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Abstract. Exchanging resources often involves situations where a par-
ticipant gives a resource without obtaining immediately the expected
reward. For instance, one can buy an item without paying it in advance,
but contracting a debt which must be eventually honoured. Resources,
credits and debits can be represented, either implicitly or explicitly, in
several formal models, among which Petri nets and linear logic. In this
paper we study the relations between two of these models, namely in-
tuitionistic linear logic with mix and Debit Petri nets. In particular, we
establish a natural correspondence between provability in the logic, and
marking reachability in nets.
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1 Introduction

The exchange of resources (both physical and virtual) is a natural aspect of many
kinds of interactions, e.g., those involving participants distributed over an open
network. To reason about these interactions, it is beneficial to model them using
a formal system, e.g., a logic, a process calculus, or a Petri net. Typically, parties
exchange resources in a circular way: one provides the other with a resource, and
waits for something in return. If not dealt with properly, circularity can lead to
a deadlock: this is especially the case when parties are mutually distrusting, and
so no one is willing to do the first move. This is a classical issue, discussed by
philosophers at least since Hobbes’ Leviathan [1], and more recently dealt with
by several works in the area of concurrency theory, e.g. [2,3,4,5,6,7].

As an example, consider the following scenario: Alice wants a birthday cake
(cb), but she only has the ingredients to make an apple cake (ia); Bob wants
an apple cake (ca), but he only has the ingredients to make a birthday cake
(ib). They make a deal: each one will cook for the other, and then they will
exchange cakes (and eat them). We want to model this situation using logic: in
particular, since we deal with resources to be consumed and produced, we will
make use of linear logic (LL) [8]. Each resource will correspond to an atomic
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formula; a linear implication A ( B represents a process which consumes the
resource A to produce the resource B, while a tensor product A⊗B stands for
the conjunction of the resources A,B. The neutral element 1 of ⊗ denotes the
absence of resources.

A first attempt to model the deal between Alice and Bob could be the follow-
ing, where we represent Alice’s and Bob’s proposals as multisets of linear logic
formulas:

– Alice’s proposal: ΓAlice = ia, (ia⊗ cb)( ca
– Bob’s proposal: ΓBob = ib, (ib⊗ ca)( cb

After a correct interaction between Alice and Bob, we expect that all re-
sources have been consumed: in the logical model, this corresponds to deducing
ΓAlice, ΓBob ` 1 (where ` is the entailment relation of the logic). However, this
sequent is not provable in linear logic. The reason why the entailment fails is
that both Alice and Bob wait for the other to deliver something before starting
to cook, but since no one starts, no cake can be made.

Cancellative linear logic [9] is a logic where Alice and Bob reach an agreement
on their respective proposals, as the sequent ΓAlice, ΓBob ` 1 is provable. An ex-
planation of this fact is that the previous proposals are equivalent, in cancellative
linear logic, to those below:

– Alice’s proposal: Γ ′Alice = ia, ia( (ca⊗ cb⊥)
– Bob’s proposal: Γ ′Bob = ib, ib( (cb⊗ ca⊥)

From the second proposals, it is evident that Γ ′Alice, Γ
′
Bob ` ca⊗cb⊗ca⊥⊗cb⊥

(this latter fact also holds in LL). Differently from LL, cancellative linear logic
proves the annihilation principle A ⊗ A⊥ ` 1, allowing dual formulas to cancel
out. A consequence of this fact is that Γ ′Alice, Γ

′
Bob ` 1, as wanted. Intuitively,

negative atoms, like ca⊥, act as debits, while positive ones, like ca, act as credits.
However, the first and the second proposals have a slightly different flavour.

In the first, Alice is using cb in the left-hand side of the implication, and this
could be interpreted as requiring Bob’s cake in advance, in order to produce her
apple cake. Instead, in the second proposal Alice can start producing her cake
without Bob’s one, but she records the debit cb⊥ in the right-hand side of the
implication.

The reason why cancellative linear logic does not capture the difference be-
tween the two proposals is that it proves the inverse annihilation principle
1 ` A ⊗ A⊥, making the two proposals equivalent. This principle models the
fact that it is always possible to generate from scratch a pair debit, credit. How-
ever, we find this principle not always realistic: in our scenario, it would allow
Alice to prepare her cake even in the absence of the needed ingredients (which
would be recorded as debits, though).

We therefore look for a refinement of the logic, wherein debits can be gener-
ated in a controlled manner: formally, we want annihilation, but not its inverse.
To this purpose, we consider a linear logic which comprises a rule, usually called
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[Mix], which makes it possible to prove annihilation [10]. In particular, we focus
on intuitionistic linear logic with [Mix] (ILLmix) [11].

In this logic, the second proposal of Alice and Bob leads to an agreement,
while the first one does not: formally, Γ ′Alice, Γ

′
Bob ` 1, but ΓAlice, ΓBob 0 1. This

is because, in the second proposal, the deadlock situation is avoided by allowing
Alice to give an apple cake to Bob, provided that contextually Bob is charged
with a debit to give her a birthday cake.

Contribution In this paper we focus on the Horn fragment of ILLmix, which
only admits negation, tensor products, linear implications, and exponentials.
We provide this fragment with a big-step operational semantics, as well as a
small-step one, and we prove that Horn ILLmix is sound and complete with
respect to these semantics (Theorems 2 and 3).

Leveraging on these semantics, we proceed to prove our main result, i.e., that
provability in Horn ILLmix is equivalent to the reachability problem for Debit
nets [12] with delayed annihilation (Theorem 4), which is known to be decidable.

2 Intuitionistic linear logic with mix

In this section we recall from [11] the syntax, the sequent calculus, and some
facts about ILLmix.

Definition 1 (Syntax of ILLmix). Assume a denumerable set A of atoms,
ranged over by a, b, . . .. The formulas A,B, . . . of ILLmix are defined as follows:

A ::= a
∣∣ A⊥ ∣∣ A⊗A ∣∣ A( A

∣∣ A&A
∣∣ A⊕A ∣∣ !A

∣∣ 1
∣∣ 0

∣∣ > ∣∣ ⊥
The sequent calculus of ILLmix is depicted in Figure 1; the symbol γ in the

expression Γ ` γ may stand either for empty or for a formula A. We say that A
is provable whenever ` A can be deduced with the rules in Figure 1.

We observe that A⊥ can be defined as A (⊥; in this case the rules [negR]

and [negL] become derivable from the other rules of ILLmix. However, we prefer
to regard A⊥ as a primitive, rather than syntactic sugar.

Theorem 1 (Cut elimination [11]). Every provable sequent of ILLmix ad-
mits a proof without the [Cut] rule.

