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A Linear Logic Based Approach to 
Timed Petri Nets

Norihiro Kamide  
Waseda Institute for Advanced Study, 1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo, 

Japan  

1. Introduction 

1.1 Relationship between Petri net and linear logic 

Petri nets were first introduced by Petri in his seminal Ph.D. thesis, and both the theory and 
the applications of his model have flourished in concurrency theory (Reisig & Rozenberg, 
1998a; Reisig & Rozenberg, 1998b). 
The relationships between Petri nets and linear logics have been studied by many 
researchers (Engberg & Winskel, 1997; Farwer, 1999; Hirai, 2000; Hirai 1999; Ishihara & 
Hiraish, 2001; Kamide, 2004, Kamide, 2006; Kanovich, 1995; Kanovich 1994; Larchey-
Wendling & Galmiche, 1998; Larchey-Wendling & Galmiche, 2000; Lilius, 1992; Mart  -Oliet 
& Meseguer, 1991; Okada, 1998; Tanabe, 1997). A category theoretical investigation of such a 
relationship was given by Mart  -Oliet and Meseguer (Mart  -Oliet & Meseguer, 1991), 
purely syntactical approach using Horn linear logic was established by Kanovich (Kanovich, 
1995; Kanovich 1994), a naive phase linear logic for a certain class of Petri nets was given by 
Okada (Okada, 1998), a linear logical view of object Petri nets were studied by Farwer 
(Farwer, 1999), and various Petri net interpretations of linear logic using quantale models 
were obtained by Ishihara and Hiraishi (Ishihara & Hiraish, 2001), Engberg and Winskel 
(Engberg & Winskel, 1997), Larchey-Wendling and Galmiche (Larchey-Wendling & 
Galmiche, 1998; Larchey-Wendling & Galmiche, 2000), and Lilius (Lilius, 1992). 
Petri net interpretations using Kripke semantics for various fragments and extensions of 
intuitionistic linear logic were studied by Kamide (Kamide, 2004; Kamide, 2006c). In 
(Kamide, 2004), Petri net interpretations of various fragments of a spatio-temporal soft 
linear logic were discussed. In (Kamide, 2006c), Petri nets with inhibitor arcs, which were 
first introduced by Kosaraju (Kosaraju, 1973) to show the limitation of the usual Petri nets, 
were described using Kripke semantics for intuitionistic linear logic with strong negation. 
The approarches using Kripke semantics can obtain a very simple correspondence between 
Petri net and linear logic. 

1.2 Relationship between timed Petri net and temporal linear logic 

A number of formalizations of timed Petri nets (Bestuzheva and Rudnev, 1994; Wang, 1998) 
can be considered since time can be associated with tokens, transitions, arcs and places. In 
the existing linear logic based approaches including the present paper’s one, time was 
associated to tokens (or markings). In fact, to express the fireability of transitions by 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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multisets of tokens in Petri nets, it seems to be a natural extension to do it by multisets of 
timed tokens in timed Petri nets. 
Temporal linear logic based methods for timed Petri nets were introduced and studied by 
Tanabe (Tanabe, 1997) and Hirai (Hirai, 1999; Hirai, 2000). In (Tanabe, 1997), a relationship 
between a timed Petri net and a temporal linear logic was discussed based on quantale 
models with the soundness theorem for this logic. In (Hirai, 1999; Hirai 2000), a reachability 
problem for a timed Petri net was solved syntactically by extending Kanovich’s result 
(Kanovich, 1994) with an extended temporal intuitionistic linear logic. 
In the present paper, a kind of temporal linear logic, called linear-time linear logic, is used to 
describe timed Petri nets with timed tokens. This logic is formalized using a natural “linear-
time” formalism which is widely used in the standard linear-time temporal logic based on 
the classical logic rather than linear logics. 

1.3 Linear-time temporal logic 

Linear-time temporal logic (LTL) has been studied by many researchers, and also been used as 
a base logic for verifying and specifying concurrent systems (Clarke et al., 1999; Emerson, 
1990; Kröger, 1977; Lichtenstein & Pnueli, 2000; Pnueli, 1977; Vardi, 2001; Vardi, 2007) 
bacause of the virtue of the “linear-time” formalism (Vardi, 2001). LTL is thus known as one 
of the most useful modal logics based on the classical logic. Sequent calculi for LTL and its 
neighbors have been introduced by extending the sequent calculus LK for the classical logic 
(Kawai, 1987; Baratella and Masini, 2004; Paech, 1988; Pliuškevi ius, 1991; Szabo, 1980; 
Szalas, 1986). A sequent calculus LT for LTL was introduced by Kawai, and the cut-
elimination and completeness theorems for this calculus were proved (Kawai, 1987). A 2-
sequent calculus 2S  for LTL, which is a natural extension of the usual sequent calculus, 
was introduced by Baratella and Masini, and the cut-elimination and completeness 
theorems for this calculus were proved based on an analogy between LTL and Peano 
arithmetic with -rule (Baratella and Masini, 2004). A direct equivalence between Kawai’s 
LT and Baratella and Masini’s 2S  was shown by Kamide introducing the functions that 
preserve cut-free proofs of these calculi (kamide, 2006b). In the present paper, (intuitionistic) 
linear logic-based versions of LT and 2S  are considered. 

