251 research outputs found

    Data augmentation for NeRF: a geometric consistent solution based on view morphing

    Full text link
    NeRF aims to learn a continuous neural scene representation by using a finite set of input images taken from different viewpoints. The fewer the number of viewpoints, the higher the likelihood of overfitting on them. This paper mitigates such limitation by presenting a novel data augmentation approach to generate geometrically consistent image transitions between viewpoints using view morphing. View morphing is a highly versatile technique that does not requires any prior knowledge about the 3D scene because it is based on general principles of projective geometry. A key novelty of our method is to use the very same depths predicted by NeRF to generate the image transitions that are then added to NeRF training. We experimentally show that this procedure enables NeRF to improve the quality of its synthesised novel views in the case of datasets with few training viewpoints. We improve PSNR up to 1.8dB and 10.5dB when eight and four views are used for training, respectively. To the best of our knowledge, this is the first data augmentation strategy for NeRF that explicitly synthesises additional new input images to improve the model generalisation

    Status and future of extraterrestrial mapping programs

    Get PDF
    Extensive mapping programs have been completed for the Earth's Moon and for the planet Mercury. Mars, Venus, and the Galilean satellites of Jupiter (Io, Europa, Ganymede, and Callisto), are currently being mapped. The two Voyager spacecraft are expected to return data from which maps can be made of as many as six of the satellites of Saturn and two or more of the satellites of Uranus. The standard reconnaissance mapping scales used for the planets are 1:25,000,000 and 1:5,000,000; where resolution of data warrants, maps are compiled at the larger scales of 1:2,000,000, 1:1,000,000 and 1:250,000. Planimetric maps of a particular planet are compiled first. The first spacecraft to visit a planet is not designed to return data from which elevations can be determined. As exploration becomes more intensive, more sophisticated missions return photogrammetric and other data to permit compilation of contour maps

    Image matching algorithms in stereo vision using address-event- representation: a theoretical study and evaluation of the different algorithms

    Get PDF
    Image processing in digital computer systems usually considers the visual information as a sequence of frames. These frames are from cameras that capture reality for a short period of time. They are renewed and transmitted at a rate of 25-30 fps (typical real-time scenario). Digital video processing has to process each frame in order to obtain a filter result or detect a feature on the input. In stereo vision, existing algorithms use frames from two digital cameras and process them pixel by pixel until it is found a pattern match in a section of both stereo frames. Spike-based processing is a relatively new approach that implements the processing by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system is able to solve much more complex problems, such as visual recognition by manipulating neuron’s spikes. The spike-based philosophy for visual information processing based on the neuro-inspired Address-Event- Representation (AER) is achieving nowadays very high performances. In this work we study the existing digital stereo matching algorithms and how do they work. After that, we propose an AER stereo matching algorithm using some of the principles shown in digital stereo methodsMinisterio de Ciencia e Innovación TEC2009-10639-C04-02 (VULCANO)European Union (UE) FP7-248582 (CARDIAC

    Stereoscopic Cinema

    Get PDF
    International audienceStereoscopic cinema has seen a surge of activity in recent years, and for the first time all of the major Hollywood studios released 3-D movies in 2009. This is happening alongside the adoption of 3-D technology for sports broadcasting, and the arrival of 3-D TVs for the home. Two previous attempts to introduce 3-D cinema in the 1950s and the 1980s failed because the contemporary technology was immature and resulted in viewer discomfort. But current technologies – such as accurately-adjustable 3-D camera rigs with onboard computers to automatically inform a camera operator of inappropriate stereoscopic shots, digital processing for post-shooting rectification of the 3-D imagery, digital projectors for accurate positioning of the two stereo projections on the cinema screen, and polarized silver screens to reduce cross-talk between the viewers left- and right-eyes – mean that the viewer experience is at a much higher level of quality than in the past. Even so, creation of stereoscopic cinema is an open, active research area, and there are many challenges from acquisition to post-production to automatic adaptation for different-sized display. This chapter describes the current state-of-the-art in stereoscopic cinema, and directions of future work