Example 1. As an example of an ILLmix proof, we provide the proof of the
annihilation principle A⊗A⊥ ` 1:

[ax]
A ` A

[negL]
A,A⊥ `

[⊗ L]
A⊗A⊥ `

[1R]
` 1

[mix]
A⊗A⊥ ` 1

We remark that introducing the rule [mix] is equivalent to adding the principle
⊥ ` 1. In fact, if ⊥ ` 1 is assumed, the rule [mix] becomes derivable:
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[ax]
A ` A

Γ ` A Γ ′, A ` γ
[Cut]

Γ, Γ ′ ` γ
Γ ` Γ ′ ` γ

[Mix]
Γ, Γ ′ ` γ

Γ,A `
[negR]

Γ ` A⊥
Γ ` A

[negL]
Γ,A⊥ `

Γ `
[⊥R]

Γ `⊥
[⊥L]

⊥ `
[1R]

` 1
Γ ` γ

[1L]
Γ, 1 ` γ

[>]
Γ ` >

[0L]
Γ, 0 ` A

Γ,A ` γ Γ,B ` γ
[⊕L]

Γ,A⊕B ` γ
Γ ` A

[⊕R1]
Γ ` A⊕B

Γ ` B
[⊕R2]

Γ ` A⊕B

Γ ` A Γ ` B
[&R]

Γ ` A&B

Γ,A ` γ
[&L1]

Γ,A&B ` γ
Γ,B ` γ

[&L2]
Γ,A&B ` γ

Γ,A,B ` γ
[⊗L]

Γ,A⊗B ` γ
Γ ` A Γ ′ ` B

[⊗R]
Γ, Γ ′ ` A⊗B

Γ ` A Γ ′, B ` γ
[(L]

Γ, Γ ′, A( B ` γ
Γ,A ` B

[(R]
Γ ` A( B

Γ,A ` γ
[!L]

Γ, !A ` γ
!Γ ` A

[!R]
!Γ `!A

Γ ` γ
[weakL]

Γ, !A ` γ
Γ, !A, !A ` γ

[coL]
Γ, !A ` γ

Fig. 1: Sequent calculus of ILLmix.

Γ ` γ
[1L]

Γ, 1 ` γ
∆ `

[⊥ R]
∆ `⊥

[( L]
Γ,∆,⊥( 1 ` γ

⊥ ` 1
[( R]

`⊥( 1
[cut]

Γ,∆ ` γ

Inversely, this principle is derivable using the rule [mix], as follows:

[⊥ L]
⊥ `

[1R]
` 1

[mix]
⊥ ` 1

In cancellative linear logic [9], instead, 1 a`⊥ and A( B a` A⊥ ⊗B. As a
consequence both the principles 1 ` A⊗A⊥ and A⊗A⊥ ` 1 are valid.

2.1 Simple products and multisets

We denote by A⊥ the set {a⊥ | a ∈ A}. We call literals the elements of L =
A ∪ A⊥. A simple product (resp. positive simple product) is a tensor product
a1 ⊗ . . . ⊗ an where ai ∈ L ∪ {1} (resp. ai ∈ A ∪ {1}) for all i. We will use
X,Y,W,Z as metavariables for simple products.

A multiset over L is a function from L to the set N of natural numbers. The
union d of multisets is defined as expected; by ∅ we denote the empty multiset
(that is, the constant function 0). The support set(Σ) of a multiset Σ is the set
{a | Σ(a) > 0}. For each simple product X, we define the multiset msetX as:
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[ax]
ca ` ca

[negL]
ca, ca⊥ `

[ax]
cb ` cb

[negL]
cb, cb⊥ `

[mix]
ca, cb⊥, cb, ca⊥ `

[⊗L]
ca, cb⊥, cb⊗ ca⊥ `

[⊗L]
ca⊗ cb⊥, cb⊗ ca⊥ `

[1R]
` 1

[mix]
ca⊗ cb⊥, cb⊗ ca⊥ ` 1

[ax]
ib ` ib

[(L]
ib, ca⊗ cb⊥, ib( (cb⊗ ca⊥) ` 1

[ax]
ia ` ia

[(L]
ia, ib, ia( (ca⊗ cb⊥), ib( (cb⊗ ca⊥) ` 1

Fig. 2: Proof of the sequent corresponding to the second proposal of Section 1.

– if X = 1 then mset1 is the constant function 0;

– if X = x ∈ L, then msetx is the function: msetx(y) =

{
1 if y = x

0 otherwise

– if X = X1 ⊗X2, then msetX1⊗X2
= msetX1

dmsetX2
.

Given a multiset of simple products Ω = {W1, . . . ,Wn}, we denote by
⊗
Ω

the simple product W1⊗ . . .⊗Wn. Hereafter we will often exploit implicitly this
correspondence, and we will use the same metavariables to denote both multisets
of literals and simple products: the difference will be clear from the context.

2.2 Horn ILLmix sequents

Horn implications, ranged over by H,H ′, are formulas of the form X ( Y ,
where X is positive. Horn sequents are sequents of the form:

Ω,Γ, !∆ ` Z

where Ω is a multiset of simple products, and Γ and ∆ are multisets of Horn
implications; when Z is positive, we say that the Horn sequent is honoured. A
Horn theory is a pair (Γ, !∆).

Example 2. Figure 2 shows a proof in ILLmix of the Horn sequent corresponding
to the second proposal of Section 1:

ia, ib, ia( (ca⊗ cb⊥), ib( (cb⊗ ca⊥) ` 1

The Horn sequent corresponding to the first proposal, instead, is not provable.

3 Debit nets

In this section we present a minor variant of the debit nets in [12], in order to
obtain a correspondence with Horn ILLmix.
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We assume the reader familiar with Petri nets, and only recall here some basic
notions [13]. A Petri net is a tuple (S, T, F ), where S is a set of places, T is a set
of transitions (with the constraint that S∩T = ∅), and F : (S×T )∪(T×S)→ N
is a weight function. The state of a net is given by a marking, that is a function
m : S → N assigning to each place a certain number of tokens. The behaviour
of a Petri net is described by a transition relation between markings: if m(s)
contains at least F (s, t) tokens for all s, then the transition t can fire, decreasing
m(s) by F (s, t) tokens and increasing it by F (t, s).

Debit nets (DPN) [12] extend Petri nets by allowing places to give tokens
“on credit”, so that transitions can fire even in the absence of the required
number of tokens. Technically, each place s contains a number of tokens m(s)
(modelling credits) and of antitokens d(s) (modelling debits). In general, token
and antitokens can co-exist in a place. Transitions affect m in the standard way:
for a transition t to be fired the marking m(s) must contain at least F (s, t)
tokens for all s, and after the firing m(s) will be decreased by F (s, t) tokens and
increased by F (t, s). Instead, upon the firing of t, the number of antitokens d(s)
is increased by L(s, t), where the lending function L : S × T → N specifies how
many tokens are borrowed at each time. Note the differences between m,F and
d,L. First, F and m are used to check whether a transition can be fired, while L
and d are not. This renders the fact that a debit can neither prevent nor cause
a transition to fire. Second, F (t, s) is defined while L(t, s) is not: this is because
the generation of antitokens is already obtained through L(s, t). Hence, debits
can only be increased by firing transitions.

At any time tokens and antitokens can cancel out through a special annihila-
tion step. More precisely, both m(s) and d(s) can be simultaneously decremented
when non-zero (this is the delayed annihilation policy of [12]).

Definition 2 (Debit net). A debit net is a tuple N = (S, T, F,L) where:

– (S, T, F ) is a Petri net,
– L : S × T → N is the lending function.

We now formalise the notion of marking and of honoured markings, i.e. those
where all debits have been honoured.

Definition 3 (Marking). A marking of a debit net N = (S, T, F,L) is a pair
(m, d) of functions such that

– m : S → N is the token function
– d : S → N is the antitoken function

A marking (m, d) of N is honoured iff d(s) = 0 for all places s of N .

Example 3. In Figure 3 we represent a DPN with places {a, b, c, d}, having initial
marking {a 7→ (1, 0), b 7→ (0, 0), c 7→ (0, 0), d 7→ (1, 0)}. When representing
DPNs, we adopt the following drawing conventions: places are depicted as circles,
transitions as squares, and arcs connecting transition to places are decorated
with their weights. In case of arcs connecting places to transitions we have a
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a b d

c

t3

(2,0)

t2

t1

(0,2)

Fig. 3: A Debit Petri net.

pair of natural numbers, the first representing the weight of the standard arcs
(possibly 0) and the second the weight of the lending ones. We do not write the
weight (1, 0) (from places to transitions) or 1 (from transitions to places), and do
not draw any arc between a place and a transition if both standard and lending
arcs have null weights. Tokens are depicted as filled bullets, while antitokens as
empty bullets.

