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ABSTRACT

iii.

This report presents

meter desigred to measure

in the middle atmosphere.

given followed by details

schemes. Calibration and

suggestions for future wo

improvements in a rocket—borne electric field

the atmosphere's electric field and conductivity

Tha general background of the experiment is

of changes in the instrument and data—processing

testing procedures are documented together with
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1. INTRODUCTION

1.1 Electric Fields in the Middle Atmosphere

In the lowest atmosphere under fair weather conditions there exists a

vertical potential gradient of about 100 V/m. The atmosphere at low

altitudes also has finite conductivity. The potential gradient and

conductivity lead to the conclusion that there is a current flowing down

through the atmosphere and into the ground. Direct measurements confirm

the existence of the current.

The orikin of this current was first explained by Wilsou [1920]. He

suggested thunderstorms as the electrical generators of a global atmospheric

electric system. A diagram of this electric system is shown in Figure 1.1.

The electrical conductivity of the atmosphere increases with height.

Two major factors are involved. One is the increase in mobility of the

charged particles associated with the decrease of atmospheric (neutral)

density. The other is the presence of free electrons above 60 %m.

A high conductivity implies low values of electric field for a constant

current. Theory predicts electric fields of about 2 mV/m at 60 km and about

2 uV/m at 70 km.

The acceptance of a global atmospheric electricity system has been

complicated by recent observations of electric fields in the middle

atmosphere which are greater than theory predicts.

Various investigators have reported results of rocket flights that

indicate vertical electric fields in the middle atmosphere that are much

greater than expected. Bragin at al. [1974] and Tyutin [1976] observed a

maximum value of 14 V/m at an altitude of 57 km. Other observations

supporting the existence of large electric fields have been reported by Hale

and Crosky [1979], Hale et al. [1981], Pfaff at al. [1980], Maynard at al.

I
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b	 t----	 Ir
Earth

Figure 1.1 The atmospheric electrical global circuit. Large
arrows indicate flow of positive charge. The
thunderstorm depicted represents the global
electrical generator, that is, the totality of
all global thunderstorms. (Adapted from Markson
[19781).
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[1981) and Maynard at al. 119821.

If these observations are accurate, the most obvious explanation is chat

it results from conductivity that is lower then expected, but low con-

ductivity values are not supported by direct observations (Hale et al.

[1981)). Kellay at al. [1983) suggest that large electric field

obsen , stions have been artifacts of the experiments rather than actual

ambient fields.

Two different types of instruments can be used to measure middle-

atmosphere electric fields. If the conductivity is high enough a double

floating probe, e.g., Mozer [1971), is effective. The potential difference

between the two probes is measured using a high impedance voltmeter. The

electric field value is derived from the voltmeter measurement and the known

distance between the probes. If the conductivity is low,this method will

not work without artificially increasing the conductivity near the probes.

This is usually done with a radioactive source. This is not suitable for a

rocket-borne measurement device in the lower part of the middle atmosphere.

In situations of low conductivity the preferred method of measurement

uses electrostatic induction rather than electrical co!.duction. Instruments

based on thin principle are often called "field mills". These have been

frequently and successfully used in studies of atmospheric electric fields

in the low atmosphere. Adapting the technique for a rocket experiment in

the middle atmosphere presents two major problems which are absent in

ground-based measurements of the low atmosphere. These are: (1) t'e efftats

of atmospheric electrical conductivity (not negligible in the middle

atmosphere) and (2) the constraints placed on the instrumentation resulting

from the environment of the rocket in flight. These problems have been

addressed in the design and construction of the electric field meter

.:,	 11
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described here.

1.2 An Induction Electric Field Meter

A rocket—borne field meter has been designed to measure the electric.

field and conductivity of the middle atmosphere and a prototype built, as

described in Dettro and Smith 11982].

The electric field and the conduction current are both measured by

separating the displacement component from the conduction component of the

sensor current (the two components are in quadrature). The sensor consists

of a conducting surface alternately covered and uncovered by a conducting

shield. The area function of this surface is sinu,toidal, resulting in a

sinusoidally varying charge induced on the conductive sensor by the field

and a sinusoidally varying current in the surface corresponding to the

conductivity. A preemplifier converts the sensor current to a voltage.

The sensor output signal consists of two separate components. One

represents the effect of conductivity and the other, 90 degrees out of

phase, represents the electric field. The phase response of the system at

the frequency of interest must also be known so that its effect can be

compensated when separating the signal components. This includes the

telemetry, pre—digitizing low—pass filter and data processing (digital

filter and modulation detection) systems.

Previous designs of this type, e.g., Smith 119541, have been intended

for use on the ground where fields are in the range of 100 to 10,000 V/m,

and environmental conditions are not severe. In the case of Smith (19541,

the experiment geometry resulted in an effective electric field

intensification of ten times the ambient field (exposure factor - 10) so the

F^

meter sensitivity was actually 1000 V/m. Designing a field meter for use on

ii
I	 a rocket is more difficult. The smallest field to be measured is 1 V/m, a
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f7ctor of 1000 less than the effective minimum field measured by Smith

[1954), making noise problems much more significant. The rocket environment

is also very harsh. High levels of vibration are present during launch.

Acceleration forces will be in the range of 50 to 75 C. The rocket will

spin at approximately 6 Iiz throughout the flight putting a large stress on

the mechanism.

The prototype instrument has successfully demonstrated the validity of

the design. This report details changes in the instrument providing better

reliability in flight with improved performance, and development of data

processing schemes.

1.3 Plans For Rocket Launches

Two field meters are used to measure horizontal and vertical components

of the electric field. One is mounted in the front of the rocket on the nose

cone to measure the vertical field. The other is mounted in the side of the 	 -

rocket to measure the horizontal field. Since the rocket is spinning, only
E
3

one meter is required in the horizontal axis. This configuration is shown in

Figure 1.2. The first rocket launch is mainly intended to be a test of the

field meter so only the horizontal meter will be installed. (In any case

the nose-tip position is not available on this flight.)

The field meter sensors must be exposed to the external field, there-

fore , the rocket nose cone must be ejected at a suitable altitude in order

for the tip-mounted meter to operate. The side mounted meter will be

exposed through a hole in the side of the rocket. The rotor will be

protected from high wind velocities during launch by a deflector on the

rocket just above the exposed meter.

The shape of the rocket will influence the ambient electric field. The

effect is to increase the field near the rocket surface. The amount of



Deflector

6
.1

Tip Mounted
Electric Field Meter

Side Mounted
Electric Field Meter

Rocket

Figure 1.2 Suggested flight configuration using two electric field
meters to measure the atmospheric electric field and
conductivity. (Adapted from Dettco and Smith [1982]).
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increase is specified as an exposure factor (Chalmers (1967 1). As an

example, the exposure factor of a sphere in a uniform electric field is

three. The approximation for a rocket is an infinite cylinder. Ln this

case the exposure factor for a perpendicular field is two. A better model

for a rocket would be an ellipsoid, with exposure factor slightly greater

than two at a point on the surface near the center of the major axis for a

field perpendicular to the axis, and an exposure factor much greater than

three at the end of the ellipsoid for a field in line with the major axis.

The measured magnitude of the electric field must be divided by these

factors to get the actual magnitude of the undisturbed field.

To obtain the best accuracy,a scale model of the rocket should be built

and installed with electric field meters. A known electric field applied to

the model would allow exact calibration of the two meter readings. For the

system proposed here,the complete rocket could be exposed to normal (fair-

weather) atmospheric electric field (about 100 V/m) and the exposure factor

determined separately for the side- and forward-looking meters by suitably

orienting the payload.
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8

2.1 Modeling the Sensor

An electrical model of the sensor is required in order to design the

signal processing electronic circuits and digital data processing

algorithms. Figure 2.1 shows the sensor and rotor. When the rotor turns

it alternately covers and uncovers the sensor surface. In the presence of

an electric field this gives rise to an alternating current out of the

sensor. Based on the theory given by Dettro and Smith [ 1982) an ideal

sensor model can be constructed. This is shown in Figure 2.2.

This model consists of a voltage source representing the perpendicular

component of the external electric field, a variable capacitor in series

with the electric field source representing the rotor covering and

uncovering the sensor, and a current source representing the conduction

current into the sensor. The electric field source value is kE where E is

the electric field strength and k is a constant. The modulating function

of the variable capacitor is derived from the area function of the sensor as

it is covered and uncovered by the rotor. C o is the maximum value of the

capacitor, corresponding to the sensor area being entirely exposed to the

external electric field, w is the rotor chopping frequency k2007r rad/sec),

and t is time. The capacitor gives the 90 degree phase shift to the

electric field component of the sensor current. The conduction current

source value is akE, where o is the conductivity, and is also modulated by

the chopping frequency, sinwt. The sensor is connected to the preamplifier

input, whiti is a virtual ground.

This model suggests that in a non—conductive medium with no electric

field the sensor current should be zero. In reality this is not the case.

Tests show sensor current components at the chopping frequency and its

-

i

L
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Figure 2.1 Electric field meter rotor and sensor.
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Figure 2.2 Ideal rotor-sensor model. (See text for explanation.)
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harmonics. The origin of this "unwanted signal" is not well understood,

but experiments show that uneven sensor and rotor surface work functions

are at least part of the explanation. The magnitude of the unwanted

signal can be reduced by coating all metallic surfaces in the rotor - stator

area wrth colloidal graphite.

Another model taking into account the unwanted signal at the chopping

frequency is shown in Figure 2.3. The unwanted signal is modeled by a

second voltage source, Vl , with a variable capacitor , C l(wt), in series.

The exact values of these additional components are not known other than the

fact that rotor chopping action and work function are important. The rotor

chopping action dependence is accounted for in the variable capacitor which

varies as some function of the rotor frequency. This model may be further

refined as a better understanding of the phenomenon emerges. Laboratory

observations show unwanted signal levels corresponding to electric fields in

the range of 4 to 13 V/m. The magnitude and waveform vary unreliably.

Data processing methods that separate the desired signal from

the unwanted signal will be developed in Chapter 6.

