori knowledge. Such approaches are 
based on the assumption that the pulsation, as well as 
artifacts, are differently pronounced in channels of differ-
ent color spaces or projection spaces (see section “Color 
spaces – knowledge-based channel combination”). On the 
other hand, blind source separation (BSS) can be used to 
combine color channels. BSS pursues a data-driven com-
bination of color channels, i.e. yields a dynamic combi-
nation of color channels, and is described in the section 
“Source separation – data-driven channel combination”.

Color spaces – knowledge-based channel combination

The transformation of the RGB color space into other rep-
resentations is intended to better separate photoplethys-
mographic effects from distortions. In this regard, most 
importantly, chrominance-based approaches have to be 
mentioned. For example, de Haan and Jeanne [53] intro-
duced different empirically reasoned weighted combina-
tions of R, G, and B channels, which yield a chrominance 
signal and are widely used [97]. The group later presented 
a similar approach to derive an iPPG signal which provides 

improved motion robustness [39]. Based on physiological 
characteristics and the filter properties of the used camera 
model, they defined a blood volume signature which was 
eventually exploited to weight the input R, G, B signals. 
Bousefsaf et al. compared different combinations [32] and 
used the u* channel in the International Commission on 
Illumination (CIE) L*u*v* color space [8, 113] as the input 
signal, while Yang et  al. used chromaticity from the CIE 
L*a*b* color space, i.e. a* and b* where a* outperformed 
b* [114]. Ruminski [115] showed that YUV channels, par-
ticularly the V channel, outperformed RGB (alone or used 
with source separation techniques). Lueangwattana et al., 
in turn, used the hue, saturation, and value (HSV) space 
and, in particular, the hue channel [116]. In a comparison to 
color channels, Tsouri and Li [117] also found hue to be the 
best choice while U and Y from CIE YUV and CIE XYZ pro-
vided a similar accuracy. Stricker et al. [35] used a simple 

normalization of the form 
G

R B G+ +  to yield the signal 
for HR extraction. Xu et al. [118] proposed to use a signal 
defined by a logarithmic quotient of color channels. At each 
time instant t, the resulting pixel value is calculated by 

( 1) ( )( ) log
( 1) ( )

G t R tx t
R t G t

+ ⋅=
+ ⋅

, where R(t) and G(t) denote the red 
and green value, respectively, at time t. Wang et al. did not 
rely on a predefined color space but proposed a transfor-
mation which is based on a simplified model of skin-light 
interaction. The method entitled Plane-Orthogonal-to-Skin 
combines normalized RGB channels into two novel chan-
nels which are fused by weighting to the desired signal [54]. 
A data-driven extension adaptively estimates the aforemen-
tioned plane given a prior skin-pixel detection and assesses 
the plane rotation for pulse extraction [119].

Evaluation: Comparative works prove the potential of 
color transformations. Although source separation tech-
niques can provide equivalent information, they suffer 
from permutation indeterminacy [120] and are not always 
effective (see section “Source separation – data-driven 
channel combination”). A fusion of static and data-driven 
color channel combinations has been proposed [39]. 
Against that background, the combination based on a 
priori knowledge is a very reasonable choice and can be 
expected to gain importance. Chrominance is most widely 
used and has proven to be a good choice; other less 
popular realizations should be comparatively validated.

Source separation – data-driven channel combination

Applied strategies and algorithms: Since its first use 
by Poh et  al. [89] BSS has become a core part of signal 
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processing in iPPG. BSS aims at separating the desired 
signal content (i.e. cardiac pulse) from noise and artifacts. 
Principal component analysis (PCA) and independent 
component analysis (ICA) [121] have been used. Stand-
ard realizations such as JADE [89] or FastICA [85], and 
extensions like joint BSS [37], spatio-temporal ICA [38], 
constrained ICA [122], radical ICA [87], robust ICA [123] 
and zero phase component analysis (ZCA) [84] have been 
applied to iPPG. Most commonly, BSS applies in a multi-
spectral setting, i.e. different color channels from a single 
ROI serve as an input to BSS. Typically, RGB channels 
extracted from the whole face as ROI are used [39, 53, 85, 
87, 89, 90, 124]. Even alternative color channels (orange, 
cyan, NIR) and color spaces (chrominance and hue) [39, 
88, 93, 100, 116, 125], as well as more selective ROI choices, 
i.e. not using the whole face to exclude regions that are 
not supposed to contribute with useful signal, have been 
studied [10, 38, 84, 85, 87, 123, 126]. Recently, application 
of ICA using variable time length was proposed [86].