Definition 4 (Step and computation). Let N = (S, T, F,L) be a DPN, and
let (m, d) be a marking of N . We say that:

– t ∈ T is enabled at (m, d) iff m(s) ≥ F (s, t) for all s;
– annihilation is enabled at (m, d) for s iff m(s) > 0 and d(s) > 0.

A step from (m, d) to (m′, d′) — in symbols (m, d) −→N (m′, d′) — can occur
whenever one of the following holds:

– t is enabled at (m, d), and, for all s ∈ S:

m′(s) = m(s)− F (s, t) + F (t, s) d′(s) = d(s) + L(s, t)

– annihilation is enabled at (m, d) for s̃, and, for all s ∈ S:

m′(s) =

{
m(s)− 1 if s = s̃

m(s) otherwise
d′(s) =

{
d(s)− 1 if s = s̃

d(s) otherwise

A computation is a finite sequence of steps. As usual, we denote with −→∗N the
reflexive and transitive closure of −→N .

Example 4. In the DPN in Figure 3 there are two possible computations, depend-
ing on when annihilation occurs. A computation is represented as a sequence of
vectors, the elements of which are pairs (m(s), d(s)).

a b c d

(1,0) (0,0) (0,0) (1,0)

t1 (0,0) (0,2) (1,0) (1,0)

t2 (0,0) (1,2) (0,0) (1,0)

annihil (0,0) (0,1) (0,0) (1,0)

a b c d

(1,0) (0,0) (0,0) (1,0)

t1 (0,0) (0,2) (1,0) (1,0)

t2 (0,0) (1,2) (0,0) (1,0)

t3 (0,0) (2,2) (0,0) (0,0)

annihil (0,0) (1,1) (0,0) (0,0)

annihil (0,0) (0,0) (0,0) (0,0)
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The computation depicted in the left part of the previous table follows an
instantaneous annihilation policy: annihilation occurs as soon as possible (the
leftmost column records the transition taken to obtain the marking in the row).
Indeed, as soon as we find (1, 2) in place b, we annihilate it to (0, 1). Note that
this computation leaves a debit in place b, which can not be honoured by any
further transitions, since the net is stuck. Instead, under the delayed annihilation
policy, settling debits is not prioritized. Hence, when b reaches (2, 1) we can either
annihilate, obtaining the previous computation, or instead perform transition t3,
obtaning the computation in the right part of the previous table, where every
debit is eventually honoured.

4 Debit nets as a model of Horn ILLmix

In this section we reduce provability of honoured Horn sequents in ILLmix to
reachability in DPNs. As an intermediate step, we will endow Horn ILLmix with
two operational semantics: a big-step and a small-step one. The proof proceeds
as follows: in Theorem 2 we show that the big-step semantics coincides with
Horn ILLmix provability when applied to honoured sequents; in Proposition 3 we
show that small-step semantics simulate faithfully computations in DPNs. The
equivalence between the two semantics (Proposition 1) then allows to derive our
principal result (Theorem 4) as a corollary. A similar proof technique is used by
Kanovich in [14], to prove the equivalence between reachability in Petri nets and
provability in Horn LL (without mix and negation).

4.1 Big-step semantics

The big-step semantics of Horn ILLmix is formalised as a relation ⇓ between
triples (W,Γ, !∆) and simple products Z. The intuition is that (W,Γ, !∆) ⇓ Z
holds in the big-step semantics if and only if the sequent (W,Γ, !∆) ` Z is
provable in ILLmix, whenever Z is positive. Note that here we are interpreting
W as a multiset of literals.

Definition 5 (Big-step semantics of Horn ILLmix). We inductively define
the relation (W,Γ, !∆) ⇓ Z by the rules in Figure 4.

Intuitively, the axiom [⇓ H] models the consumption of the resource X to
produce Y , by using an implication X ( Y . Rule [⇓ S] models the settlement
of a debit a⊥ with the corresponding credit a. Rules [⇓ cut] and [⇓ M] deal with
composition of computations; rules [⇓ C!], [⇓W!], and [⇓ L!] are the counterpart of
the structural rules of LL, stating that !-ed implications may be re-used at will.

Theorem 2. Let Ω,Γ, !∆ ` Z be an honoured Horn sequent. Then:

(
⊗

Ω,Γ, !∆) ⇓ Z ⇐⇒ Ω,Γ, !∆ ` Z
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[⇓ I]
(X,∅,∅) ⇓ X

(W,Γ1, !∆1) ⇓ U (U, Γ2, !∆2) ⇓ Z
[⇓ cut]

(W,Γ1 d Γ2, !(∆1 d∆2)) ⇓ Z

[⇓ H]
(X,X ( Y,∅) ⇓ Y

[⇓ S]
(a⊗ a⊥,∅,∅) ⇓ 1

(X,Γ, !∆) ⇓ Z
[ ⇓W!]

(X,Γ, !(∆ d {H})) ⇓ Z
(X,Γ, !∆) ⇓ Y

[⇓ M]
(X ⊗ V, Γ, !∆) ⇓ Y ⊗ V

(X, (Γ d {H}), !∆) ⇓ Z
[⇓ L!]

(X,Γ, !(∆ d {H})) ⇓ Z
(X,Γ, !(∆ d {H,H})) ⇓ Z

[⇓ C!]
(X,Γ, !(∆ d {H})) ⇓ Z

Fig. 4: Big-step semantics of Horn ILLmix.

(X ⊗W,Γ d {X ( Y }, !∆) ; (Y ⊗W,Γ, !∆) [;H ]

(X ⊗W,Γ, !∆ d {!(X ( Y )}) ; (Y ⊗W,Γ, !∆ d {!(X ( Y )}) [;!H ]

(a⊗ a⊥ ⊗W,Γ, !∆) ; (1⊗W,Γ, !∆) [;S ]

Fig. 5: Small step semantics of Horn ILLmix.

4.2 Small-step semantics

We now introduce a small-step semantics of Horn ILLmix, which we will show
equivalent to the big-step one in Proposition 1. Together with Theorem 2, we
will obtain a correspondence between the small-step semantics and provability
in Horn ILLmix.

Definition 6 (Small-step semantics of Horn ILLmix). We define the tran-
sition system (Q,;) as follows:

– Q is the set of all triples of the form (W,Γ, !∆), where W is a multiset of
literals, and Γ,∆ are multisets of Horn implications.

– ; is defined by the rules in Figure 5. As usual, we denote with ;∗ the
transitive and reflexive closure of the relation ;.

The multisets W and Γ in the small-step semantics play a role similar to
that of markings in DPNs. In particular, W takes into account the tokens and
antitokens in places, while Γ is used to bound how many times a transition can
be fired. This intuition will be exploited in the following section, to establish a
correspondence between the small-step semantics and computations in DPNs.

We now briefly comment on the rules in Figure 5. Rule [;H ] applies an
implication in Γ , and then discharges one of its occurrences; rule [;!H ] is similar,
except that it does not discharge any occurrence; finally, rule [;S ] annihilates a
token with an antitoken.

Proposition 1. (W,Γ, !∆) ⇓ Z ⇐⇒ (W,Γ, !∆) ;∗ (Z,∅, !∆)
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T = set(Γ ) ] set(∆)

S = Satm ∪ Sctrl where Satm = 〈set(Γ d∆)〉 and Sctrl = set(Γ )

F (s, t) =


msetX(s) if s ∈ Satm and t = X ( Y

1 if s ∈ Sctrl and t = in0(s)

0 otherwise

F (t, s) =

{
msetY (s) if s ∈ Satm and t = X ( Y

0 otherwise

L(s, t) =

{
msetY (s⊥) if s ∈ Satm and t = X ( Y

0 otherwise

Fig. 6: Encoding of Horn ILLmix theories into Debit nets.