2.2 Design of the Prototype

The prototype electric field meter described in Dettro and Smith

(1982) was not intended to be launched on a rocket. It was intended to

verify the design concepts in the laboratory and to provide the necessary

data to design a version suitable for launch.

Mechanically, the prototype is not sound enough to withstand the

vibration of a rocket launch or the centrifugal force of the rocket spin.

Referring to Figure 2.4, the rotor blades are too thin. They would probably

fatigue and break off during the high vibration of launch. The mechanical

arrangement, shown in Figure 2.5, does not provide enough support to the

t fY ^ 'fir>,:  "z '-
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Figure 2.3 Actual rotor-sensor model
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Figure 2.4 Prototype field meter with cover removed.
(Dettro and Smith [1982]).
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Stator	 Shaft	 Rotor
Bushing

Brush	 'Carbon
Holders	 Brushes

Insulating
Coupling

!—Optical
Preamplif ier,	 Switch
Board	 ,

Encoder I 	 I 	 ShieldingBlade	 Wal I

Motor

Figure 2.5 Mechanical arrangement of the prototype field meter.
(Adapted from Dettro and Smith [1982]).



15

rotor shaft and the motor bearings. The rocket spin vilI cause a very

large centrifugal thrust force throughout the flight. There is one shaft

bearing just behind the rotor. The only other bearings are the built—in

motor bearings. Another problem is motor and rotor shaft alignment. The

solid coupling shown in the figure does not allow for any misalignment.

Carbon brushes are used in the prototype to ground the moving rotor.

If the rotor is not continuorily held at a constant potential with respect

to the sensor. it will result in a noisy signal.

The block diagram of the prototype field meter is shown in Figure 2.6.

The motor is a DC brush type. It is run open loop with speed set by a

constant voltage regulator. DC brush motors have great speed variation

with changes in load. The measured electric field amplitude is

proportional to the motor speed and the proposed digital processing schemes

(to be discussed later) require a constant motor speed so a closed loop

control method is required.

The prototype preamplifier consisted of an op amp with a very large 0

CR) feedback resistor to the negative input. This large resistor couples

with stray capacitance to give an unreliable frequency bandwidth to the

preamplifier. It is also sensitive to stray leakage. Excessive resistor

values must be reduced to no more than about 10 HP.

The prototype does a true RMR conversion of the signal, Lo remove the

rotor chopping frequency and then applies a logarithmic compression to im-

prove the dynamic range. The log amplifier requires a temperature

regulated cavity to maintain calibration and also limits the signal band-

width.

A phase signal is generated from the rotor position encoder mounted on

the rotor shaft. This phase signal allows separation of the electric field

i
i
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and conduction signal compot.snts.

2.3 Changes and Improvements

The new electric field meter design attempts to correct the problems

of the prototype and also makes modifications as a result of new data

processing ideas. The complete field meter system is shown in Figure 2.7.

The new rotor is thicker in the center where the blades are weaker and

must endure the m%st stress, and tapers down towards the tips of the

blades. The new rotor can be seen in Figure 2.1.

The mechanical arrangement of the improved meter is shown Figure 2.8.

The rotor shaft is supported by a bronze bushing near the rotor providing

lateral support and a ball bearing near the end of the rotor shaft

providing lateral and axial suP7,art. The axial support provided by the

ball bearing removes the thrust force from the motor bearings. The rotor

shaft is connected to the motor through a special coupling which allows

some alignment tolerance and isolates the shaft from motor vibration. The

motor bearings only have to support the motor armature, the rotor position

encoder and one half of the coupling. The encoder mass has been reduced to

further minimize the motor bearing load.

The carbon brushes have been replaced by wire braid brushes and have

been relocated in the encoder chamber rather than in the front deck.

The block diagram of the improved field meter is shown in Figure 2.9.

The motor is still a DC brush type, but it has a built-in tachometer which

is used to provide feedback to a closed-loop speed control. The motor and

control circuit are identical to those used in many mini-floppy disc drives.

The RMS converter of the prototype has been deleted in favor of post-

flight processing, which will extract the signal from the chopped senLor

output. The log amplifier will not work at the rotor frequency so it is

e,

^I

to
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Figure 2.8 Mechanical arrangement of the improved electric field meter.
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not used in the new field meter. A known nonlinesrity i p used for signal

compression. The signal is reconstructed in post-flight processing. A

high gain channel proviutc better resolution for low magnitude field

measurements.

Rather than generate a phase signal in the meter to allow separation

of the signal components, the encoder signal will itself be recorded for

use in post-flight signal separation. It will also allow the motor apeed

variation (during the flight) to be studied.

Subsequent chapters will discuss the design of the improved field	 a
K

meter in det.il .

=.:5	 1
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3 9 ELECTRICAL DESIGN

ynamic Range

There are two analog signal channels, one with high gain so that the

maximum resolution for low-magnitude electric fields is obtained, and one

with lower gain (and magnitude compression) so that high-magnitude electric

fields can be measured without saturation of the telemetry channel.

There are many considerations to be made in setting the channel gains.

The rocket telemetry system accepts signals in the range of 0 to 5 V,

allowing a sinusoidal peak value of 2.5 V. The magnitude of the unwanted

signal limits the maximum gain. The high gain channel is set to give a 4x

amplitude margin (4x peak unwanted signal amplitude - 2.5 V) based on the

laboratory attained unwanted signal magnitude. The low gain channel is

set to give a good range overlap with the high gain channel. The high gain

channel saturates at 50 V/m if the unwanted signal amplitude does not

increase. Setting the low gain channel to give a 10% of capacity output

(0.25 V) for a 20 V/m signal gives an ample channel overlap. The maximum

field measurable is then determined by the preamplifier output voltage

limits. This works out to be 1770 V/m. This value is reduced to 1000 V/m

to give a good operating margin. The compression circuit to be discussed

in Section 3.4 is adjusted to accommodate a 1000 V/m signal.

The resulting measurement ranges are 0 to 50 V/m on the high gain

channel and 20 to 1000 V/m on the low gain channel.

3.2 Preamplifier Design and Noise Analysis

The desired measurement range is 1 to 1000 V/m. The peak sensor

displacement current (I) is given by

I e 3.7 x 10 -12 E	 (3.1)

where E is the electric field magnitude (Dettro and Smith (19821). By
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laboratory measurement the sensor current resulting from a 1000 V/m

electric field is 2.4 x 10-9 A. This experimental value modifies Equation

(3.1) to be

I - 2.4 x 10 -12 E	 (3.2)

This is 35% less sensor current than Equation (3.1) indicates. ' Considering

the uncertainties of fringing loss and mechanical imprecision in the sensor,

there is reasonable agreement between experiment and theory.

From Equation (3.2) a 1 V/m electric field gives a sensor current of

2.4 pA. In order to resolve this small of a current the preamp must have

very high gain and very low noise. The preamplifier circuit is shown in

Figure 3 .1. It consists of a current-to-voltage converter, a non-inverting

amplifier and a voltage follower. The first stage is the most critical.

The sensor is connected to the negative input of the op amp (OA101). The

output voltage is given by

V - -i x (R101).	 (3.3)

To avoid leakage and bandwidth-limitation problems the value of R101 is

limited to 10 Mo. C101 is chosen to give a 300 Hz bandwidth to pass the

desired 100 Hz signal and to limit higher frequencies. C101 significantly

reduces the noise output of the current-to-voltage converter.

R106, 8107, R108, C105, C106 and C107 implement an offset circuit with

a range of 0.5 to -0.5 V. A portion of the unwanted sensor signal can be

nulled out by adjustment of this offset. The actual effect is to force the

rotor and sensor to slightly different potentials inducing a capacitive

modulation signal as the rotor turns. This signal is out of phase with

part of the unwanted signal allowing a nulling effect.

C102 and 8102 block the DC component of GAIN. If the DC was not

blocked the high gain of OA102 would cause it to saturate. The value of

s	 ^

Y





2s

C102 is chosen to be as large as possible, limited by size, in an

unpolarized capacitor. R102 forces the negative terminal of OA102 to settle

to 0 V. It is chosen to give a settling time of about 1 second.

OA102 gives the second stage of gain. The non-inverting configuration

is chosen so that the DC blocking circuit can have the high impedance load

of the negative CA102 input to prevent signal amplitude loss. R103 and

R104 are chosen to give a gain of 240 for reasons discussed in Section 3.1.

This sets the overall gain of the low -gain stage. C103 is chosen to give

the second stage a 300 Hz bandwidth.

C104 and R105 perform the same DC-blocking function as C102 and 8102.

OA103 is a voltage follower. Lt drives the shielded line connecting the

field meter to the deck-mounted circuit board.

Since the gain of the first stage is no high ( 107 V/A), it is the

most critical for low noise performance. The output voltage for a 1 V/m

electric field is given by

V - 2.4 x 10 -12 x 107 - 24 n.
	

(3.4)

t

^l

i

t
i

The noise introduced by the electronics should be significantly less

than this to allow detection of the desired signal.

The electronic noise model of the pieamplifier first stage is given in

Figure 3.2. The op amp input voltage and current, and resistive noise

sources are included. The offset circuit is not included because the large

values of C106 and C107 effectively ground the OA101 positive input for

frequencies near 100 Hz. The noise sources can all be considered

independent. By superposition, the output noise voltage is given by the

root of the integral over the range of interest of the sum of the squares

of the output noise voltage due to each source:



3

i

.O

Figure 3.2 First gain stage electronic noise model.
(See text for explanation.)
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115	 1/2

Vout	 f I(Ir 2 + Ioa2) II + SCR, 2 + Voa2jdf
	 (3.5)

85

where I oa and Voa are the op amp input noise current and voltage spectral

densities. and I  is the feedback resistor noise current density given by

Ir = (4 kT/R) 1/2 A/Nz
l/2 	(3.6)

where k is 8altzman's constant (1.38 x 10-23 J/R). T is the temperature

and R and C are the values of 1101 and C101. For T - 300 K and R 0 10 H9:

I  a 4.1 x 10 l4 A/Ha1/2 	(3.7)

The range of integration is determined from the equivalent noise band-

width (ENBW) of the post-flight processing digital filter. See Appendix II

for the computation of the ENBW. The band is centered at 100 Hz.