    An Architecture for High-throughput and Improved-quality Stereo Vision Processor

    Get PDF
    This paper presents the VLSI architecture to achieve high-throughput and improved-quality stereo vision for real applications. The stereo vision processor generates gray-scale output images with depth information from input images taken by two CMOS Image Sensors (CIS). The depth estimator using the sum of absolute differences (SAD) algorithm as stereo matching technique is implemented on hardware by exploiting pipelining and parallelism. To produce depth maps with improved-quality at real-time, pre- and post-processing units are adopted, and to enhance the adaptability of the system to real environments, special function registers (SFRs) are assigned to vision parameters. The design using 0.18um standard CMOS technology can operate at 120MHz clock, achieving over 140 frames/sec depth maps with 320 by 240 image size and 64 disparity levels. Experimental results based on images taken in real world and the Middlebury data set will be presented. Comparison data with existing hardware systems and hardware specifications of the proposed processor will be given

    The Psyche Topography and Geomorphology Investigation

    Get PDF
    Detailed mapping of topography is crucial for the understanding of processes shaping the surfaces of planetary bodies. In particular, stereoscopic imagery makes a major contribution to topographic mapping and especially supports the geologic characterization of planetary surfaces. Image data provide the basis for extensive studies of the surface structure and morphology on local, regional and global scales using photogeologic information from images, the topographic information from stereo-derived digital terrain models and co-registered spectral terrain information from color images. The objective of the Psyche topography and geomorphology investigation is to derive the detailed shape of (16) Psyche to generate orthorectified image mosaics, which are needed to study the asteroids’ landforms, interior structure, and the processes that have modified the surface over geologic time. In this paper we describe our approaches for producing shape models, and our plans for acquiring requested image data to quantify the expected accuracy of the results. Multi-angle images obtained by Psyche’s camera will be used to create topographic models with about 15 m/pixel horizontal resolution and better than 10 m height accuracy on a global scale. This is slightly better as global imaging obtained during the Dawn mission, however, both missions yield resolutions of a few m/pixel locally. Two different techniques, stereophotogrammetry and stereophotoclinometry, are used to model the shape; these models will be merged with the gravity fields obtained by the Psyche spacecraft to produce geodetically controlled topographic models. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic, impact, and gradational history of Psyche, and enable co-registration of data sets to determine Psyche’s geologic history

    A Practical Stereo Depth System for Smart Glasses

    Full text link
    We present the design of a productionized end-to-end stereo depth sensing system that does pre-processing, online stereo rectification, and stereo depth estimation with a fallback to monocular depth estimation when rectification is unreliable. The output of our depth sensing system is then used in a novel view generation pipeline to create 3D computational photography effects using point-of-view images captured by smart glasses. All these steps are executed on-device on the stringent compute budget of a mobile phone, and because we expect the users can use a wide range of smartphones, our design needs to be general and cannot be dependent on a particular hardware or ML accelerator such as a smartphone GPU. Although each of these steps is well studied, a description of a practical system is still lacking. For such a system, all these steps need to work in tandem with one another and fallback gracefully on failures within the system or less than ideal input data. We show how we handle unforeseen changes to calibration, e.g., due to heat, robustly support depth estimation in the wild, and still abide by the memory and latency constraints required for a smooth user experience. We show that our trained models are fast, and run in less than 1s on a six-year-old Samsung Galaxy S8 phone's CPU. Our models generalize well to unseen data and achieve good results on Middlebury and in-the-wild images captured from the smart glasses.Comment: Accepted at CVPR202

    FROM DAGUERREOTYPES TO DIGITAL AUTOMATIC PHOTOGRAMMETRY. APPLICATIONS AND LIMITS FOR THE BUILT HERITAGE PROJECT

    Get PDF
    This paper will describe the evolutionary stages that shaped and built, over the time, a robust and solid relationship between ‘indirect survey methods’ and knowledge of the ‘architectural matter’, aiming at producing a conservation project for the built heritage. Collecting architectural data by simply drawing them was considered to be inadequate by John Ruskin already in 1845. He strongly felt the need to fix them through that ‘blessed’ invention that was the ‘daguerreotype’. Today taking simple photographs is not enough: it is crucial to develop systems able to provide the best graphics supports (possibly in the third dimension) for the development and editing of the architectural project. This paper will focus not only on the re-examination of historical data, on the research and representation of the ‘sign’, but also on the evolution of technologies and ‘reading methods’, in order to highlight their strengths and weaknesses in the real practice of conservation project and in the use of the architectures of the past
    • 

    corecore