The following theorem directly follows from Theorem 2 and Proposition 1.

Theorem 3. Let Ω,Γ, !∆ ` Z be an honoured Horn sequent. Then

(
⊗

Ω,Γ, !∆) ;∗ (Z,∅, !∆) ⇐⇒ Ω,Γ, !∆ ` Z

4.3 Encoding Horn ILLmix into Debit nets

We now provide an encoding of Horn theories into Debit nets. We start by
defining a function 〈A〉 associating a Horn formula A with the set of atoms
occurring in it (this function is extended to sets of formulas as usual):

〈1〉 = ∅ 〈a⊥〉 = 〈a〉 = {a} 〈A⊗B〉 = 〈A( B〉 = 〈A〉 ∪ 〈B〉

Given two multisets of Horn implications Γ,∆, the Horn theory (Γ, !∆) can
be encoded as a Debit net as follows.

Definition 7. For a pair (Γ, !∆), we define the DPN N(Γ, !∆) in Figure 6.

We now comment on Definition 7. For every Horn implication in Γ and ∆
we generate a transition in T . We keep the transitions coming from Γ and ∆
separate, using disjoint union ] (with left and right injections denoted by in0
and in1, respectively). We use the set function to ignore multiplicity: e.g., if the
multiset Γ contains two equal implications, only a single transition is generated.
Then, for any atom occurring in ∆ or Γ (disregarding multiplicity), we generate
an atom place in the net (in Satm). Tokens and antitokens in this place represent
the credits and debits for that atom, respectively. Further, we generate a control
place (in Sctrl) for each implication in Γ . During a computation, the number of
tokens in this place corresponds to the multiplicity of an implication in Γ . Since
implications in ∆ are under a !, their multiplicity is immaterial, hence we do not
generate control places for ∆.
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The function F (s, t) specifies how many tokens from s are consumed by fir-
ing a transition t. Assume t corresponds to an implication X ( Y (either in Γ
or in ∆). Then, firing t consumes tokens in two different ways. First, for each
occurrence of a literal a in X, it consumes a token (msetX(a) tokens removed
from place a). Second, it consumes a single token from the control place asso-
ciated to the implication X ( Y in Γ . Technically, t is the left injection in0
of the control place s = X ( Y ; with a little abuse of notation, when writing
t = X ( Y we mean that t = ini(X ( Y ) for i = 0 or i = 1. The function
F (t, s) specifies how many tokens are produced in place s by firing t. When firing
a transition for X ( Y (either in Γ or in ∆), we generate a token for each oc-
currence of a positive literal a of Y (msetY (a) tokens added to place a). Finally,
the function L(s, t) specifies how many antitokens are produced: the transition
for X ( Y generates an antitoken for each occurrence of a negative literal a⊥

in Y (msetY (a⊥) antitokens added to place a).
Given a DPN N = N(Γ0, !∆0), we say that a pair (W,Γ ) of a simple product

W and a multiset of Horn implications Γ is compatible with N iff 〈W 〉 ⊆ Satm

(the set of atom places of N), and set(Γ ) ⊆ set(Γ0). Every pair (W,Γ ) com-
patible with N can be represented with the marking [W,Γ ] of N , defined below.
Roughly, the marking counts the multiplicity of each positive and negative literal
in W , as well as the multiplicity of the implications in Γ .

Definition 8. Let N = N(Γ0, !∆0) for some Horn theory (Γ0, !∆0), and let
(W,Γ ) be compatible with N . We define the marking [W,Γ ] = (m, d) of N as:

m(s) =

{
msetW (s) if s ∈ Satm

Γ (in0(s)) if s ∈ Sctrl
d(s) =

{
msetW (s⊥) if s ∈ Satm

0 otherwise

Note that the above operator [W,Γ ] is not injective, since e.g. W ′ = a ⊗ b
and W ′′ = b ⊗ a will lead to the same marking. However, injectivity can be
recovered considering simple products up to commutativity, associativity, and 1
identities. From now on, we will consider simple products up to this equivalence.
The following proposition ensures that the operator is also surjective.

Proposition 2. For all markings (m, d) of N = N(Γ0, !∆0) there exists a unique
(W,Γ ) compatible with N such that (m, d) = [W,Γ ].

Example 5. Consider the second proposal of Alice and Bob’s in Section 1, mod-
elled as the Horn theory (Γ, !∅), where:

Γ = {A,B} with A = ia( ca⊗ cb⊥ and B = ib( cb⊗ ca⊥

In Figure 7 we show the DPN N(Γ,∅), with initial marking [{ia, ib}, Γ ]. Note
that after firing tA and tB (in any order), followed by two annihilation steps, the
DPN reaches the empty marking.

We now establish a strict correspondence between the small-step semantics
of ILLmix and DPN computations. First, we relate the states in the semantics
to markings in the DPN, through the [·] operator. Then, we show that each step
in the semantics corresponds to a step in the DPN, and vice versa.

11
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ia

ib

ca

A

B

tB

(0,1)

tA

(0,1)

Fig. 7: The second proposal of Section 1 as a DPN (tA = in0(A), tB = in0(B)).

Proposition 3. Let N = N(Γ0, !∆), and let (W,Γ ) be compatible with N . Then:

(W,Γ, !∆) ; (W ′, Γ ′, !∆) ⇐⇒ [W,Γ ] −→N [W ′, Γ ′]

Note that, when taking the ⇐ direction in the above statement, assuming
markings of the form [W,Γ ] is not a restriction, because Proposition 2 guarantees
surjectivity.

Combining the above correspondence with the one in Theorem 3, we ob-
tain our main result: the provability of an honoured Horn sequent in ILLmix is
equivalent to reachability of certain honoured markings in DPNs.

Theorem 4. Let N = N(Γ, !∆). An honoured Horn sequent Ω,Γ, !∆ ` Z of
ILLmix is provable iff [

⊗
Ω,Γ ] −→∗N [Z,∅].

Example 6. Consider the marked DPN N in Figure 3. A Horn theory (Γ, !∆)
such that N(Γ, !∆) = N is the following:

Γ = ∅ ∆ = {a( b⊥ ⊗ b⊥ ⊗ c, c( b, b⊗ d( b⊗ b}

The unique pair (W0, Γ0) corresponding to the marking in Figure 3 is W0 = a⊗d,
Γ0 = ∅. Consider again the computation in the rightmost table of Example 4.
According to Theorem 4, the following Horn ILLmix sequent is provable:

a⊗ d, !(a( b⊥ ⊗ b⊥ ⊗ c), !(c( b), !(b⊗ d( b⊗ b) ` 1

Remark 1. Note that the ⇒ direction of Theorem 4 does not hold, in general,
when the sequent is not assumed to be honoured. For instance, the Horn sequent
b, a ( b⊥ ` a⊥ is provable in ILLmix, but the corresponding DPN has no
computations leading to a marking with an antitoken in place a. In a certain
sense, in ILLmix we can reverse an implication a( b⊥, by using it as b( a⊥,
whereas transitions in DPNs can be taken in only one direction. In honoured
Horn sequents, we can no more reverse transitions, since the right-hand side of
a sequent can only contain positive atoms.
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5 Related work and conclusions

The starting point of this paper has been cancellative linear logic [9], an extension
of linear logic where ⊥ is identified with 1, and ⊗ with O. As a consequence,
both the annihilation principle a ⊗ a⊥ ` 1 and its inverse 1 ` a ⊗ a⊥ are valid:
interpreting a as a credit and a⊥ as a debit, the annihilation principle states
that debits and credits cancel out. The inverse annihilation principle, instead,
allows for generating a resource along with its corresponding debit. In [9] an
extension of the token game of Petri nets is introduced, called financial game,
where a pair token-antitoken can be either generated or annihilated. Building
on this intuition, in this paper we have shown that adding [Mix] to the Horn
fragment of LL is enough to permit cancelling debits, without identifying ⊗ with
O (nor allowing to freely generate credits and debits). Our main result is that
provability in Horn ILLmix corresponds to reachability in Stott and Godfrey’s
Debit nets [12].