An Analog Devices AD515J op amp has the following worst-csse

specifications:

20 nV/Hz1/2

0.01 pA zms	 (10 Hz to 10 kHz)
(or 0.0001 pA/Hzl/2).

The resulting OAl output noise is 2.12 pV. If a more common type

LF356 op amp with

Input voltage noise (Voa): 20 nV/Hz 1/2

Input current noise (I oa ): 0.01 pA/Hz 1/2

is used,the resulting output noise is 2.18 uV.

Both of these noise levels are more than 20 dB below the 1 V/m signal

amplitude so that either device is acceptable.

Experimental values for the electronic noise were obtained by

digitizing the field meter output with the motor stopped and no external

electric field. The digitized waveform was filtered with the digital band-

Input voltage noise (Voa):

Input current noise (Ioa)'

.;: "VI
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pass filter and the tms value of the waveform computed by taking the root

of the sum of the squares of the time sequence samples. The result was

2.21 pV, in remarkable agreement with the calculated value.

3.3 Shielding

Thereampiifier is very sensitive to pickup from stray electric and

magnetic fields. During development f,f the improved field meter,large

output signals were observed with no rotor attached and the sensor shielded

from external electric fields. Further investigation determined the source

of the signals to be coupling between the rotating rotor shaft, shaft

coupling and position encoder and the preamplifier. There are 3 modes of

coupling. The first is accomplished by a moving conductor modulating the

ambient electric fields within the preamplifier compartment. The second is

moving magnetised materials, e.g., set screws, coupling the preamplifier

with a varying magnetic field. The third is moving nonconductors in the

preamp compartment. Nonconducting material with charge trapped on the

surface modulates the ambient electric field. As an example, the motor-to-

rotor-shaft coupling was originally a phenolic cylinder with set screws to

clamp the motor and rotor shafts. When a nylon set screw was used,an

output signal of amplitude equivalent to an external electric field of 870

V/m was seen.

These problems were solved by shielding the preamplifier compartment

from all moving parts. The mechanical design of the shield is covered in

Section 4.4.

3.4 Compression, Amplifier and Offset Circuits

These circuits are shown in Figure 3.3. They are on the deck-mounted

printed circuit board. The compression is a nonlinear function of the

signal amplitude. if the diodes are considered to have ideal turn-on

1,
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a

points ) then the compression can be described as having gain equal to one at

amplitudes less than the diode turn-on points and as having a transfer

function at amplitudes greater than the diode turn-on points given by

Gain - (R202 x Vin + R201 x Vd )/(R201 + R202)	 (3.8)

where Vd is the diode turn-on voltage. Non-ideal behavior is compensated

for by characterizing the input-output transfer function and using this

characterization to restore the signal. This is described more fully in

Section 5.4.

	The values of R201 and R202 are selected to draw a maximum current out 	 f

k	
of the op amp driving the circuit (OA103) and to give a maximum peak

fi

	

	 output voltage of 2.3 V for a 1000 V/m electric field. The diodes are

selected to give a turn-on voltage at the desired compression break point.

The gains of the previous stages are adjusted to give a peak signal
i

amplitude of about 0.25 V for an 20 V/m field (see Section 3.1). The 	 j

compression break point is arbitrarily selected to be at about 300 V/m. At
i

300 V/m the measured value of V in is 1.8 V. The diodes 0202 through

D207) are selected to give break points of 1.8 volts (measured at 0.5 mA

current). The output of the compression circuit should be 2.5 V peak-to-

peak when the largest electric field to be measured (1000 V/m) is present.

The output of OA103 is 6.0 V peak for this field magnitude. To limit the

load on OA103 to 5 mA the diode voltage drop must be known at this current.

It is measured to be 2.2 V. Values of 8201 and R202 must be such that

(6.0 - 2.2)/(R201 + R202) - 5 mA	 (3.9)

and

(R202 x 6.0 + R201 x 2.2)/R201 + R202 - 2.5 V. 	 (3.10)

Solution of these equations gives R201 - 703 0 and R202 - 60 a. R203

is set equal to R702. The compression circuit output is buffered by an
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additional amp voltage follower (OA203).

The high-gain channel amplifier (OA201) is also driven by OA103. To

give an arbitrary margin of safety in the event that the unwanted signal

magnitude increases, the gain is adjusted such that 4 times the measured

unwanted signal output magnitude is at 100% of the output range. This

amount of gain puts an upper limit of about 50 V/m on the high gain channel

before saturation. The gain is set by R204 and R205.

Since the telemetry system input range is 0 to 5 V, both signal

channels must be offset by +2.5 V to be compatible. This is accomplished by

DC blocking the offset voltage from the outputs of OA201 and OA203 with a

capacitor and referencing the output side of the capacitor to a 2.5 V

reference through a resistor. These capacitors and resistors are 0201,

R207, C202 and R208. Their values are chosen in the same manner as C102 and

KC102 in Section 3.2. The reference diode 0201) is biased through a 10 kO

resistor (R206) from the +15 V supply and bypassed with a 10 OF tantalum

capacitor (C203) to filter out any noise. The offset circuits are again

buffered through voltage follower op amps OA202 and OA204. The outputs of

these op amps are limited to the -0.7 to +5.7 V range by R20S, R210 and D208 	 I
thru D211 Lo protect the telemetry system from overloads.

3.5 Encoder Circuit

The encoder circuit is shown in Figure 3.4. The rotor shaft position

encoder chops the optical interrupter (INT401) 4 times for each shaft

revolution. The interrupts are spaced 90 degrees apart. The interrupter

consists of a photo-diode and a photo-transistor. The diode is biased on

by the +15 V supply through a 470 n resistor (R401). The collector of the

photo-transistor is pulled up to +5 V through a 5.1 kit resistor (R211).

The emitter is connected to ground. If the light from the photo-diode is

n

All
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allowed to reach the transistor, the transistor is turned on, pulling the

collector voltage towards ground. If the photo-diode output is blocked by

the position encoder, the transistor turns off allowing the collector voltage

to be pulled up to 5 V.

The collector voltage is made into a clean and precitoe digital signal

by a 74LS132 Schmitt trigger NAND gate (IC201). The output of the NAND

gate drives a 7407 open collector buffer (IC202). The phase adjustment

circuit is based on a circuit suggested by Dettro and Smith [1982). It

consists of an RC network on the output of the open collector buffer to

allow a amooth-sloped rising waveform and a fast falling waveform, and a

voltage comparator. The rising waveform is determined by the RC time

constant, since the buffer output is off and the capacitor is charged from

the +5 V supply through the resistor. The falling waveform is fast

because the capacitor charge dumps into the buffer output transistor when

it is on. The resistor (8212) and the capacitor (C204) values are selected

to provide an adequate adjustment range for the phase calibration. The

shaft rotational velocity is 25 He (40 me per revolution). Since encoder

pulses occur every 90 degrees, the maximum adjustment needed is 90 degrees,

or 10 ms. Allowing for two RC time constants in 10 me gives RC equal

to 5 me. This is realized by selecting 8212 to be 10 kt2 and C204 to be

0.5 pF.

The resulting adjustment range is 81 degrees since the encoder blades

are of finite width and the RC circuit is held low while the blades pass

through the optical interrupter. If the adjustment range does not allow

proper calibration of the encoder output, the encoder should be rotated 45

degrees with respect to the rotor in either direction.

=-cu
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i

The actual adjustment is accomplished by varying the reference voltage

of the voltage comparator ( IC203). The positive input of the comparator is

connected to the capacitor (0204). The negative input is connected to the

center tap of a potentiometer (R213). A 10 1W capacitor (C205) is

connected between the center tap and ground for noise immunity. The

potentiometer is connected between ground and +5 V allowing adjustment

of the reference voltage over the same range. The output of the comparator

is open collector and is pulled up to +5 V by a 2.2 kfl resistor (R214).

The comparator output goes directly to the telemetry system.

3.6 Motor Speed Control

The motor used to drive the rotor shaft is a DC brush motor with a

built-in AC tachometer for feedback to the motor control circuit. The motor

and the control circuit are virtually identical to those used in mini-floppy

disk drives in the computer industry with the exception of a few minor

modifications. The motors and control circuit were taken directly from

the Hewlett Packard (Greeley Division) assembly lines. The motors are

manufactured by Buehler and have Buehler part number 13.65.3.

The motor control circuit was modified to allow a slower motor speed,

to operate from a different supply voltage ( +15 and +28 V rather than

+12 V), to fit on the deck mounted circuit board and to provide adequate

power transistor heat siuking while operating in a vacuum. The supply that

actually drives the motor is isolated from the payload +28 V supply by

additional regulation through a +12 V IC voltage regulator.

The motor control circuit is shown in Figure 3.5. The heart of the

circuit is IC204 which is the National Semiconductor LM2917 frequency-to-

voltage converter including internal reference, op amp and output

transistor. The 7.56 V internal reference diode is biased from the +15 V

e Fr	 awa_
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i
supply through R217. The motor tachometer output drives the frequency-to-

voltage converter through an RC low pass filter (8215 and C206). The

frequency-to-voltage convertor generates a DC voltage proportional to the

motor speed.

C208, C209, C210 and R213 constitute the control loop filter. The

IC204 compares the motor speed DC signal from the frequency-to-voltage

converter witt: the speed reference voltage set by the motor speed adjustment

circuit (R200, R211 and R222). The reference voltage is derived from the

IC204 voltage reference. If the motor speed voltage is less than the
i

reference voltage, the op amp decreases the base current of the output

transistor. The motor-drive power transistor (Q301) is then turned on harder

1	 by the pullup resistor 8301. The motor speeds up and the motor speed DC

signal increases in turn.

If the motor is too fast,the motor speed DC signal will be greater than

the speed reference voltage; the op amp will increase the output transistor
r
i	 base current which will result in more current being taken away from the

base of Q301 reducing the Q301 emitter current and slowing down the motor.