1.4 Temporal linear logic 

Linear logic, which was originally introduced by Girard (Girard, 1987), is known as a 
resource-aware refinment of the classical and intuitionistic logics, and useful for obtaining 
more appropriate specifications of concurrent systems (Okada, 1998; Troelstra, 1992). In 
order to handle both resource-sensitive and time-dependent properties of concurrent 
systems, combining linear logics with temporal operators has been desired, since the 
(classical) linear logic (as a basis for temporal logics) is more expressive and appropriate 
than the classical logic. For this purpose, temporal linear logics have been proposed by Hirai 
(Hirai, 2000), Tanabe (Tanabe, 1997), and Kanovich and Ito (Kanovich & Ito, 1998). Hirai’s 
intuitionistic temporal linear logic (Hirai, 2000) is known as useful for describing a timed 
Petri net (Hirai, 1999) and a timed linear logic programming language (Tamura et al., 2000). 
Extensions of Hirai’s logic were proposed by Kamide (Kamide, 2004; Kamide, 2006a) as 
certain spatio-temporal linear logics combined with the idea of handling spatiality in 
Kobayashi, Shimizu and Yonezawa’s modal (spatial) linear logic (Kobayashi et al., 1999). 
Tanabe’s temporal linear logic (Tanabe, 1997) is used as a base logic for timed Petri net 
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specifications. Kanovich and Ito’s temporal linear logics (Kanovich & Ito, 1998) are a result 
of combining linear logic with linear-time temporal operators. 

1.5 Linear-time linear logic 

Linear-time (temporal) linear logics and their usefulness have already been presented by 
Kanovich and Ito (Kanovich & Ito, 1998). Classical and intuitionistic linear-time linear logics 
were introduced as cut-free sequent calculi, and the strong completeness theorems for these 
logics were shown using the algebraic structure of time phase semantics. Although in 
(Kanovich & Ito, 1998), the phase semantic methods for both classical and intuitionistic cases 
were intensively investigated, other semantic methods and their applications to concurrency 

theory for the intuitionistic case have yet to be studied su ciently. 
In this paper, an intuitionistic linear-time temporal linear logic, calld also here linear-time 
linear logic, is introduced as cut-free sequent calculi based on the ideas of Kawai’s LT
(Kawai, 1987) and Baratella and Masini’s 2S  (Baratella & Masini, 2004). It is shown that the 
logic based on thses calculi derives intuitive linear-time, informational and Petri net 
interpretations using Kripke semantics with the completeness theorem. The Kripke 
semantics presented is introduced based on the exsisting Kripke semantics by Došen 
(Došen, 1988), Kamide (Kamide, 2003), Kobayashi, Shimizu and Yonezawa (Kobayashi et al., 
1999), Hodas and Miller (Hodas & Miller, 1994), Ono and Komori (Ono & Komori, 1985), 
Urquhart (Urquhart, 1972) and Wansing (Wansing, 1993a; Wansing, 1993b). 1

1.6 Organization of this paper 

This paper is organized as follows. 
In Section 2, the linear-time linear logic is introduced as two cut-free Gentzen-type sequent 
calculi LT and 2LT, and show their equivalence using the method posed in (Kamide, 2006b). 
The sequent calculi LT and 2LT are regarded as the linear logic based versions of Kawai’s 
LT and Baratella and Masini’s 2S , respectively. 
In Section 3, Kripke semantics with a natural timed Petri net interpretation is introduced for 
LT, and the completeness theorem w.r.t. the semantics is proved as the main result of this 
paper. The completeness theorem is the basis for obtaining a natural relationship between 
LT and a timed Petri net. 
In Section 4, a timed Petri net with timed tokens is introduced as a structure, and the 
correspondence between this structure and Kripke frame for LT is observed. An illustrative 
example for verifying the reachability of timed Petri nets is also addressed based on LT. 
In Section 5, this paper is concluded, and some remarkes are given. 

2. Linear-time linear logic 

2.1 LT 

Before the precise discussion, the language used in this paper is introduced. Formulas are 
constructed from propositional variables, 1 (multiplicative constant),  (implication), 

(conjunction),  (fusion),  (exponential), temporal operators X (next) and G (globally). 
Lower-case letters p, q,... are used for propositional variables, Greek lower-case letters ,

                                                                
1 For a historical overview of Kripke semantics for modal substructural logics, see. e.g. 

(Kamide, 2002). 
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... are used for formulas, and Greek capital letters are used for finite (possibly 
empty) multisets of formulas. For any , an expression  is used to denote the 

multiset . The symbol  is used to denote equality as sequences (or multisets) of 

symbols. The symbol  or N is used to represent the set of natural numbers. An expression 

 for any  is used to denote , e.g and   

. An expression  means  and 

means . An expression  means  if  and 
means 1 if  is empty. Lower-case letters i, j and k are used to denote any natural numbers. 

