17 research outputs found

    A Linear Logic Based Approach to Timed Petri Nets

    Get PDF
    1.1 Relationship between Petri net and linear logic Petri nets were first introduced by Petri in his seminal Ph.D. thesis, and both the theory and the applications of his model have flourished in concurrency theory (Reisig & Rozenberg, 1998a; Reisig & Rozenberg, 1998b)

    The Reachability Problem for Petri Nets is Not Elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.Comment: Final version of STOC'1

    Improved Lower Bounds for Reachability in Vector Addition Systems

    Get PDF
    We investigate computational complexity of the reachability problem for vector addition systems (or, equivalently, Petri nets), the central algorithmic problem in verification of concurrent systems. Concerning its complexity, after 40 years of stagnation, a non-elementary lower bound has been shown recently: the problem needs a tower of exponentials of time or space, where the height of tower is linear in the input size. We improve on this lower bound, by increasing the height of tower from linear to exponential. As a side-effect, we obtain better lower bounds for vector addition systems of fixed dimension

    Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem

    Get PDF
    Petri nets, equivalently presentable as vector addition systems with states, are an established model of concurrency with widespread applications. The reachability problem, where we ask whether from a given initial configuration there exists a sequence of valid execution steps reaching a given final configuration, is the central algorithmic problem for this model. The complexity of the problem has remained, until recently, one of the hardest open questions in verification of concurrent systems. A first upper bound has been provided only in 2015 by Leroux and Schmitz, then refined by the same authors to non-primitive recursive Ackermannian upper bound in 2019. The exponential space lower bound, shown by Lipton already in 1976, remained the only known for over 40 years until a breakthrough non-elementary lower bound by Czerwi?ski, Lasota, Lazic, Leroux and Mazowiecki in 2019. Finally, a matching Ackermannian lower bound announced this year by Czerwi?ski and Orlikowski, and independently by Leroux, established the complexity of the problem. Our primary contribution is an improvement of the former construction, making it conceptually simpler and more direct. On the way we improve the lower bound for vector addition systems with states in fixed dimension (or, equivalently, Petri nets with fixed number of places): while Czerwi?ski and Orlikowski prove F_k-hardness (hardness for kth level in Grzegorczyk Hierarchy) in dimension 6k, our simplified construction yields F_k-hardness already in dimension 3k+2

    Formalizing Operational Semantic Specifications in Logic

    Get PDF
    AbstractWe review links between three logic formalisms and three approaches to specifying operational semantics. In particular, we show that specifications written with (small-step and big-step) SOS, abstract machines, and multiset rewriting, are closely related to Horn clauses, binary clauses, and (a subset of) linear logic, respectively. We shall illustrate how binary clauses form a bridge between the other two logical formalisms. For example, using a continuation-passing style transformation, Horn clauses can be transformed into binary clauses. Furthermore, binary clauses can be seen as a degenerative form of multiset rewriting: placing binary clauses within linear logic allows for rich forms of multiset rewriting which, in turn, provides a modular, big-step SOS specifications of imperative and concurrency primitives. Establishing these links between logic and operational semantics has many advantages for operational semantics: tools from automated deduction can be used to animate semantic specifications; solutions to the treatment of binding structures in logic can be used to provide solutions to binding in the syntax of programs; and the declarative nature of logical specifications provides broad avenues for reasoning about semantic specifications

    Debits and Credits in Petri Nets and Linear Logic

    Get PDF
    Exchanging resources often involves situations where a participant gives a resource without obtaining immediately the expected reward. For instance, one can buy an item without paying it in advance, but contracting a debt which must be eventually honoured. Resources, credits and debits can be represented, either implicitly or explicitly, in several formal models, among which Petri nets and linear logic. In this paper we study the relations between two of these models, namely intuitionistic linear logic with mix and Debit Petri nets. In particular, we establish a natural correspondence between provability in the logic, and marking reachability in nets

    Reachability in fixed dimension vector addition systems with states

    Get PDF
    The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability. We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14

    The reachability problem for Petri nets is not elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack

    On The Decidability Of MELL: Reachability In Petri Nets With Split/Join Transitions

    No full text
    We define Petri nets with split and join transitions, a new model that extends Petri nets. We prove that reachability in this model without join transitions is equivalent to the decidability of \MELL. We define a suitable notion of covering graph for the model, and prove its finiteness and effective constructibility
    corecore