R216 forces the control circuit to turn off the motor if there is no

tachometer signal present. An additional transistor (Q201) turns on if the

motor draws more than 1 A. This diverts the current from the base of Q301

limiting the maximum motor current to 1 A even under stall conditions.

This is required to avoid an excessive drain on the payload battery should a

stall or excessive load condition occur.

3.7 Power Requirements

The power distribution block diagran and the circuit of the power

supply are shown in Figures 3.6a and 3.6b. All voltages are derived from

the payload +28 and -28 V supplies. The +12 V supply for the motor is

i
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Figure 3.6 (a) Power distribution block diagram.

(b) Power supply circuit diagram.
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obtained from the +28 V supply using an LM317 3-terminal adjustable

regulator (IC301). 8302 and 8303 are chosen to set the output voltage to

+12 V. The preamplifier and deck-mounted circuit boards use +15 and -15 V

regulated down from +28 and -28 V by 7815 (IC302) and 7915 (IC303)

3-terminal IC voltage regulators. These are mounted on the aluminum deck

tit

G

	

	 below the deck-mounted circuit board together with the motor-control power

transistor and the motor (+12 V) supply regulator. The deck-mounted circuit

board also uses +5 V. This is generated on the board by an LM309 :t-terminal

IC regulator from the +15 V supply.

Power consumption of the electric field meter subassemblies is given

:'	 in Table 3.1
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Table 3.1 Electric field meter power consumption.

Motor +12 V 300 mA typical. 1 A maximum

Preamplifier +15 V 50 mA
-15 V 15 mA

Deck-mounted +15 V 70 mA (includes 40 mA for the + 5 V regulator)
circuit board -15 V 10 mA

Overall payload +28 V 420 mA typical. 1.12 A maximum
supply loading -28 V 150 mA
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4. MECHANICAL DESIGN

The mechanical arrangement of the field meter has been shown in

Figure 2.8. A photograph of the meter with the cover removed is shown in

Figure 4.1.

4.1 motor and Drive Shaft

The motor is located in the rear of the instrument so that the

preamplifier board can be mounted as close to the sensor as possible (to

avoid noise pickup). The motor is connected to the rotor shaft through the

encoder assembly (see Section 4.3) and the shaft coupling. The rotor is

mounted on the end of the rotor shaft. The rotor shaft is supported at two

points: at the front by a bushing and at the rear by a ball bearing. The

rotor is prevented from touching the sensor by a 0.6 mm washer attached

solidly to the rotor. The rotor-sensor gap is 1 mm (see Section 5.3)

leaving 0.4 mm of play to allow for possible thermal expansion of the cater

while in flight. If the washer is not firmly attached to the rotor, it will

vibrate and introduce noise in the signal microphouically (see Section

6.4).

The shaft coupling has three parts, the shAf t-side spline, the

flexible ribbed ring and the encoder-side spline. The shaft-side spline

set screws have been drilled out and replaced with larger ones. One extra

is added to make three set screws on the shaft-side spline. This is

required because these set screws hold the rotor and rotor shaft against

the centrifugal force of the rocket spin.

The encoder-side spline is mounted on the encoder shaft and the ribbed

ring installed between the two splines. The ribbed ring allows about 2 mm
N' {

longitudinal freedom, 1.3 mm of lateral misalignment and 3 degrees of

angular misalignment.

_..
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Figure 4.1 Field meter with cover removed.
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The encoder is mounted on the motor shaft and the motor is secured to

the rear deck. The motor bearings support the motor shaft, the encoder

assembly and the encoder side of the coupling.

Purchased components (from Winfred M. Berg, Inc.) are:

rotor shaft	 - # 83-23

bronze front bushings - # B4-8

ball bearing	 - # B2-6-8

shaft coupling assembly - # CC9-20-3

4.2 Sensor and Rotor

The sensor and rotor are shown in Figure 2.1. The rotor is

strengthened in the center where the blades are narrow by making it thicker

and tapering the thickness towards the tips to roughly match the rocket

body contour. The sensor consists of four segments attached to the outside

surface of the front deck. The attachment method provides electrical

isolation from the deck. The four segments are connected together behind

the deck and also connected to the preamplifier input. The rotor io made

of a non-magnetic material (aluminum) to eliminate possible magnetic field

interf erence.

The prototype field meter had the segments etched on a fiberglass

printed circuit board leaving the non-conductive fiberglass exposed between

the segments. During development of the improved field meter,static

charges trapped on the fiberglass surface were observed to influence the

meter output. The new sensor design eliminates non-conductive material-

from the sensor area.

4.3 Encoder

The shaft angular position encoder blocks the optical interrupter four

times for each shaft revolution, providing a pulse for each 90 degrees of

I
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rotation. The encoder is machined from aluminum with an integral shaft on

one side to attach the shaft coupler. The other side mounts on the motor

shaft. See Figure 4.2.

4.4 Electrical Shielding

Section 3.3 discussed shielding required by the preamplifier circuit.

This shielding is accomplished mechanically by a metallic tube enclosing

the section of the rotor shaft passing through the preamplifier chamber and

by the preamplifier chamber wall. The shaft fits into recesses in the

front deck and chamber wall to provide a good electrical interlock. The

preamplifier chamber wall provides shielding from the rotating coupling and

encoder. The cylindrical field meter cover completes the preamplifier

chamber shielding. The field meter with cover in place is visible in

Figure 2.1.

4.5 Payload Installation

The field meter and electronics are shown mounted in a payload in

Figure 4.3. The meter is shown in the approximate position it will occupy

when the rocket shell is installed. The meter is attached to the 1/2 inch

thick shell, not to the payload frame. The payload power supply is on the

lower deck.
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Figure 4.2 Encoder; (a) top view. (b) side view.
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Figure 4.3 Payload installation.



5. CALIBRATION AND TESTING

5.1 Test Fixture for Electric Field Meter

In order to apply an external electric field to the meter a special

fixture was designed and built. It is shown with the electric field meter

mounted in Figure 5.1. It consists of two parallel metallic plates

attached together with insulating standoffs. The plates are circular with

a diameter of 254 sm. The distance between the plates is such that the

distance from the bottom plate to the field meter sensor surface is 20 mm.

The electric field as a function of the voltage applied to the plates is:

r

46

E a 50 x (Plate voltage).
	

(5.1)

The inside surfaces of the plates are coated with colloidal graphite

to make the work functions uniform. During laboratory tests the insulating

standoffs were observed to trap charge resulting in distortion of the

electric field. Wrapping the standoffs with copper tape and connecting the

copper tape to resistive dividers between the two plate voltages eliminated

this problem. The external voltage is applied to the plates through a 10

kQ resistor to limit current In case of short circuits.

A DC voltage may be applied to the fixture to simulate a constant

electric field. To simulate an electric field modulated a 6 Hz rocket

spin,a 6 Hz AC voltage is applied.

The system gain has been measured and the meter calibrated using this

setup.

5.2 Motor Speed

The motor speed is adjusted by trimming the speed reference voltage

potentiometer 8221 described in Section 3.6. The location of 8221 is shown

in Figure 5.2. To obtain the proper adjustment for a 100 Hz rotor chopping

frequency, a frequency counter is cranected to the encoder output of the

I
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Figure 5.1 Test flxtuxe for the electric field meter,
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Figure 5.2 Deck-mounted printed-circuit board showing

encoder and motor speed adjustment 	 tentiometers.
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field meter and the speed is adjusted to give a count of 100 Hz- If no

encoder output signal is present,the encoder adjustment potentiometer

should be turned until an output is obtained.

5.3 Rotor-Sensor Spacing

If the rotor-sensor spacing is too wide, the output (for a given

electric field) will be diminished. If it is too narrow,the unwanted

signal amplitude increases. By testing several gap widths.a gap of 1 mm 	
II

was chosen as optimum. A tolerance of 0.1 mm is acceptable. The gap is 	 I'

obtained by stacking pages of a paper pad until the thickness is 1.0 M.

The pad is placed between a rotor blade and the sensor surface. Bolding

the rotor firmly against the paper and sensor, the rotor shaft side of the

coupling is tightened onto the rotor shaft and the paper pad then removed

from under the rotor blade. The gap spacing is maintained by the coupling

position and the centrifugal outward force of the rocket spin.

5.4 Preamplifier Offset Adjustment

The unwanted eignal from the field meter sensor can be reduced by

adjustment of the DC potential of the sensor. The DC potential of the

sensor is just the voltage offset of the first stage amplifier OA1. This 	 s '^ Y

is done by mounting a graphite coated end cap on the meter (see Figure 5.3)

and trimming potentiometer R107 on the preamplifier circuit board to

minimize the field meter OA103 output signal amplitude. The location of

R107 is shown in Figure 5.4. Rotor and sensor should be coated with

colloidal graphite and the rotor-sensor gap adjusted before attempting

this.

5.5 Encoder Phase Adjustment

The encoder signal rising edge phase with respect to a pure electric

field output (no conduction into sensor) must be known in order to separate
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Figure 5.3 Electric field meter with end cap used to protec'

rotor and sensor and to adjust preamplifier off•et.
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Figure 5.4 Preamplifier printed-circuit board showing, offset

adjustment potentiumeter..
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the electric field and the conduction signal components during post-flight

f

	

	

processing. It is most convenient to align the encoder rising edge with

the peak amplitude of a pure electric f ield output. To do this, mount the

i
field meter on the electric field test fixture, Apply a large DC electric

field (about 15 V on the fixture). While monitoring the output of OA103 	 j
e^

and the phase output of IC203 with a dual trace oscilloscope, adjust

potentiometer 8213 to align the rising edge of the phase signal with the

peak positive amplitude of the OA103 output. The location of 8213 is shown

t`	 in Figure 5.2.