Relations between linear logic and Petri nets have been studied by several
authors, using both syntactical [14,15] and semantical methods [16,17,18,19,20].
Most of the papers in the semantical side connect Petri nets and LL within suit-
able algebraic frameworks. In particular, Meseguer and Mart́ı-Oliet [18] compare
Petri nets with multiplicative-additive linear logic, using a common categorical
model, based on symmetric monoidal categories. Using semantics as a bridge,
they show how linear logic can be used as a “specification language” for Petri
nets. To do that, they define a satisfiability relation between Petri nets and linear
logic sequents. The fragment of linear logic we have considered does not include
some linear operators, e.g. internal and external choice, which are instead dealt
with by [18]. To extend our correspondence to &, it seems enough to share con-
trol places in DPNs between &-ed transitions. The operator ⊕ could be dealt
with by considering non-deterministic DPNs, in the same way as [15] relates
Horn LL theories (extended with ⊕) with non-deterministic Petri nets.

On a more syntactical level, Kanovich [14,15] studies the computational
power of the Horn fragment of LL, comparing it with Petri nets and Minsky
machines. In particular, reachability in Petri nets and provability in Horn LL
are shown equivalent. The strategy used to prove our main results is similar to
Kanovich’s; nevertheless, some differences are worth noticing. First, in this pa-
per we have considered a different fragment of LL, featuring linear implication,
tensor product, negation, 1 and [Mix], as well as DPNs instead of Petri nets (we
have sketched above how to extend our correspondence to & and ⊕). Second,
the intermediate objects used by Kanovich to connect the logic with nets are a
sort of dags (called Horn programs), while we have used two operational seman-
tics. Third, in Kanovich’s encoding of Horn LL in Petri nets, all implications are
under a !, while we have also allowed transitions to be consumed.

Another variant of Petri nets where tokens can be taken “on credit” has
been presented in [21]. This model, called Lending Petri nets (LPNs), is similar
to our version of DPNs: a main difference is that we have adopted a delayed
annihilation policy, while that of LPNs is instantaneous, i.e. tokens and anti-
tokens cannot coexist in the same place. While the instantaneous policy makes
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Debit nets Turing powerful [12], the delayed annihilation policy makes DPNs
equi-expressive to Petri nets.

Reasoning about mutual commitments in a non-linear logic has been ad-
dressed in [4], by extending intuitionistic propositional logic with a contractual
implication connective �. Roughly, a contractual implication a → (b � c) can
be interpreted as a non-linear variant of a ( (b⊥ ⊗ c). This logic is related to
Lending Petri nets: indeed, Lending Petri nets form a sound and complete model
of the Horn fragment of the logic [21], analogously to the relation between Horn
ILLmix and DPNs studied in this paper. In [22] the correspondence between PCL
and LPNs is pushed further, by showing that proof traces [6] of a Horn PCL
theory ∆ are exactly the honoured firing sequences in N(∆).
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A Proofs

A.1 Proofs for Section 4.1

Lemma 1. If (W,Γ, !∆) ⇓ Z then W,Γ, !∆ ` Z.

Proof. We proceed by induction on the height of the derivation of (W,Γ, !∆) ⇓ Z.
We have the following cases, according on the last rule used:

– [⇓ I], [⇓ CUT], [⇓W!], [⇓ C!], or [⇓ L!]. Straightfoward.
– [⇓ H]. We have:

[⇓ H]
(X,X ( Y,∅) ⇓ Y

and we obtain the thesis as follows:
[ax]

X ` X
[ax]

Y ` Y
[(L]

X,X ( Y ` Y
– [⇓ S]. We have:

[⇓ S]

(a⊗ a⊥,∅,∅) ⇓ 1

and we obtain the thesis as follows:
[ax]

a ` a
[negL]

a, a⊥ `
[⊗ L]

a⊗ a⊥ `
[1R]

` 1
[mix]

a⊗ a⊥ ` 1

– [⇓ M]. We have:

(X,Γ, !∆) ⇓ Y
[⇓ M]

(X ⊗ V, Γ, !∆) ⇓ Y ⊗ V

and by using the induction hypothesis, we obtain the thesis as follows:

X,Γ, !∆ ` Y
[ax]

V ` V
[⊗R]

X,V, Γ, !∆ ` Y ⊗ V
[⊗L]

X ⊗ V, Γ, !∆ ` Y ⊗ V
ut

Definition 9 (Almost-Horn honoured sequent). We say that a sequent
Ω,Γ, !∆ ` γ is almost-Horn honoured if Ω is a multiset of simple products, Γ,∆
are multisets of Horn implications, and γ is a positive simple product or empty.

Definition 10 (Clean proof). We say that proof π of an almost-Horn hon-
oured sequent Ω,Γ,∆ ` γ is clean when all the applications of a rule [negL] in π
are placed just below an [Ax] rule, as follows:

[ax]
a ` a

[negL]

a, a⊥ `
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Lemma 2. Any provable almost-Horn honoured sequent admits a clean cut-free
proof.

Proof. Let Ω,Γ,∆ ` γ be a provable almost-Horn honoured sequent. By Theo-
rem 1 it admits a cut-free proof π. We show that every occurrence of the rule
[negL] which does not respect the pattern of Definition 10, can be moved upwards
in the proof. We reason by cases, depending on the rule r just above [negL] in π.
Since π is cut-free and all its sequents are almost-Horn honoured, we can restrict
to the following cases:

– [Ax], [1L], [⊗L], [!L], [weakL], [coL]. Straightforward.
– [Mix]. We have:

Ω1, Γ1, !∆1 ` a Ω2, Γ2, !∆2 `
[Mix]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` a
[negL]

Ω1, Ω2, a
⊥, Γ1, Γ2, !∆1, !∆2 `

and we obtain the thesis as follows:

Ω1, Γ1, !∆1 ` a
[negL]

Ω1, a
⊥, Γ1, !∆1,` Ω2, Γ2, !∆2 `

[Mix]

Ω1, Ω2, a
⊥, Γ1, Γ2, !∆1, !∆2 `

– [( L]. We have:

Ω1, Y, Γ1, !∆1 ` a Ω2, Γ2, !∆2 ` X
[(L]

Ω1, Ω2, Γ1, Γ2, X ( Y, !∆1, !∆2 ` a
[negL]

Ω1, Ω2, a
⊥, Γ1, Γ2, X ( Y, !∆1, !∆2 `

and we obtain the thesis as follows:

Ω1, Y, Γ1, !∆1 ` a
[negL]

Ω1, Y, a
⊥, Γ1, !∆1,` Ω2, Γ2, !∆2 ` X

[(L]

Ω1, Ω2, a
⊥, Γ1, Γ2, X ( Y, !∆1, !∆2 `

ut

Definition 11 (Proper proof). For a proof π of ILLmix, we say that an ap-
plication of [Mix] rule is proper, whenever it has the following form:

...

a, a⊥ `
[1R]

` 1
[Mix]

a, a⊥ ` 1

We say that a proof π of an honoured almost-Horn sequent is proper if it is
clean, and every occurrence of the [Mix] rule in π is proper.