An alternative to the aforementioned multispectral 
BSS application is spatial BSS. A monochrome iPPG, 
extracted from the spatially separated ROIs, was used as 
an input for ICA [120, 127]. The spatio-temporal exten-
sion of a single ROI monochrome iPPG has been proposed 
[38]. Wang et  al. identified PCA inputs without explicit 
ROI detection but by exploiting the temporal behavior of 
pixel traces to identify suitable regions [100]. Even Lam 
and Kuno made use of spatially separated regions, the 
so-called patches which are subregions from a previously 
defined larger ROI [128]. By always choosing two patches 
randomly as the input to ICA, they generate multiple HR 
estimates from which the true HR is estimated.

Finally, the combination of spatial and multispectral 
BSS is also found. The approach in [14, 129] additionally 
provides signals from a corrupted area in order to make BSS 
more stable. McDuff et al. combined multispectral record-
ings from multiple cameras also yielding a kind of multi-
spectral and spatial combination [33].

Evaluation: Despite its frequent use, there is neither con-
sensus on the benefit of BSS application in general, nor 
regarding the setting in which BSS should be applied. For 
example, Kwon et al. [124] and Feng et al. [126] reported an 
increased HR error and a lack of robustness, respectively, 
while Christinaki et al. reported only subtle improvements 
when using multispectral input [123]. Wedekind et al. [127] 
shed some more light on the topic by comparing multi-
spectral and spatial inputs for PCA and ICA. They showed 
the spatial input to be advantageous and the outcome of 
BSS to be strongly dependent on the input quality, possibly 
BSS even degrading the signal quality. Such investigations 

strongly suggest to apply BSS only conditionally and to do 
a preselection of inputs. Moreover, the problem of per-
mutation indeterminacy [120] deserves more attention in 
order to raise the practical value of BSS techniques.

Signal processing

Applied methods: Detrending and/or bandpass filtering 
are commonly applied (e.g. [84, 90, 93]). Bandpass filters 
do at least cover a predefined range of expected HRs (e.g. 
0.7–3.0  Hz [130], 0.75–4.5  Hz [93], 0.7–4  Hz [90]). Some-
times higher frequency contents that occur within the 
signal course are considered (e.g. from 0.1 Hz to 8 Hz [84] 
or 0.4 Hz to 10 Hz [99]). Besides conventional frequency 
selective filters, Wang et al. proposed the use of a simple 
amplitude selective filter [131]. The filter exploits the 
expectation on physiologically reasonable color variation 
due to the perfusion.

Some works propose specific signal processing tech-
niques. For example, Bousefsaf et al. [8] and Wu et al. [132] 
used the continuous wavelet transform (CWT) to denoise 
the signal by filtering and weighting, respectively, wavelet 
coefficients and inverse transform. Huang et al. [97] used 
the CWT to identify the most suited scale and applied 
an inverse transform using that scale, which effectively 
yields an adaptive bandpass. Feng et al. [126] also applied 
an adaptive bandpass by considering the most dominant 
peaks in the Fourier domain, whereas Sun et al. [133] made 
use of an empirical mode decomposition. Jiang et al. [134] 
utilized a Kalman filter to filter the signal obtained from 
the green channel.

Evaluation: Notably, signal processing is applied before, 
after or even before and after channel combination. Most 
often, conventional bandpass filters are employed. The 
passband is typically limited to expected HRs, i.e. below 
4  Hz. This approach is well suited to yield the mean HR. 
However, all approaches which foster beat detection and 
HRV analysis should carefully define the passband because 
beat detection and HRV analysis suffer from the loss of mor-
phology and temporal information by filtering [135].

Heart rate extraction and analysis

Methods to extract the HR: To extract the HR, most often 
windows of predefined length are considered (10  s are 
widely used, and even longer intervals like 18 s [51], 20 s 
[14] and 60  s [56] have been described). Using windows 
allows the extraction in the frequency domain after 
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applying the Fourier transform (e.g. [35, 39, 40, 51, 89]) or 
autoregressive models [11, 136]. The extraction in the time 
domain by autocorrelation (e.g. [42, 87, 115]) is another 
approach. Sliding window approaches yield a time series 
of mean HRs. The length of the windows used constitutes 
a trade-off between opposing facts. The desired temporal 
resolution and the nonstationary nature of HR account for 
short windows, whereas the attenuation of other effects 
than HR profits from longer windows.