5.6 Signal Compression Characterization

-	 The compression circuit described in Section 3.4 is implemented with

E^"I	 nonideal diodes resulting in a nonideal transfer function. In order to

compensate for the nonideal behavior, the transfer function must be

characterized. Tl,- i.e Onne simply by applying, an input voltage and

zr-a..,ring the output voltage of OA233. The inv_rse of this function is

applied during post-flight processing to restore the data.
r

There are many ways to automate this measurement. One simple way 	 "`.rl>a`

requiring only a ramp generator, a digitizer and a computer will be

described here. The field meter is first disconnected from the deck-

t.	 mounted circuit board. The ramp is then applied to the compression
e

circuit. The compression circuit output waveform is next digitized at a

high rate over the entire range of the compression circuit. if the

digitizing rate is high , a fine characterization of the compression circuit

is obtained by computing the difference between the compressed data sample

values and the ramp input values for all samples. The ramp can be

constructed mathematically because the sample values that are less than the

non-linearity break points give the slope of the actual ramp.. The results
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of this characterization are shown in Figure 5.5.

5.7 Spin-Test Fixture

The field meter was spun at 6 Hz to determine if it would continue to

operate and how much current the motor would draw. The special fixture

shown in Figure 5.6 was built to do this. The fixture was mounted in an

end mill and spun at 395, 500 and 680 rpm corresponding to spin frequencies

of 6.58, 8.33 and 11 . 33 Hz. The motor current data at these spin rates are

listed in Table 5 . 1. The radius of the fixture measured at the field meter

rotor was 180 um. This is slightly larger than the rocket radius. Power

was provided to the motor control circuit and the encoder signal monitored

through slip rings. The meter was tested with both a bronze bushing giving

lateral and axial support and a ball bearing in the preamplifier chamber

wall. There was much less drag with the ball bearing than there was with

the bronze bushing.

5.8 Vacuum Testing

No problems were expected with operation for short periods in a vacuum,

but a teAt was made to verify this. The field meter was mounted on the

electric field test fixture in a vacuum chamber. The test fixture plate

wires and field meter power and signal cables were brought out through an

air-tight seal. The air pressure was reduced to the equivalent of more than

75,000 feet altitude for more than 30 min. No effect was observed on the

f ld meter operation.

5.9 Vibration Testing

The field meter and all flight electronics will

a unit with the rest of the payload. As of the time

had not yet been done.

t l► . sft	 -
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Figure 5.6 Spin-test fixture.
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ile 5.1 Motor current at various rocket spin rates.

P" Bearing type Spin rate Motor current
(rpm) NO (MA)

Bronze bushing 395 6.58 900

500 8.33 1400

680 11.33 current limited

Ball bearing 395 6.58 300

500 8.33 350

680 11.3 525
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6. POST-FLIGHT SIGNAL PROCESSING

Flight data is to be provided by NASA in a digitized form on 1/2 inch

computer tape. This data will be read by processing programs and analyzed

to determine the results of the flight. Specific processing steps for

analysis of the field meter output data are covered in this chapter.

Listings of the major routines used to perform these functions are included

in Appendix III.

6.1 Dynamic Range Restoration

The low gain field meter channel signal is compressed as

described in Section 3.4. The compression function is characterized before

flight as described in Section 5.6. The first step in post-flight

processing is to remove the telemetry channel DC offset and restore the

signal to the original range before compression. Since the high gain field

meter channel is not compressed, restoration is omitted when that analysis

is done.

A piecewise continuous model of the data restoration function is

constructed from the compressioa characterization data. Each segment of

the model is linear and can be represented by a linear equation. Finer

compression characterization results in smaller linear segments of the

restcration function model, resulting in less noise added to the signal

during restoration. Ideally the compression characterization should be done

in steps that are as small as the least significant bit of the digitized

data words. If this is the case,linear segments of the restoration

function are not needed. Restoration can then be done by a direct table

lookup.

The linear segment of the restoration function associated with a given

compressed sample is found from the magnitude and polarity of the sample.

_;,: -1



The restored sample is obtained by evaluating •the linear equation at the

compressed sample point. In this fashion each sample of the data is

restored to its precompression value. This is illustrated for one sample

in Figure fa.?.

6.2 Digital Filtering

The electric field meter output contains some undesired frequency

components, as shown by Figure 6.2. Only the rocket-spin modulated

components of the 100 He chopping frequency are desired. Most of the

unwanted signal can be filtered out with a band-pass filter centered at

100 Hz. Desirable characteristics of this filter are linear phase (to

preserve the conduction and displacement signal components), about 20 He

bandwidth (to pass both sidebands of the modulated chopping frequency), and

greater than 60 d8 attenuation outside of the 50 to 150 He band (to

sufficiently reject the unwanted components). It is also desirable to have

a flexible design procedure to that the filter can be easily matched to the

data in came of unexpected output signals, or motor-speed or rocket-spin-

rate variations. A finite impulse response (FIR) filter of length 65 easily

meets these requirements. See Appendix I for a procedure to design this

filter.

The frequency response of a filter that meets these requirements is

shown in Figure 6.3.

The acme data used to obtain Figure 6.2 was filtered by the filter of

Figure 6.3. The resulting spectrum is shown in Figure 6.4.

The digital filter has a time delay associated with the linear phase

characteristic. For an FIR filter the delay is a number of samples equal

to 1/2 of the filter length minus 1 (Taylor (19831), or 32 samples in this

case. This delay must be taken into acount when the conduction and

58
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electric field signal components are separated.

6.3 Modulation Detection

After filtering, the.1'00 Hz component of the unwanted signal is still

present. Its maguitude is several hundred mV. It would require a very

long digital filter to notch out this signal (though that may still be a

feasible method). A simpler approach is to detect the rocket-spin modulated

6 Hz sidebands.

If there were no unwanted 100 Hz signal present,the field meter output

would look like the computer generated waveform of Figure 6.5a. This is

the time-domain waveform of double-side-band suppressed carrier (DSB/SC)

modulation. Demodulation can be accomplished by peek detecting the signal

to obtain the envelope as in Figure 6.5b. The number of peaks can be

doubled to increase the effective sampling rate of the envelope by first

taking the absolute value of the DSB/SC waveform as in Figure 6.5c. This

increases the probability of obtaining a peak closer to the actual envelope

peak (the 100 Hz carrier and the 6 Hz modulation are not synchronized).

The envelope magnitude is the sum of the two peak detected magnitudes in 	 _.

this case.

With the 100 Hz unwanted signal present, the waveform is more like a

standard amplitude modulation (AM) waveform, since the unwanted signal is

not modulated. The actual field meter digital band pass filtered output

for a 10 V/m electric field is shown in Figure 6.6a. The same demodulation

technique can be used to obtain the envelope. The magnitude of the 6 Hz

modulation is just the difference between the maximum and minimum values of

the detectel envelope.

For a large amplitude electric field the output becomes more like the

DSB/SC waveform as shown in Figure 6.6b for a 200 V/m electric field. The
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(b)

(C)

i Detection of a DSB /SC signal. (a) waveform. (b) envelope.
(c) detected envelope after absolute value.

(4)

1O
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(0)

(b)

(c)

i.6 Effect of unwanted signal on envelope detection. (a) waveform for
small fields. (b) waveform for large fields. (c) peak-detected
envelope for large fields.



same demodulation technique can again be used but care must be taken in

obtaining the peak envelope magnitude. The peak detected envelope of

actual field meter data is shown in Figure 6.6c. The envelope magnitude is

sum of the two local peak values, rather than the difference, as in the

case when no 100 Hz unwanted signal is present.

This demodulation technique for obtaining the 6 Hz sideband magnitudes

has some drawbacks. One is that the beating of the sampling frequency and

the 100 He chopping frequency occurs if the sampling frequency is not an

exact harmonic of the rotor frequency. This generates an apparent

modulation that also gets detected. Thin is illustrated by computer

geenerated data for a 100.5 Hz sinusoid and a 1 kHz sampling rate in Figures

6.7a and 6.7b. Another problem is that the carrier peak may not correspond

to an electric field peak, resulting in a measurement that is lower than

the actual magnitude.

6.4 Mechanical Noise

When attempting to measure small electric fields other unwanted

signals becomes apparent. These are low -amplitude side bands of the

100 Hz carrier at 75 and 125 Hz. They correspond to the motor frequency

(25 Hz) and so the source is assumed to be microphonic pickup from the

motor and bearings. Another source was found to be vibration of spacing

washers used to set the minimum rotor-sensor gap. This source was

eliminated as described in Section 4.1.

This signal, together with the apparent beat modulation discussed in

Section 6. 3,is shown in Figure 6.8a after demodulation. one cycle of this

signal corresponds to 8 samples of peak detected data so it can be

effectively nulled out by replacing each sample with the average of the 8

samples around it. The result is shown in Figure 6.8b.

66
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1

(0)

(b)

Figure 6.7 Effect of beating between the sampling frequency and the rotor
chopping freq+,tency for a pure sinusoid. (a) sampled waveform
showing apparent modulation. (b) detected beat modulation on an
expanded scale.
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(0)

V
	 (b)	 v

Figure 6.8 Elimination of an unwanted frequency component of the
field meter output signal by averaging. (a) before
averaging. (b) after averaging.
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6.5 Signal Processing Examples

An example of the processing of the electric-field meter high-gain

channel output for a small value of external electric field is shown in

Figure 6,9, Figure 6.9a shows the output after the telemetry DC component

is removed. Figure 6.9b shows the detected envelope without digital

filtering. The amplitude scale is expanded. Figure 6.9c shows the output

with digital band-pass filtering. Figure 6.9d shows the detected envelope

of the filtered output.

An example of the low gain channel output for a large value of

electric field is shown in Figure 6.10. Figure 6.10& shows the compressed

output after the Dr, component is removed. The restored output is shown in

Figure 6.10b. The envelope without digital filtering is shown in Figure

6.10c. The output and envelope with digital filtering are shown in Figures

6.10d and 6.10e.
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(0)

(b)

(c)

(d)

Figure 6.9 Processing of electric field meter high gain channel
output for a small electric field. (See text for
explanation.)
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7, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK
	

i

The electric field meter and the data processing algorithms have

progressed to the point that a flight test is needed to evaluate the

performance. The ability to measure electric fields in the desired range

is shown by the actual field meter high-gain channel output waveform

envelopes in Figure 7.1, and by the low-gain channel output waveform

envelopes in Figure 7.2. There are, however, further improvements that

can be made.