Definition 12 (Harmless cut). Given a proof π of ILLmix, we say that the
application of a [Cut] rule is harmless whenever it has the following form:

Γ `W Γ ′,W ` Z
[Cut]

Γ, Γ ′ ` Z
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where W is a positive simple product.

Lemma 3. A provable Horn honoured sequent admits a proper proof where all
the applications of the [Cut] rule are harmless.

Proof. We prove the following stronger statement. Assume that an almost-Horn
honoured sequent Ω,Γ, !∆ ` γ is provable. Then:

(a) if γ = Z, then there exists a proper proof of Ω,Γ, !∆ ` Z where all [Cut]

rules are harmless.
(b) if γ is empty, then there exists a proper proof of Ω,Γ, !∆ ` 1 where all [Cut]

rules are harmless.

By Lemma 2, consider a clean cut-free proof π of the sequent. We proceed by
induction on the height of π. Since π is cut-free, we can restrict to the following
cases, according to the last rule used in π:

– [Ax], [1R]. In these cases there is nothing to prove.
– [1L], [⊗L], [⊗R], [(L],[!L], [weakL], [coL]. Straightforward by the induction hy-

pothesis.
– [negL]. Since π is clean, is must have the following form:

[Ax]
a ` a

[negL]

a, a⊥ `

which we replace with the following proof:

[Ax]
a ` a

[negL]

a, a⊥ `
[1R]

` 1
[Mix]

a, a⊥ ` 1

– [negR]. This case is not possible, since π is cut-free and γ is either a positive
simple product or empty.

– [Mix]. We have the following two subcases:
1. π has the form:

Ω2, Γ2, !∆1 ` Ω1, Γ1, !∆1 ` Z
[Mix]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` Z
By the induction hypothesis (applied on both premises), we obtain:

Ω1, Γ1, !∆1 ` Z Ω2, Γ2, !∆1 ` 1
[⊗R]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` Z ⊗ 1

[Ax]
Z ` Z

[1L]
Z, 1 ` Z

[⊗L]
Z ⊗ 1 ` Z

[Cut]
Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` Z

where the application of the [Cut] rule is harmless.
2. π has the form:

Ω1, Γ1, !∆1 ` Ω2, Γ2, !∆1 `
[Mix]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 `
By the induction hypothesis and harmless application of [Cut], we obtain:
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Ω1, Γ1, !∆1 ` 1 Ω2, Γ2, !∆1 ` 1
[⊗R]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` 1⊗ 1

[Ax]
1 ` 1

[1L]
1, 1 ` 1

[⊗L]
1⊗ 1 ` 1

[Cut]
Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` 1

where the application of the [Cut] rule is harmless. ut

Lemma 4. Let Ω,Γ, !∆ ` Z be a provable honoured Horn sequent. Then:

(
⊗

Ω,Γ, !∆) ⇓ Z

Proof. By Lemma 3, there exists a proper proof π of Ω,Γ, !∆ ` Z containing
only harmless applications of the [Cut] rule. We proceed by induction on the
height of π, and then by cases on the last rule used.

– [Ax]. Trivial by rule [⇓ I].
– [!L]. We have:

Ω,Γ,H,∆ ` Z
[!L]

Ω,Γ, !H, !∆ ` Z

By the induction hypothesis, we obtain:

(
⊗
Ω, (Γ d {H}), !∆) ⇓ Z

[⇓ L!]
(
⊗
Ω,Γ, !(∆ d {H})) ⇓ Z

– [negL]. This case is not possible, since the righthand side of the final sequent
of π cannot be empty by hypothesis.

– [negR]. This case is not possible, since the righthand side of the final sequent
of π must be a positive simple product.

– [⊗L]. We have:

Ω,X, Y, Γ, !∆ ` Z
[⊗L]

Ω,X ⊗ Y, Γ, !∆ ` Z

By the induction hypothesis, (
⊗

(Ω d {X} d {Y }), Γ, !∆) ⇓ Z. The thesis
follows because

⊗
(Ω d {X} d {Y }) =

⊗
(Ω d {X ⊗ Y }).

– [⊗R]. We have:

Ω1, Γ1, !∆1 ` Z1 Ω2, Γ2, !∆2 ` Z2
[⊗R]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` Z1 ⊗ Z2

By applying the induction hypothesis on both premises, we obtain:

(
⊗
Ω1, Γ1, !∆1) ⇓ Z1

[⇓ M]
(
⊗
Ω1 ⊗

⊗
Ω2, Γ1, !∆1) ⇓ Z1 ⊗

⊗
Ω2

(Ω2, Γ2, !∆2) ⇓ Z2
[⇓ M]

(Z1 ⊗
⊗
Ω2, Γ2, !∆2) ⇓ Z1 ⊗ Z2

[⇓ Cut]
(
⊗
Ω1 ⊗

⊗
Ω2, (Γ1 d Γ2), !(∆1 d∆2)) ⇓ Z1 ⊗ Z2

– [(L]. We have:

Ω1, Γ1, !∆1 ` X Ω2, Y, Γ2, !∆2 ` Z
[(L]

Ω1, Ω2, Γ1, X ( Y, Γ2, !∆1, !∆2 ` Z
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Since X ( Y is a Horn implication, then X must be a positive simple
product, and so Ω1, Γ1, !∆1 ` X is an honoured Horn sequent. Therefore we
can apply the induction hypothesis, from which we obtain:

(
⊗
Ω1, Γ1, !∆1) ⇓ X

[⇓ H]
(X,X ( Y,∅) ⇓ Y

[⇓ Cut]
(
⊗
Ω1, (Γ1 d {X ( Y }), !∆1) ⇓ Y

[⇓ M]
(
⊗
Ω1 ⊗

⊗
Ω2, (Γ1 d {X ( Y }), !∆1) ⇓ Y ⊗

⊗
Ω2 (Y ⊗

⊗
Ω2, Γ2, !∆2) ⇓ Z

[⇓ Cut]
(
⊗
Ω1 ⊗

⊗
Ω2, (Γ1 d {X ( Y } d Γ2), !(∆1 d∆2)) ⇓ Z

– [Mix]. Since π is proper, it must be:

...

a, a⊥ `
[1R]

` 1
[Mix]

a, a⊥ ` 1

and the thesis follows from rule [⇓ S].
– [Cut]. Since π contains only harmless cuts, by Definition 12 there existΩ1, Ω2, Z1,
Γ1, Γ2, and ∆1, ∆2 such that Z1 is honoured, and the last rule in π is:

Ω1, Γ1, !∆1 ` Z1 Ω2, Z1, Γ2, !∆2 ` Z
[Cut]

Ω1, Ω2, Γ1, Γ2, !∆1, !∆2 ` Z
By applying the induction hypothesis on both premises, we obtain:⊗

Ω1, Γ1, !∆1 ⇓ Z1

⊗
Ω2 ⊗ Z1, Γ2, !∆2 ⇓ Z

Therefore, we obtain:⊗
Ω1, Γ1, !∆1 ⇓ Z1

[⇓ M]⊗
Ω1 ⊗

⊗
Ω2, Γ1, !∆1 ⇓ Z1 ⊗

⊗
Ω2

⊗
Ω2 ⊗ Z1, Γ2, !∆2 ⇓ Z

[⇓cut]
(
⊗
Ω1 ⊗

⊗
Ω2, Γ1 d Γ2, !(∆1 d∆2)) ⇓ Z

– [1R]. We have:
[1R]

` 1

Since the empty multiset is associated with the simple product 1, we obtain:

[⇓ I]
(1,∅,∅) ⇓ 1

– [1L]. We have:

Ω,Γ, !∆ ` Z
[1L]

1, Ω, Γ, !∆ ` Z
By the induction hypothesis, we know that:

(
⊗

Ω,Γ, !∆) ⇓ Z

Since mset⊗Ω = mset1⊗
⊗
Ω , we conclude that:

(1⊗
⊗

Ω,Γ, !∆) ⇓ Z ut
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Theorem 2. Let Ω,Γ, !∆ ` Z be an honoured Horn sequent. Then:

(
⊗

Ω,Γ, !∆) ⇓ Z ⇐⇒ Ω,Γ, !∆ ` Z

Proof. The (=⇒) direction follows from Lemma 1; the (⇐=) direction follows
from Lemma 4. ut

A.2 Proofs for Section 4.2

Lemma 5. The following facts hold:

1. If (W1, Γ1, !∆1) ;∗ (W2, Γ
′
1, !∆1) and (W2, Γ2, !∆2) ;∗ (W3, Γ

′
2, !∆2), then

(W1, Γ1 d Γ2, !(∆1 d∆2)) ;∗ (W3, Γ
′
1 d Γ

′
2, !(∆1 d∆2)).