Alternatively, single beats are detected yielding a 
beat-to-beat time series. Similar attempts aim at provid-
ing the basis for HRV analysis.3 The technique typically 
requires filtering (bandpass filters in a predefined range 
of expected HRs) and applies maximum detectors (with 
adaptive thresholds) to the generated feature signal [8, 32, 
41, 83, 97, 138–140].

Besides such traditional approaches, even the use of 
machine learning techniques to detect the HR from signal 
excerpts or spectra has been proposed [88, 141].

Postprocessing: Applying either method, window-based, 
beat-to-beat or using machine learning, can fail, particu-
larly in case of movements. Some works therefore address 
the postprocessing of HR series. Applied concepts invoke 
Kalman filtering [48, 142], conventional outlier detection 
methods [130, 143] and machine learning techniques to 
combine signals after applying ICA to extract a robust HR 
by considering various spectral features [144]. Bayesian 
HR fusion was proposed in [145].

Evaluation: Most early works focus on reliable HR extrac-
tion. As the diagnostic value of the HR is limited, camera-
based HRV analysis seems to be much more interesting and 
gains importance. A couple of works show the feasibility 
of camera-based HRV analysis [33, 72, 90, 93, 97, 137, 146, 
147]. Typically, the said works found beat-to-beat intervals 
or the error in standard HRV measures from the time or fre-
quency domain [148] between iPPG and a reference sensor 
to be small enough. However, for multiple reasons care 
should be taken concerning HRV analysis from iPPG. First, 
studies on patients and specific populations, e.g. elderly, 
which often show altered HRV, are largely missing. Second, 
the applied filtering often uses very low cut-off frequencies. 
Such filtering applied before beat detection lowers the tem-
poral resolution, which is often not properly considered. 
Third, sampling frequencies around 30 fps, as frequently 
applied, generally raise doubts concerning the applicability 

of variability analysis and explain the differences between 
iPPG and a reference. The effects of the latter particularly 
affect high-frequency (HF) HRV measures. In fact, differ-
ences were shown in [99], where a frame rate of 30 fps was 
used. Even at higher frame rates differences occur. Iozzia 
et  al. [84] and Valenza et  al. [149] found systematic dif-
ferences between camera-based HRV and reference HRV 
parameters at a frame rate of 60 fps. Sun et  al. [72] used 
200 fps and reported the feasibility of camera-based pulse 
rate variability analysis. However, the correlation of LF/HF, 
where LF denotes the low frequency component, between 
iPPG and a contact PPG drops by 10% compared to the cor-
relation of the normalized LF and HF power. At least as far 
as it concerns studies that use the ECG to calculate the refer-
ence HRV found differences that might reflect the general 
limitations of using the pulse rate variability as a substitute 
for the HRV. Although the measures might be interchange-
able, particularly under non-stationary conditions differ-
ences might occur [150, 151]. Besides limitations concerning 
the camera-based HRV analyses, investigations addressing 
arrhythmia detection by using cameras still show high error 
rates [41], which may impose problems even for HRV analy-
ses. In conclusion, more studies, particularly those taking 
into account patients, should be carried out in order to 
provide clear evidence that today’s techniques allow for a 
reliable HRV analysis from cameras.

Physiological measures beyond HR
Although most works related to iPPG are directed at HR 
and HRV so far, there are other derivable measures and 
applications which are likely to gain importance in the 
future. The following section provides an overview of the 
most important research activities. It should be noted that, 
although many processing steps that are explained in the 
section “Camera-based assessment of HR and HRV” even 
may apply when extracting further measures, there might 
be restrictions, e.g. constraints may apply to the selection 
of ROI, the application of filters and the combination of 
color channels.

Oximetry

Most works that are directed at determining the oxygen 
saturation rely on the well-established principle of pulse 
oximetry, i.e. they record photoplethysmograms at dif-
ferent wavelengths and determine the oxygen saturation 
from the ratio of ratios [between alternating current (AC) 
and direct current (DC) components in both wavelengths]. 