7.1 Electrical Systems

The electronics are satisfactory. The noise level and dynamic range

are adequate to measure electric fields less than 1 V/m with no problems.

If any changes are made in the electronics,they will probably come as a

result of better understanding of the sensor unwanted signals or changes in

desired experimental data, based on the results of the flight test.

7.2 Mechanical Systems

Mechanically the field meter is sound nud should have no problems

surviving the environment of a rocket launch. T,c new rotor

shaft bearing configuration provides very good support and allows the motor 	

I	 i
bearing load to be reduced to a minimum. Electronic circuits will be

encapsulated (in foam) before flight to prevent vibration breakage of

connections and component mounts. This method has proved reliable in the

past.

7.3 Electromechanical Systems 	 j

The rotor and sensor are the heart of the instrument. They have 	
1

demonstrated the expected signals and some unexpected and unwanted ones.

These unwanted signals are an obstacle to obtaining reliable measurements

of low magnitude electric fields. The source of these signals is also not 	 S



r
°a

i

73
x

200

E 0

(0)
-200

200

> 0E

(b)
-2001

2001

E 0
(C)

-200

200

E 0

-200	 (d)

Figure 7.1 Outputs of the high gain channel of the electric
field meter: (a) 0 V/m. (b) 1/2 V/m. (c) 1 V/m.
(d) 5 V/m. These are shown as the detected
envelopes of a 6 Hz modulation.
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2 Outputs of the low gain channel of the electric field
meter: (a) 1 V/m. (b) 20 V/m. (c) 100 V/m.
(d) 500 V /m. These are shown as the detected
envelopes of a 6 Hz modulation.
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vmderstood in detail. The action of the rotor covering and uncovering the

sensor is known to be very important in the generation of these signals but

the mechanism is unclear. A significant source of at least part of the

signals is uneven work functions over surfaces in the rotor and sensor

area. Treatment of the surfaces with colloidal graphite to create a

uniform work function has produced improvement but does not account for all

of the signals.

Another limiting factor is mechanical noise that is picked up by the

electronics microphonically. The field meter currently has adequate

mechanical performance, but this source of noise must be monitored to

verify that the meter remains in good working order. Vibration testing to

be performed at a later date may affect the mechanical performance.

7.4 Digital Filtering

Data processing schemes designed thus far are largly attempts to

extract the desired electric f td component of the signal from the

unwanted signal. The band—pass digital filter minimizes the effect of the

imwanted signal and noise outside of the passband. The current filter has

good characteristics, but a filter with sharper transition regions would

produce better results, especially if attenuation at the 75 and 125 Hz

frequencies could be increased to reduce sensitivity to motor frequency

related mechanical vibration.

The digital filter coefficients are generated in a very simple way

(see Appendix I). There are some better ways that may result in filters

with better frequency responses. If the the University of Illinois Cyber

mainframe computer is used for data processing, a filter synthesis program

using the McClellan-•Parks algorithm is available. This program optimizes

the filter according to user specified parameters and provides the beat
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filter possible for a given length. Another method that should work better

than the method of Appendix I is called windowing. This consists of

computing the infinite duration impulse response of the desired filter,

truncating at the desired filter length and then windowing the result as

described near the end of Appendix I. Chapter 5 of Oppenheim and Schafer

[19751 explains this method.

If a much longer filter is used,it may be possible to have a notch at 100

Hz to stop the 100 Hz component of the unwanted signal. Digital filters

could be cascaded to provide the various band pass and stop band

characteristics desired. If 100 Hz can be removed from the signal,the

modulation detection problem would match the case of the DSB/SC waveform

described in Section 6.3. This would probably not be a tremendous

advantage unless the 6 Hz modulation magnitude were to be determined using

a spectral technique such as a fast fourier transform (FFT). In this case

removal of any unwanted signal will help because of the windowing effect of

the finite length FFT "smearing" the frequency components throughout the

entire spectrum. Unwanted components would affect the magnitude or even

mask the presense of the desired components. See Chapter 6 of Elliot and

Rao (19821 or Harris (19781 for a more detailed presentation of this

phenomenon.

If a spectral technique is used.then the best results would be

obtained with a band-selectable fourier transform (Taylor [19831). This

technique would allow a high resolution FFT centered about the 100 Hz

region of interest. As a comparison to a standard FFT, a 1024-point FFT

gives 0.975 Hz spectral resolution over a 0 to 500 Hz band. A 1024-point

band-selectable FFT could give 0.039 Hz spectral resolution over a 90 to

110 Hz band.

0
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7.5 Modulation Detection

The modulation detection scheme has some problems as described in

Section 6.3. The apparent modulation due to the beat frequency of the 100

llz rotor signal and the sampling rate can be of a magnitude larger than a

small amplitude electric field modulation. The frequency of the beat is

also not precisely controlled and could be close enough to 6 Rz to obscure

the desired data. This apparent modulation could be reduced by a sampling

rate interpolation algorithm. Rather than take the maximum sample value as

the peak value, compute new samples to effectively increase the sampling

rate. The rate could be increased an arbitrary amount until the apparent

modulation is reduced to an inconsequential magnitude. Laboratory

measurements in this report were made with the motor speed adjusted very

accurately to minimize the beat effect. This accuracy probably could not be

maintained over the duration of a rocket flight.

An alternate approach to this problem would be to synchronize the

sampling rate to the 100 Rz cho pping frequency. This could be done by

using a phase locked loop to multiply the encoder output signal. up to the

desired frequency (1 kHz) and using this as a sampling rate clock. This

method would also de-sensitize the digital processing from motor speed

variations.

Another approach would be to develop a crystal controlled frequency

locked motor control to very precisely ati2intain a constant and accurate

motor speed.

A similar effect occurs again when the magnitude of the detected

envelope is to be determined. The rotor spin, the rocket spin, and the

external electric field variation are all independent. Nothing ensures

that the sensor will be completely uncovered when the normal component of

`3I
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the electric field is at its maximum, or that the rocket angular position

will align the field meter normal to the external field when the total

horizontal electric field is at its maximum either. The peaks of the

sampled signal are effectively samples of the envelope. Therefore, the

peaks of the envelope should be determined by a sampling rate interpolation

algorithm also.

7.6 Rocket-Tip Mounted field Meter

A problem still exists for the electric field meter to be mounted in

the nose of the rocket. Current data processing arhemes are based on the

expectation that the signal components associated with the external

electric field are modulated by the rocket spin, while the unwanted signal

and any others generated by the rocket will not be modulated. A nose-

mounted meter will not be sensing a modulated field, therefore,the electric

field component of the meter output will be inseparable from the unwanted

signal.

There are some factors that work to make the nose field-meter

measurement easier. The exposure factor at the tip of the rocket is

expected to be at least 10. Also, laboratory tests showed a 70% reduction

in unwanted signal magnitude with only a 20% reduction in the measured

field value when the rotor-sensor gap was increased to 2.5 mm. A 1 V/m

electric field results in a 36 mV peak output signal from the high gain

channel. If the unwanted signal magnitude can be maintained at its minimum

(about 0.5 V peak at the high gain channel output), then an optimistic

unwanted signal value of 150 mV peak will corespond to an external

electric field magnitude of 0.5 V/m, for an exposure factor of 10 and a

rotor gap of 2.5 mm. This would make a 1 V/m external field tlarely

measurable with the tip mounted field meter.
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The tip—mounted field meter must also have some minor mechanical

modifications. During launch it will be subject to high acceleration

forces so the rotor shaft must have axial support in the opposite direction

as the shaft in the horizontally mounted meter. After burn out there will

be no centrifugal force to hold the shaft coupling againet the rear ball

bearing to maintain the rotor—sensor spacing. The front deck bronze

bushing should be replaced by the same type ball bearing used in the

preamplifier chamber wall. They have the same dimensions and so are

interchangeable. The rotor—sensor gap must now be obtained with spacers

between the rotor and the front deck ball bearing. These will not vibrate

to produce mechanical noise because they will rotate with the shaft and

bearing inner race. After burn the rotor must be held against the spacers

by a spring mounted between the preamplifier chamber wall bearing and the

coupling spline. Rater to Figure 7.3 for a diagram of this configuration.

!1
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APPENDIX I. DIGITAL FILTER DESIGN

The structure of an finite impulse response (FIR) filter is depicted

in Figure I.I. It is readily seen from this diagram that the impul&,

response of the filter is just the coefficients on the taps of the delay

register. Any type filter can be synthesized by determining its impulse

response and using it for the filter coefficients.

A procedure for the design of an FIR filter will now be given with the

filter described in Section 6.2 as an eynm ple. The method • xed is

frequency sampling of the desired filter response and windowing the

impulse response obtained from the frequency sampling. These techniques

are described in Chapter 5 of Oppenheim and Schafer [1975). Other

techniques exist but this one is very simple conceptually and is easily

implemented with existing fast fourier transform (FFT) algorithms.

In order to obtain a linear phase, real filter (a real input results

in a Teal output, there are no complex coefficients) the desired response

must be sampled as an even real function with respect to the frequency

origin. An inverse fast fourier transform (IFFT) is done on the sampled

desired frequency response to obtain the filter impulse response. For

convenience a power-of-two FFT, is used to perform the IFFT. See Chapter 10

of Brigham [19741 for more information on FFT algorithms.

The oFitput of a power-of-two IFFT with an even real input is

symmetrical about the n e 0 sample. The IFFT output must be circular

shifted to put the n e 0 -ample in the center of the filter. Since the

output of a power-of-two IFFT is an even number of samples, this results in

a filter that is symmetrical about its center with the exception of having

an extra coefficient on one end. In order to be linear phase, an FIR filter

must be symmetric about its center. The extra sample at one end of the
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Figure I.1 FIR digital filter structure.
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filter can be thrown away or another of the same value sided at the other

end to satisfy the raquirment for linear phase. In either case the filter

transfer function will be only minimally affected.