2. If (W,Γ, !∆) ;∗ (W ′, Γ ′, !∆) and V is a simple product, then (W⊗V, Γ, !∆) ;∗

(W ′ ⊗ V, Γ ′, !∆).
3. If (W,Γ d {H}, !∆) ;∗ (W ′, Γ ′, !∆) where H is a Horn implication, then

(W,Γ, !(∆ d {H})) ;∗ (W ′, Γ ′, !(∆ d {H})).
4. If (W,Γ, !∆) ;∗ (W ′, Γ ′, !∆) where H is a Horn implication, then (W,Γ, !(∆d
{H})) ;∗ (W ′, Γ ′, !(∆ d {H})).

5. If (W,Γ, !(∆ d {H,H})) ;∗ (W ′, Γ ′, !(∆ d {H,H})) where H is a Horn
implication, then (W,Γ, !(∆ d {H})) ;∗ (W ′, Γ ′, !(∆ d {H})).

Proof. Straightforward. ut

Proposition 1. (W,Γ, !∆) ⇓ Z ⇐⇒ (W,Γ, !∆) ;∗ (Z,∅, !∆)

Proof. For the (=⇒) direction, we proceed by induction on the height of the
derivation of (W,Γ, !∆) ⇓ Z, and then by cases on the last rule applied. For the
base case, we have three possible subcases:

– [⇓ I]. By reflexivity of ;∗ (X,∅,∅) ;∗ (X,∅,∅).
– [⇓ H]. By rule [;H ], (X,X ( Y,∅) ; (Y,∅,∅).
– [⇓ S]. By rule [;S ], (a⊗ a⊥,∅,∅) ; (1,∅,∅).

For the inductive case, we have the following subcases:

– [⇓Cut]. By applying the induction hypothesis on both premises, we obtain:

(W,Γ1, !∆1) ;∗ (U,∅, !∆1) (U, Γ2, !∆2) ;∗ (Z,∅, !∆2)

By item (1) of Lemma 5 we obtain the thesis:

(W,Γ1 d Γ2, !∆1d!∆2) ;∗ (Z,∅, !∆1d!∆2)

– [⇓M]. By the induction hypothesis and item (2) of Lemma 5.
– [⇓ L!]. By the induction hypothesis and item (3) of Lemma 5.
– [⇓W!]. By the induction hypothesis and item (4) of Lemma 5.
– [⇓ C!]. By the induction hypothesis and item (5) of Lemma 5.
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For the (⇐=) direction, we proceed by induction on the length n of the compu-
tation (W,Γ, !∆) ;n (Z,∅, !∆).

– n = 0: then the computation consists of the single state (Z,∅, !∆), and
(Z,∅, !∆) ⇓ Z is derivable by rule [⇓ I] followed by as many applications
of [⇓W!] as the cardinality of ∆.

– n > 0: Let s ; s′ be the first transition of the computation. Let us call t0 the
sub-computation of of lenght n − 1 starting from s′. We have the following
three subcases, depending on the rule used to deduce s ; s′:
• [;H ]. By definition, there exist X,Y, V such that s′ = (Y ⊗ V, Γ ′, !∆),
W = X ⊗ V , Γ = Γ ′ d {X ( Y } and

(X ⊗ V, Γ ′ d {X ( Y }, !∆) ; (Y ⊗ V, Γ ′, !∆) ;∗ (Z,∅, !∆)

The induction hypothesis gives us (Y ⊗ V, Γ ′, !∆) ⇓ Z, so we can build
the following:

[⇓ H]
(X,X ( Y,∅) ⇓ Y

[⇓ M]
(X ⊗ V,X ( Y ,∅) ⇓ Y ⊗ V (Y ⊗ V, Γ ′, !∆) ⇓ Z

[⇓ cut]
(X ⊗ V, (Γ ′ d {X ( Y }), !∆) ⇓ Z

• [;!H ]. By definition, there exist X,Y, V such that s′ = (Y ⊗ V, Γ, !∆),
W = X ⊗ V , X ( Y ∈ ∆ and

((X ⊗ V, Γ, !∆) ; (Y ⊗ V, Γ, !∆) ;∗ (Z,∅, !∆)

The induction hypothesis gives us (Y ⊗ V, Γ, !∆) ⇓ Z, so we can build
the following:

[⇓ H]
(X,X ( Y,∅) ⇓ Y

[⇓ M]
(X ⊗ V,X ( Y,∅) ⇓ Y ⊗ V (Y ⊗ V, Γ, !∆) ⇓ Z

[⇓ cut]
(X ⊗ V, (Γ d {X ( Y }), !∆) ⇓ Z

[⇓ L!]
(X ⊗ V, Γ, !(∆ d {X ( Y })) ⇓ Z

[⇓ C!]
(X ⊗ V, Γ, !∆) ⇓ Z

– [;S ]. By definition, there exist V and an atom a such that s′ = (1⊗V, Γ, !∆),
W = a⊗ a⊥ ⊗ V , and:

(a⊗ a⊥ ⊗ V, Γ, !∆) ; (1⊗ V, Γ, !∆) ;∗ (Z,∅, !∆)

The induction hypothesis gives us (1 ⊗ V, Γ ′, !∆) ⇓ Z, so we can build the
following:

[⇓ S]

(a⊗ a⊥,∅,∅) ⇓ 1
[⇓ M]

(a⊗ a⊥ ⊗ V,∅,∅) ⇓ 1⊗ V (1⊗ V, Γ, !∆) ⇓ Z
[⇓ Cut]

(a⊗ a⊥ ⊗ V, Γ, !∆) ⇓ Z

ut

Theorem 3. Let Ω,Γ, !∆ ` Z be an honoured Horn sequent. Then

(
⊗

Ω,Γ, !∆) ;∗ (Z,∅, !∆) ⇐⇒ Ω,Γ, !∆ ` Z

Proof. Straightforward by Proposition 1 and Theorem 2. ut
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A.3 Proofs for Section 4.3

Proposition 2. For all markings (m, d) of N = N(Γ0, !∆0) there exists a unique
(W,Γ ) compatible with N such that (m, d) = [W,Γ ].

Proof. We prove that [·] is injective and surjective over (W,Γ ) compatible with
N(Γ0, ∆0) ; the result then follows straightforwardly. Let us assume (W1, Γ1) 6=
(W2, Γ2); then eithermsetW1

(s) 6= msetW2
(s) for some s ∈ Satm, or Γ1(in0(s)) 6=

Γ2(in0(s)) for some s ∈ Sctrl, or msetW1
(s⊥) 6= msetW2

(s⊥) for some s ∈ Satm;
but then by compatibility and by definition of [·], [W1, Γ1] 6= [W2, Γ2]. This
proves injectivity.