3 Note that even window-based approaches have been applied as 
base for HRV analysis (e.g. [137]) but beat detection is much more 
common.
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Wieringa et al. [152] paved the way for camera-based oxym-
etry by showing that remote recordings at different wave-
lengths are feasible. Early works of Humphreys et al. [105] 
provided further steps to measure the oxygen saturation 
by testing a triggered monochromatic camera and illumi-
nation at 760 nm and 880 nm at the forearm. Kong et al. 
[69] used two monochromatic cameras equipped with nar-
row-band filters at 520 nm and 660 nm to determine the 
oxygen saturation from the area under the eyes. Fan and Li 
used the same wavelengths, but a monochromatic camera 
and motorized optical filters [153]. Shao et al. [30] used a 
monochromatic camera and measured at 610 nm (orange) 
and 880 nm (NIR) while the face was illuminated from two 
sides. The area around the lips is used to determine the 
oxygen saturation. Verkruysse et al. [18] used two cameras 
equipped with filters in the red and infrared range to deter-
mine SpO2 estimates invoking extended experiments on 
the calibration of the system. Even the usability of multi-
spectral cameras eliminating the need for triggered illu-
mination has been shown. Tarassenko et al. [11] estimated 
oxygen saturation using the blue and red channel of an 
RGB camera from facial videos. Guazzi et al. [78] extended 
the work by an adaptive ROI selection based on signal 
quality. Addison et al. used in an animal study the red and 
the green channel of an RGB camera [154].

Some works took a different approach. Mishra et al. 
also took advantage of a ratio of two signals. Interestingly 
they did not use different wavelengths but exploited the 
effect of polarization to generate one superficial signal 
and one signal from deeper layers in order to construct 
the ratio from which the oxygen saturation is derived 
[155]. Nishidate et al. estimated, based on a Monte Carlo 
simulation, the concentration of oxygenated and deoxy-
genated blood and melanin by a multiple regression 
analysis [156]. The oxygen saturation is derived from the 
concentration of oxygenated and deoxygenated blood.

Assessment of vascular state

Some recent works are directed at the iPPG’s ability to 
assess the vasomotor activity and the vascular state. In this 
regard, Trumpp et al. [73] and Bousefsaf et al. [113] showed 
the effects of vasomotor activity using the green channel. 
Kamshilin et al. applied iPPG to monitor the effect of vascu-
lar occlusion [157]. Marcinkevics et al. [24] showed that by 
using green and NIR light, the vasoactivity can be assessed 
even at different depths. Blanik et al. [158] prove the vari-
ations in the perfusion in the frequency bands related 
to heartbeat, respiration and the vasomotor rhythmicity 
in the context of allergic testing. All the aforementioned 

works made use of amplitude information, i.e. the strength 
of pulsation. Nishidate et al. [156] also assessed the vaso-
motor activity, but they used the total blood concentration 
by combining oxygenated and deoxygenated blood concen-
trations. Similarly, Nakano et al. [159] used this technique 
to estimate venous compliance. Moço et al. [160] recently 
proposed to derive signals from the neck in order to deter-
mine arterial stiffness and other vascular parameters by 
waveform analysis. The approach exploits local ballistocar-
diographic effects, which are dominant in proximity to the 
carotid artery. Even Amelard et al. focused on the neck but 
they showed that the jugular venous pulse can be extracted 
by cameras [161].

Assessment of pulse transit time and pulse 
wave velocity

Yang et  al. [162] measured blood flow velocities from 
the spatial pulsation characteristics in the face using a 
single camera. Jeong and Finkelstein [74], Kaur et al. [163] 
and Shao et al. [9] estimated the pulse transit time (PTT) 
using one or two cameras from recordings of the face and 
palm(s). Murakami et  al. [101] estimated the PTT using a 
single camera and defining ROIs at the ankle and at the 
wrist. Kamshilin et al. [164] measured the PTT using facial 
videos and electrocardiogram (ECG) showing spatial char-
acteristics and inhomogeneity. Even Zhang et al. [165] com-
bined non-contact and contact methods by measuring the 
PTT between a facial iPPG and a finger PPG. They showed 
a medium negative correlation to systolic blood pressure.

However, although some works show the feasibility of 
PTT measurements, the results are not consistent. Secer-
begovic et al. [166] also recorded the palm and face using 
a single camera but showed the PTT, and blood pressure 
estimation, to be inaccurate (compared to using iPPG from 
the forehead and ECG). Sugita et al. [167] found a correla-
tion between blood pressure and camera-based PTT (from 
facial regions and the palm), but not as expected a nega-
tive one but a positive instead.

Spatial assessment

A few works try to exploit the spatio-temporal characteris-
tics of iPPG. Kamshilin et al. proposed a method to dynami-
cally visualize the pulsation in amplitude and phase maps 
[62]. From the underlying technique, spatio-temporal para-
meters can be extracted. For example, Zaproudina et  al. 
related such spatial parameters to migraine [49]. Zaunseder 
et al. recently proposed an algorithm to assess the spatial 
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spread from phase maps [168]. Wieringa et  al. [169] used 
spatial measures to show various cardiac signal effects, 
and Verkruysse et al. [61] exploited the spatial information 
to reveal differences in skin areas treated by laser therapy. 
Moço et al. [77] used the respective maps to locally visualize 
the behavior of ballistocardiographic effects. Finally, Frass-
ineti et al. [170] analyzed the fractal behavior of maps on 
the phase of pulsation. In general, spatio-temporal maps 
are built and presented but the benefit is not always clear.