After obtaining a filter based on the impulse response of the sampled

desired response, we can compute the actual frequency response by doing an

FFT on the coeefficients. The length of the FFT should be at least twice

the filter length ( preferably even longer) so that an : ;curate

representation can be obtained. If the FFT length is too short, some of the
i

output points may coincide with nulls in the filter response and the actual

stop band magnitude of the filter will not be seen.

At this point the filter stop -band attenuation is unacceptable. To

increase the stop-band attenuation a windowing technique is used. The
1

filter coefficients are multiplied with a window having low-acplitude
i

sidelobes resulting in lower filter sidelobe amplitude at the expense of

increasing the filter passband width. Refer to Chapter 6 of Elliot and Rao 	 I

(19821 or harris ( 19781 for more information on window theory and	
!!!^

application.

For this application a length 64 IFFT is used. The sampled desired

frequency response as input to the IFFT is shown in Figure I.2. The 	 r
t

samples are of different magnitudes to center the passband at 100 Hz.
I

This is required because 100 Hz does not fall on an integer value of the

IFFT input. A length 65 filter is obtained by adding an extra sample.. The

impulse and frequency responses (computed with a length 1024 FFT) before

windowing are shown in Figure I.3 and Figure I.4. A Blackman window 	
i

(Oppenheim and Schafer ( 19751), defined by the function 	 i

w(n)	 0.42 - 0.5ccs ( 27n/(N-1)) + 0.08cos (47rn/(N-1))	 (I.1)

where 0 < n < U - 1, n denotes the filter coefficient and N is the filter

-	 _	 °. c,i	 Al.	 a
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Figure I.2 Sand-pass filter sampled desired frequency
response as input to a length 64 IFFT.
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Figure I.3 Band-pass digital filter impulse response
before windowing.
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length, is multiplied with the filter coefficients. This window is shown in

Figure I.5. The resulting impulse response is shown in Figure I.6. The

frequency response is shown in Figure 6.3. The coefficients for this filter

are listed in Table I.I.

l
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Figure 1,6 Band-pass digital filter impulse response
after windowing.
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Table I.1 Digital filter coefficient listing.

n an n an

5.88529225E-019 33 7.10098661E-002
1 1.21193136E-005 34 2.64276140E-002
2 4.35164442E-005 35 -2.6526675E-002
3 6.03161191E-005 36 -,6.6180481E-002
4 -2.8553542E-005 37 -7.7654490E-002
5 -3.46384,65E-004 38 -5.8875294E-002
6 -9.3222776E-004 39 -2.0414666E-0C)2
7 -1.5764790E-003 40 2.02969668E-002
8 -1.7434669E-003 41 4.71900754E-002
9 -7.3761250E-004 42 5.21698609E-002

10 1.B4017763E-003 4s 3.73047392E-002
11 5.52246454E-001 44 1.22236936E-002
12 8.67926125E-003 45 -1.1332963E-002
13 8.90080246E-003 46 -2.4845255E-002
14 4.17160834E-003 47 2.5833597E-•002
15 -5.5775159E-003 48 -1.7422620E-002
16 •-1.7422620E-002 49 -5.5775159E-003
17 -2.5833597E-002 50 4.17160834E-033
18 -2.48452.55E-002 51 8.90080246E-003
19 -1.1332963E-002 52 8.67926125E-003
20 1. 2238936E-002 53 5.52246454E-003
21 3.73047392E-002 54 1.84017763E-007,
222 5.21698609E-002 55 -7.3761250E-004
23 4.71900754E-002 56 -1.7434668E-04:1
24 2.02969668E-002 57 -1.5764790E-003
25 -2.0414666E-002 58 -9.3222776E-004
26 -5.8B75294E-002 59 -3.4638465E-004
27 -7.7654490E-002 60 -2.8553542E-005
28 -6.6160481.E-002 61 6.()3161191E--(:)05
29 -2.6526675E-002 62 4.35164442E-005
:30 2.64276140E-002 63 1.2119'1'6E-•005
31 7.10098661E-002 64 5.8852922`.'--019
32 B. 835(,)0000E-002
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APPENDIX II. FIR DIGITAL FILTER ENBW
f

The noise bandwidth of a noiseless analog filter is defined to be the

f

bandwidth of an ideal rectangular filter that has the same output tms

voltage as the analog filter when the inputs are white broad —band noise

processes (Gray and Meyer [19771). This same concept can be applied to a

digital filter. This discussion is geared to apply to a FI filter that

is implemented with the structure of Figure I.1.

If the input noise spectrum is assumed flat within the filter passband,

then the noise output of the filter will be shaped to match the filter

frequency response. To calculate the FIR filter equivalent noise bandwidth.

(ENBW), first obtain the frequency response by performing an FFT on the

filter coefficients. The FFT output contains the frequency response for

both positive and negative frequencies from DC to one half of the sampling

rate so only one half of the output is needed. The magnitude of the output

samples represents the filter transfer function magnitude at corresponding

frequencies. The largest sample magnitude is the maximum gain of the

filter. Square each sample magnitude and add them together to get the
4

output mean square voltage. Divide this value by the square of the maximum

filter gain. Since the FFT output points are probably not spaced at 1

Hr intervals,a final adjustment must be made. Multiply by the frequency

step per FFT outp+.t sample (or the sampling rate divided by the FFT

length). This gives the final result for the BNBW in Hz. The formula is:

N/2

ENBW . F	

iEo Ini12

	 (II.1)
max nil

where F is the frequency per sample.

ti a,
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The ENBW for the filter with response shown in Figure 6.3 is 30 Hz.

This is the bandwidth used in the Section 3.2 preamplifier noise

calculations.

:1e
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APPENDIX III. DIGITAL SIGNAL PROCESSING ROUTINES

The routines listed here are sinplifiad versions of those used to

perform digital filter synthesis, digital filtering, demodulation and do

PPT spectral analysis. Tlk%y are written in version 2.1 Pascal for Hewlett

E; t	 Packard Series 200 computers.

{ Digital Signal Processing routines
for electric field meter data processing
University of Illinois	 n
Urbana—Champaign
Aeronomy laboratory
David Burton	 6 Jun 1984 )

{ These are the global constants and variables }

CONST
maxM = 10;	 € 2^10=1024 )
maxN = 1024;	 { Max FFT length )
maxH = 513;	 f Max filter length ]
Len = maxN+maxH+l; , M of analog smpls )
PI	 = 3.14159265358979323846;

TYPE
Data = ARRAYC1..Len] of REAL;
Dataptr = ^•Data;
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Fs: REAL;	 ( Sampling rate )
M,N: INTEGER;	 € N is FFT length, M-2^N )
Choice: CHAR;	 ( Input var for user choices 3
INR: ARRAYCI..maxNl of REAL;
X : ARRAYI1..maxN3 of REAL;
Y c ARRAYCS...maxN) of REAL;

€ INR is an FFT input array. Before the
FFT is executed INR should be copied
into X and Y set to O. After this FFT
INR will be undisturbed, X will have
the real FFT output and Y will have the
imaginary FFT output. )

H : ARRAYCO..maxH-13 of REAL;
€ Digital filter coef's )

Peak: ARRAYC1..3103 of REAL;
( Waveform envelope obtained by peak
detecting )

Inp: ^Data; € Digitized waveform
Out: ^Data; •C Filtered waveform )
Filter length :INTEGER;
Out stop :INTEGER;

C Last valid data point in the Out array.
When Inp is filtered it takes one
filter length of data to get the filter
working. Therefore Out has fewer valid
data points than Inp. )

PROCEDURE BLACKMAN4iINDOW;
€ This procedure performs the Blackman window-
ing of the digital filter impulse response.
The impulse response should be in the array
H when calling this procedure. The windowed
impulse response is in H after completion. 3

VAR Wn,Q :REAL;
I :INTEGER;

BEGIN
FOR I:=0 TO (Filter -length-1) DO

BEGIN
0: = (2*PI*I)/(Filter length-1);
Wn:=0.42-0.5*COS(0)+O.OS*COS(2*Q);
Hi*):=HCI)*Wn;
END;

END;

w

VAR
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PROCEDURE FFT;
C This is a standard powtir of two FFT routine.

It is adapted from tho FFT ALGOL computer
subroutine of Figure 10-8 from Brigham 119743.
The data to be tre!isformed should be in the X
array and the y array should be zeroed before
calling FFT. )

VAR N2,M1,I,K,L,P	 :INTEGER;
Arg,C,B,Q,Treal,Timag :REAL;

FUNCTION ATOB(A,B:INTEGER)sINTEJER;
VP71 I,Temp :INTEGER;
BEGIN
Tamp: =I;
FOR I:=1 TO B DO

Temp:=A*Temp;
ATOBs=Temp;
END;

FUNCTION BITREV(J,M:INTEGER):INTEGER;
VAR I,J1,J2 9 K tINTEGER;
BEGIN
J1:-J;
Ks=O;
FOR I:=1 TO M DO

BEGIN
J2:=J1 DIV 2;
K:=K*2+(Ji-2*J2);
J1:=J2;
END;

BITREV:=K;
END;

f
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BEGIN
Qs-2*PI/N;
N2:-N DIV 2;
MISSM-1;
K:=1;
FOR L: s l TO M DO

BEGIN
REPEAT

DEGIN
FOR I t = I TO 1 y2 DO

BEGIN
P:-BITREV((K-1) DIV ATOB(2,M1),M);
Art's-Q*P;
Cs=COS(Arg);
S:=SIN(Arg);
Treal:=XCK.+N27*C+YCK+N23*S;
Timag:=YCK+N2]*C—XCK+N2]*S;
XCK.+N2]s=XCK]—Treal;
YCK+N27c=YCK.3—Timag;
XCK3:-XCK7+Treal;
YCK:7s=YCK3+Timag;
K.: =K.+1;

END;
K. s =K+N2 ;

END;
UNTIL K.-1>-N;
Ks=1;
M1:=Mi—l;
N2t=N2 DIV 2;
END;
FOR K:-2 TO N+1 DO

BEGIN
Is=BITREV(K-1,M)+1;
IF I >K.. THEN

BEGIN
Treal:=XCK7;
Timag:=YCK3;

XCK7:=XCI7;
YC)C]:=YCI7;