For surjectivity, if (m, d) is a marking of N(Γ0, ∆0), we can build (W,Γ ) com-
patible with N(Γ0, ∆0) s.t. (m, d) = [W,Γ ] as follows: to retrieve W we observe
that m, d define a multiset M of occurences of literals as observed in Section 3;
we take W to be the tensor product of all the elements of M . Let Γ comprise
every implication s ∈ Sctrl with multiplicity m(s). By construction, 〈W 〉 ⊆ Satm
and Γ ⊆ Γ0, so they are compatible with N(Γ0, ∆0) and always by construction
(m, d) = [W,Γ ]. ut

Proposition 3. Let N = N(Γ0, !∆), and let (W,Γ ) be compatible with N . Then:

(W,Γ, !∆) ; (W ′, Γ ′, !∆) ⇐⇒ [W,Γ ] −→N [W ′, Γ ′]

Proof. From left to right we reason by cases, depending on the small-step rule
we are using:

– [;!H ]: then W = X ⊗ V ,W ′ = Y ⊗ V , Γ = Γ ′ and ((X ⊗ V, Γ, !∆̄ ∪ {!(X (
Y )}) ; (Y ⊗ V, Γ, !∆̄ ∪ {!(X ( Y )})) where !∆ =!∆̄ ∪ {!(X ( Y )}
By Definition 8 we know that [W,Γ ] = (m, d) for some marking (m, d) such
that for all s ∈ Satm we have m(s) = msetW (s) = msetX(s) + msetV (s)
and r = in1(X ( Y ) for some transition r of N ; then for all s, msetX(s) =
F (s, r) by Definition 7; since msetX(s) + msetV (s) = msetW (s) = m(s),
r is enabled in (m, d); moreover, for all s, we know by Definition 7 that
msetY (s) = F (r, s) and msetY (s⊥) = L(s, r) so after firing r, msetW ′(s) =
msetY (s) +msetV (s) = m′(s) and msetY (s⊥) +msetV (s⊥) = d′(s) by Def-
inition 7. Further m(s) = m′(s) when s ∈ Sctrl. Therefore, by Definition 8,
then [W ′, Γ ′] = (m′, d′).

– [;H ]: then W = X ⊗ V ,W ′ = Y ⊗ V , Γ = Γ ′ d {X ( Y } and (X ⊗ V, Γ ′ d
{X ( Y }, !∆) ; (Y ⊗ V, Γ ′, !∆)
By Definition 8 we know that [W,Γ ] = (m, d) for some marking (m, d) such
that for all s ∈ Satm we have m(s) = msetW (s) = msetX(s) + msetV (s)
and r = in0(X ( Y ) for some transition r of N ; then for all s, msetX(s) =
F (s, r) by Definition 7; since msetX(s) + msetV (s) = msetW (s) = m(s),
r is enabled in (m, d); moreover, for all s, we know by Definition 7 that
msetY (s) = F (r, s) and msetY (s⊥) = L(s, r) so after firing r, msetW ′(s) =
msetY (s) +msetV (s) = m′(s) and msetY (s⊥) +msetV (s⊥) = d′(s) by Def-
inition 7; moreover r has been fired in (m′, d′) (so its control place has one
fewer token). By Definition 8, then [W ′, Γ ′] = (m′, d′).
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– [;S ]: then W = (a⊗a⊥)⊗V ,W ′ = 1⊗V , Γ = Γ ′, and ((a⊗a⊥)⊗V, Γ, !∆) ;
(1⊗ V, Γ, !∆)
By Definition 8 we know that [W,Γ ] = (m, d) for some marking (m, d)
such that for all s ∈ Satm we have m(s) = msetW (s); now since msetW (a)
and msetW (a⊥) > 0, m(a) > 0 and d(a) > 0, so annihilation is enabled
at (m, d). After firing annihilation, we know that m′(a) = m(a) − 1 and
d′(a) = d(a) − 1, while for all other s 6= a, we have m′(s) = m(s) and
d′(s) = d(s). Now it is easy to verify that msetW ′(a) = msetW (a) − 1 and
msetW ′(a⊥) = msetW (a⊥) − 1 and for all s 6= a msetW ′(s) = msetW (s)
(resp. msetW ′(s⊥) = msetW (s⊥)). Control places are unaffected, so m(s) =
m′(s) when s ∈ Sctrl. We conclude that (m′, d′) = [W ′, Γ ′].

From right to left we reason by cases, depending on the type of step:

– Suppose we fire r = ini(X ( Y ) at (m, d) = [W,Γ ]. We know that (m, d) −→
(m′, d′) by firing r for some m′, d′ and (m′, d′) = [W ′, Γ ′] for some W ′, Γ ′

by Proposition 2; since r is enabled in (m, d), for all s ∈ Satm such that
msetX(s) ≥ 0, we have that m(s) ≥ msetX(s) and since (m, d) = [W,Γ ],
we have that msetW (s) ≥ msetX(s). This means that, W = X ⊗ V for
some V (so when s ∈ Satm we have m(s) = msetX(s) + msetV (s) and
d(s) = msetX(s⊥) +msetV (s⊥)). Now we have two subcases:

• if i = 1, then for all s ∈ Sctrl, m(s) = m′(s) so, since (m, d) = [W,Γ ]
and (m′, d′) = [W ′, Γ ′], Γ = Γ ′; moreover for all s ∈ Satm, m′(s) =
msetY (s)+msetV (s) and d′(s) = msetY (s⊥)+msetV (s⊥) (by definition
of −→, and Definition 8). But then, W ′ = Y ⊗ V and ((X ⊗ V, Γ, !∆ ∪
{!(X ( Y )}) ; (Y ⊗ V, Γ, !∆ ∪ {!(X ( Y )}))

• otherwise, i = 0 which implies (m, d) = [W,Γ ] and (m′, d′) = [W ′, Γ ′],
with Γ ′ = Γ \ {X ( Y }. Moreover m′(s) = msetY (s) + msetV (s) and
d′(s) = msetY (s⊥) +msetV (s⊥) (by definition of −→, and Definition 8).
But then W ′ = Y ⊗ V and (X ⊗ V, Γ, !∆) ; (Y ⊗ V, Γ ′, !∆)

– annihilation is enabled in (m, d) = [W,Γ ]. We know that (m, d) −→ (m′, d′)
through an annihilation step and (m′, d′) = [W ′, Γ ′] for someW ′, Γ ′ by Propo-
sition 2. Since an annihilation is enabled, for some atom a, m(a) ≥ 1, d(a) ≥
1; now for all s, m(s) = msetW (s), and d(s) = msetW (s⊥), so for some
a, V , W = (a⊗ a⊥)⊗ V . Then (W,Γ, !∆) ; (1⊗ V, Γ ′, !∆) (where Γ = Γ ′).
It remains to prove that W ′ = 1 ⊗ V ; this follows from the fact that for
s = a, m′(s) = msetW (s) − 1 and d′(s) = msetW (s⊥) − 1 (by definition of
−→, and Definition 8). ut

Theorem 4. Let N = N(Γ, !∆). An honoured Horn sequent Ω,Γ, !∆ ` Z of
ILLmix is provable iff [

⊗
Ω,Γ ] −→∗N [Z,∅].

Proof. By Theorem 3, we know that Ω,Γ, !∆ ` Z is provable if and only if
(
⊗
Ω,Γ, !∆) ;∗ (Z, ∅, !∆). By Proposition 3, (

⊗
Ω,Γ, !∆) ;∗ (Z, ∅, !∆) iff

[
⊗
Ω,Γ ] −→∗N [Z, ∅]. ut
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