Other measures and applications

iPPG has importance even beyond the aforementioned 
measures. For example, Wang et  al. [171], Nowara et  al. 
[172] and Lakshminarayana et al. [173] proposed iPPG as 
a simple mean to identify living skin. Other researchers 
used iPPG to monitor/characterize wound healing and 
burning [66, 174]. Lastly, a couple of works are directed at 
the BCG, i.e. they do not exploit color information but do 
focus on the motion due to physiological activity to derive 
the BCG [31, 175, 176]. Though the BCG is primarily used 
for HR extraction, it offers various possibilities beyond 
that [177]. Moreover, extracting PPG and BCG by cameras 
allows the combination of both signals which can yield 
additional information, either by making measurements 
of HR, which both techniques can provide, more robust or 
using joint information like PTT.

Evaluation

As shown, iPPG contains valuable information beyond 
HR and thus covers a wide range of possible applications. 
However, as exemplarily indicated by differing findings 
concerning remote PTT measurements, the technique 
suffers from unknown influence factors leading to con-
troversial findings. A good example is presented by [161] 
and [160]: both works recorded the neck. The first shows 
that the isolated extraction of the venous pulse is possible 
whereas the latter solely extracts the arterial component. 
Just averaging larger neck areas would just blur the result-
ing signal and could hinder reliable statements.

Similar to HR extraction, the number of included sub-
jects is currently low, and patients must be included in 
order to establish a more profound basis, further develop 
methods and prove feasibility. A practically critical point 
is the complexity of some setups: a major advantage of 
iPPG is the simplicity. For example, if multiple measure-
ment locations are required or specialized cameras are 
needed, the techniques lose attractiveness compared to 
contact-based methods.

Discussion
Current state: Table 2 summarizes the research activities 
on iPPG. The most widespread applications are the extrac-
tion of HR and HRV. To this end, the available methods and 
obtained results have developed considerably over the last 
10 years. To our understanding, major improvements lie in 
elaborated ROI definitions and combinations of color chan-
nels. An objective assessment of the available methods, 
their real-world applicability and obtained results, however, 
is hardly possible. Despite tremendous progress, it must be 
assumed, however, that the currently available methods do 
not suffice the need for real-world applications [6]. Avail-
ability and usage of larger and publicly available data sets, 
particularly recorded under real-world conditions includ-
ing pathological cases, are highly needed to verify this 
statement and overcome the current limitations.

A remarkable fact is that available knowledge in many 
cases is not considered properly, e.g. the transformation 
of color space was shown to be advantageous and spatial 
BSS proved to be advantageous compared to multispec-
tral approaches. However, the said color transformation is 
not standard, the BSS setups vary and the combination of 
both findings, i.e. a combination of color transformation 
and spatial BSS, was not applied to the best of our knowl-
edge. Similarly, the findings related to the origin of signals 
have not been fully considered so far, e.g. separating 
blood volume-related signals and ballistocardiographic 
signals can be assumed to improve the signal quality but 
is rarely done, i.e. in many cases available research is not 
properly considered by novel approaches. One reason is 
the high dynamics in the field and we hope to contribute 
to a better integration by this review.

Future perspectives: iPPG features many interesting 
applications, e.g. systems for stress recognition [93, 219, 
221], monitoring during magnetic resonance imaging [222], 
monitoring anesthesia [178, 223], neonatal monitoring [45, 
46] and driver monitoring [36]. Such exemplary applications 
underline the importance of HRV processing because the 
(mean) HR alone does not provide enough information for 
a meaningful monitoring in none of them. The increasing 
number of works dedicated to beat-by-beat extraction and 
HRV processing reflects this importance. A demanding task 
in either of such applications is to prove an added (clinical) 
value of iPPG. Naturally, early works on iPPG addressed 
methodological issues and restricted themselves to show 
feasibility. Larger (clinical) in situ studies are the next step 
to confirm the value of the technique and establish commer-
cial systems and applications. Such systems probably will 
have to integrate differently the aforementioned functions 
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and parameters. Moreover, adding respiratory parameters 
from camera recordings will provide additional benefit and 
pave the way toward contactless monitoring.
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