YCI7:=Treal;
YCI]:=Timag;
END;

END;
END;
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PROCEDURE IFFY;
{ Performs the inverse FFT on the data in the
Y and Y arrays.	 Puts the real output in the
X array into the INR array. 	 To perform the
IFFT the data in the X and Y arrays are
divided by the length N and the complex
conjugate is taken by negating the imaginary
input in the Y array and doing an FFT. )

x VAR IsINTEGER;
BEGIN
FOR Ie w l TO N DO

BEGIN
z XCI)e-XII) /N; 	 (pre-scale the input)

YII3e--YEI3,Ns	 (and complex conjugate)
END;

FFT;
FOR It a l TO N DO

BEGIN
INRCI)	 e=	 XCI);
END;

END;

PROCEDURE GEN_COEF;
{ This procedure performs the circular shift
on the IFFT output to generate the FIR
digital filter coefficients. )

VAR I,3 :INTEGER;
K	 :REAL;

BEGIN
F11ter_length:=N+1;
FOR I:=(N DIV 2)+1 TO N DO

BEGIN
HCI -(N DIV 2)-13:=XCI3;
HCI-17: =XCI-(N DIV 2));
END;

HCN1:=HCO3;
END;
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PROCEDURE FILTER;
i This procedure performs the filtering of
the data in Inp with the filter coefficients
in H and the result is placed in Out. )

VAR I , J :INTEGER;
Out copys ^Data;

BEGIN
FOR Is=1 TO Len -Filter length+l DO

BEGIN
Out^CI]:=U;
FOR Js =d TO Filter_length-1 DO

Out^CI]: -Out^CI]+
HCJ3*Inp^CI+Filter _length-1-J3;

END;
Out stops=Len-Filtsr_length+i;
END;

PROCEDURE COMPUTE _RMS;
This procedure computes the RMS value of the
data in the INR array. 3

VAR I	 tINTEGER;
Vrms :REAL;

BEGIN
Vrms:=n;
FOR 1:=1 TO N DO

BEGIN
Vrms := SQR(INRC13) + Vrms;
END;

Vrms s= SQRT(Vrms/N);
WRITELN;
WRITELN (' RMS value is ',Vrms:12);
END;

98
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PROCEDURE COMPUTE-ENBW;
{ This procedure computes the equivalent noise
bandwidth of the digital filter with
coefficients in H according to the formula
in appendix 2. D

VAR ItINTEGER;
ENBW,Max_gain.S :REAL;

BEGIN
FOR Is-1 TO Filter length DO

BEGIN
XCI] :- HCI-17; { Put H into FFT arrays
YC13 t o 0;
END;

FOR I:=Filtsr_length+l TO N DO
BEGIN
XCI7 t o 0;	 { Pad FFT arrays with 0 3
YCI3 t= 0;
END;

FFT;	 { De FFT to get freq. rasp.
ENBWt=O;
FOR Is•l TO (N DIV .2)+1 DO

BEGIN
Si=SQR(XCI1)+SQR(YCII); { Sum of squares 3
ENBWs=ENBW+S;
IF Max_gain:. S THEN Max _gain:+S;
END;

WRITELN;
ENBW:mENBW/Max_gain;
WRITELN('	 ENBW : '9ENBWs10);
ENBW:-(Fs/N)*ENBW;
WRITELN('	 or ENBW a ' I ENBW:10 1 ' I+x');
WRITELN('	 for Fs - '9Fssl0);
END;
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PROCEDURE PEAK DET;	 {peak detector)
C This procedure peak detects the waveform in
Out. Absolute value is taken. Peaks are
found by looking for local maximums. The
user has the option of doing are 8 sample
average on the peak detected data. The
output is in the Peak, array. )

VAR I 9 J :INTEGER;
S :ARRAYC1..33 of REAL;
Ave t P :REAL;

BEGIN
FOR I:=1 TO 310 DO

BEGIN
Peak. C I 3 s= 0;

END;
SC13s=ABS(Out^C23);
SC23:=ABS(Out^[13);
SE33:-ABS(Out^C13);
Ave:=0;
J:=1;
For I:=1 TO Out_stop-2 D3

BEGIN
SC33:=SC23;
SC232=S[13;
S[13:=ABS(Out^CI+23);
IF (S[23>SC13) AND (SC23>SC33) AND (J4311) THEN

BEGIN
PeakCJ3:=SC23;
Ave:=Ave+SC23;
J:=J+I;
END;

END;
Ave:=Ave/(J-1);
WkITELN(' Set average to 0?
READ(Choice);
IF Choice='Y' THEN

FOR I:=1 TO J-1 DO
BEGIN
PeakE1 3:=PeakCI3-Ave;
END;

WRITELN(' Average over 8 samples?
READ(Choice);
IF Choice='Y' THEN

BEGIN
Ave:=O;
FOR I:=l TO 8 DO Ave:=Ave+PeakCI3;
FOR I:=1 TO 302 00

BEGIN
P:=Ave;
Ave:=Ave-Peak[I3+Peak.[I+83;
PeakCI3:=P;
END;

END;
END;

100



101

APPENDIX IV. WAVEFORM DIGITIZE&

During development of the'post-flight data-processing schemes a

method of obtaining digitized electric field meter output was required so

that the data could be analyzed and appropriate processing algorithms

developed. A Hewlett Packard Series 200 desktop computer was used to

implement the digital filter synthesis and eYecut;ion and spectral analysis

programs. To digitize analog waveforms an analog-to-digital converter

(ADC) was interfaced with the computer. A 10-bit ADC was used, but system

noise limited the dynamic range to an equivalent of 8 bits. A block

diagram of the system is given in Figures IV.1.

The programmable amplifier gain can be selected by the computer to

accommodate signal ranges from 200 mV peak-to-peak up to 40 V peak to peak.

The programmable clock controls the sample-and-hold module and the ADC

sampling rate as selected by the computer (1 kHz for data presented in this

report). The interface performs the transfer of control information and

data between `he digitizer and the computer.

To digitize a waveform the gain of the amplifier and rate of the clock

are first set. The computer detects the end of a sample conversion from

the ADC and reads the sample value through the interface. The next ample

is read when the end of another sample conversion is detected. This is

continued until the desired amount of data is acquired.



102

t
CL
Q.
Cw

OAR

i
w

M7
Yu
0

a
w
d
N
rl
Y

00
M
Q

^-i

H

d

7

MW



103

REFERENCES

Sragin, Y. A., A. A. Tyutin, A. A. Kocheev and A. A. Tyutin [1974], Direct

measurement of the atmosphere ' s vertical electric field intensity up to
+	 1.

80 km, Cosmic Res., ^, 279-282.

Brigham, E. 0. [1974] 0 The Fast Fourier Transform, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey.

Chalmers, J. A. [1967], Atmt1 upheric Electricitv, Pergamon Press, New York.

Dettro, G. L. and L. G. Smith [ 1982], A rocket-borne electric field

meter for the middle atmosphere, Aeron. Rep. No. 105, Aerou. Lab.,

Dep. Elec. and Comp. Eng., Univ. Ill., Urbana-Champaign.

Elliot, D. F. and K. R. Rao [19821, Fast Transforms: Algorithms, Analyses,

App lications, Academic Press, New York.

Cray, P. R. and R. G. Meyer [ 1977], Analysis and Design of Analog

Integrated Circuits, John Wiley and Sons, New York.

Hale, L. C. and C. L. Croaky ( 1979], An auroral effect on the fair weather

electric field, Nature, 278, 239-241.

Hale, L. C., C. L. Crosky and J. D. Mitchell [ 19811, Measurement of middle-

atmosphere electric fields and associated electrical conductivities,

Geophvs. Res, Lett., 8 927-930.

Parris, F. J. [ 1978], on the use of windows for harmonic analysis with the

discrete fourier transform, Proc. IEEE. V66, No.l, Jan 1978.

Kelley, M. C., C. L. Siefring, R. F. Pfaff, Jr. [ 1983], Large amplitude

middle atmospheric electric fields: fact or fiction?, Geoyhvs. Res,

Lett., 8 733-736.

Markson, R. [ 1978], Solar moduletion of atmospheric electrification and

possible implications for the Sun-weather relationship, Nature,

Z, 103-109.



104

Maynard, N. C., C. L. Crosky, J. D. Mitchell and L. C. Hale 119811,

Observations of volt/meter electric fields in the middle atmosphere,

Geoohys, Res, Lett., 8, 923-926.

Maynard, N. C., F. J. Schmidlin, L. C. Hale and C. L. Crosky 119821, Middle

atmosphere campaign: Electric field structure in the high latitude

middle atmosphere, EOS Trans., §L 337.

Mozer, F. S. 119711, Ballon measurements of vertical and !%oriznntal

atmospheric electric fields, Pure Aovl, Geoohys., 84, 32-45.

Oppenheim, A. V. and R. W. Schafer [19751, Digital Signal Processing,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Pfaff, R., M. C. Kelley, P. Kintner, C. Cornish, R. Holzwortb and L. Hale

[1980], Simultaneous measurements of mesospheric and stratospheric

electric fields on two rockets and a ballon, EOS Trans., 61, 1056.

Smith, L. G. 119541, An electric field meter with extended frequency range,

Rev. Sci. Instr., 25, 510-513.

Taylor, F. J. [19831, Digital Filter Design Handbook, Marcel Dekker, Inc.,

New York.

Tyutin, A. A. [1976], Mesospheric maximum of the electric field strength,

Cosmic Res., 14, 132-133.

Wilson, C. T. R. [1920], Investigations on lightning discharges and on the

electric field of thunderstorms, Phil. Trans. A., 221, 73-115.

.	 ,

--fir-

1


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E09_.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0002A01.pdf
	0002A02.pdf
	0002A03.pdf
	0002A04.pdf
	0002A05.pdf
	0002A06.pdf
	0002A07.pdf
	0002A08.pdf
	0002A09.pdf
	0002A10.pdf
	0002A11.pdf
	0002A12.pdf
	0002A13.pdf
	0002A14.pdf
	0002B01.pdf
	0002B02.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf



