8,782 research outputs found

    Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter

    Get PDF
    A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging

    Pulse processing routines for neutron time-of-flight data

    Full text link
    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.Comment: 13 pages, 10 figures, 5 table

    FPGA-based Serial Port-controlled Frequency Adjustable Waveform Generator

    Get PDF
    This article explores the design, optimization, and applications of FPGA-based Direct Digital Synthesis (DDS) waveform generators. The DDS technology is widely used in signal generation and processing and is favored for its flexibility and precision. The paper discusses performance optimization strategies, focusing on enhancing frequency resolution, waveform quality, and phase accumulation speed. Suggestions include increasing phase accumulator’s bit width, optimizing the size of the phase lookup table, introducing frequency interpolation, and employing fast accumulation algorithms. Additionally, it delves into more applications such as high-precision testing, high-speed communication systems, multi-channel data synchronization, and multi-waveform outputs. The conclusion emphasizes the ongoing need for performance improvements and application advancements. Future directions include exploring higher-precision phase lookup table designs, sophisticated filtering, efficient accumulation algorithms, and leveraging advanced FPGA chips for broader application scope. Overall, FPGA-based DDS waveform generators exhibit significant potential across various domains, promising enhanced signal accuracy and adaptability

    A Surrogate Model of Gravitational Waveforms from Numerical Relativity Simulations of Precessing Binary Black Hole Mergers

    Get PDF
    We present the first surrogate model for gravitational waveforms from the coalescence of precessing binary black holes. We call this surrogate model NRSur4d2s. Our methodology significantly extends recently introduced reduced-order and surrogate modeling techniques, and is capable of directly modeling numerical relativity waveforms without introducing phenomenological assumptions or approximations to general relativity. Motivated by GW150914, LIGO's first detection of gravitational waves from merging black holes, the model is built from a set of 276276 numerical relativity (NR) simulations with mass ratios q2q \leq 2, dimensionless spin magnitudes up to 0.80.8, and the restriction that the initial spin of the smaller black hole lies along the axis of orbital angular momentum. It produces waveforms which begin 30\sim 30 gravitational wave cycles before merger and continue through ringdown, and which contain the effects of precession as well as all {2,3}\ell \in \{2, 3\} spin-weighted spherical-harmonic modes. We perform cross-validation studies to compare the model to NR waveforms \emph{not} used to build the model, and find a better agreement within the parameter range of the model than other, state-of-the-art precessing waveform models, with typical mismatches of 10310^{-3}. We also construct a frequency domain surrogate model (called NRSur4d2s_FDROM) which can be evaluated in 50ms50\, \mathrm{ms} and is suitable for performing parameter estimation studies on gravitational wave detections similar to GW150914.Comment: 34 pages, 26 figure

    An improved rocket-borne electric field meter for the middle atmosphere

    Get PDF
    Improvements in a rocketborne electric field meter designed to measure the atmosphere's electric field and conductivity in the middle atmosphere are described. The general background of the experiment is given as well as changes in the instrument and data processing schemes. Calibration and testing procedures are documented together with suggestions for future work

    First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries

    Get PDF
    Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (l,m) of the radiation during inspiral, merger and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the non-precessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning black-hole binaries, and currently includes the (l,m) = (2,2), (3,3), (4,4), (2,1), (3,2), (4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.Comment: 4 pages, 4 figure

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2
    corecore