A sequent is an expression of the form  (the succedent of the sequent is not empty). It 
is assumed that the terminological conventions regarding sequents (e.g. antecedent, 
succedent etc.) are the usual ones. If a sequent S is provable in a sequent system L, then such 

a fact is denoted as L  S or  S. The parentheses for  is omitted since  is associative, i.e. 

 for any formulas .
In the following, the linear-time linear logic LT is introduced as a sequent calculus. This is 
regarded as a linear logic version of Kawai’s LT  (Kawai, 1987). 
Definition 1 (LT) The initial sequents of  LT are of the form:
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It is remarked that (Gright) has infinite premises. It is noted that the cases for i = k = 0 in LT 
derive the usual inference rules for the intuitionistic linear logic.  
Although a proof is not given in this paper, the following cut-elimination theorem can be 
proved by a phase semantic method (Kamide, 2007). 
Theorem 2 (Cut-elimination for LT) The rule (cut) is admissible in cut-free LT.
An expression  means the sequents . Then, the following 
sequents are provable in LT for any formulas  and any :

The last sequent above corresponds to the linear logic version of the temporal induction 
axiom: , and an LT-proof of this sequent is as follows. . 

 where for any  is shown by mathematical induction on  as 
follows. The base step, i.e. , is obvious using (!we). The induction step can be shown 
using (!co) as follows.  

2.2  2LT 

A  2-sequent calculus 2LT for the linear-time linear logic is introduced below. This calculus 
is a linear logic version of Baratella and Masini’s 2-sequent calculus 2S  (Baratella & Masini, 
2004). The language of 2LT and the notations used are almost the same as those of LT. 
Definition 3 An expression (  is a formula and ) is called an indexed formula. Let be an 
indexed formula and be finite (possibly empty) multiset of indexed formulas. Then an expression

 is called a 2-sequent.
An expression  is used to denote the multiset of i-indexed formulas. 



Petri Net: Theory and Applications 212

Definition 4 (2LT) The initial sequents of  2LT are of the form: 

The cut rule of 2LT is of the form: 

The logical inference rules of 2LT are of the form: 

An expression  is used to denote the fact that is provable in a 2-sequent 
calculus L.
Definition 5 Let be the set of formulas of LT and be the set of indexed formulas of 2LT.

It is remark that and hold for any formula .

Theorem 6 (Equivalence between LT and 2LT) (1) for any 2-sequent , if 2LT 
, then . (2) for any sequent , if , then

.
Proof We show only (1) by induction on a proof P of in 2LT. We show only the 
following case. 
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Case (Xleft): The last inference of P is of the form: 

By the hypothesis of induction, we obtain LT , and hence obtain LT 

  Q.E.D.
By Theorems 2 and 6, the following theorem is obtained. 
Theorem 7 (Cut-elimination for 2LT) The rule (cut2) is admissible in cut-free 2LT. 

Proof Suppose 2LT for a 2-sequent . Then we have  by 
Theorem 6 (1). By Theorem 2, we obtain  . We thus obtain 

 by Theorem 6 (2).  Therefore .
Conversely, by Theorem 7 and an appropriate modification of Theorem 6, a proof of 
Theorem 2 is also derived. Q.E.D.

3. Kripke semantics 

3.1 Kripke model and soundness 

The following definition (except the existence of N) of the Kripke frame is the same as that 
for the (fragment of) intuitionistic linear logic (Kamide, 2003). 
Definition 8 A Kripke frame for LT is a structure satisfying the following 
conditions:
1. N is the set of natural numbers, 
2. is a commutative monoid with the identity ,
3. is a pre-ordered set,
4. is a unary operation on M such that

5. · is monotonic with respect to , i.e.  

                     

Definition 9 A valuation on a Kripke frame for LT is a mapping from the set of 
all propositional variables to the power set of M × N and satisfyning the following hereditary 
condition: for any propositional variable p, any 

and any . An expression will be used for . Each
valuation can be extended to a mapping from the set of all formulas to the power set of by
1.

2.
3.
4.
5.
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6.
7.

Proposition 10 Let  be a valuation on a Kripke frame  for LT. Then the following 
hereditary condition holds: for any formula 

.
Proof  By induction on the complexity of . Q.E.D.

Definition 11 A Kripke model for LT is a structure such that

1. is a Kripke frame for LT, 
2.  is a valuation on .

A formula is true in a Kripke model for LT if , and valid in a 

Kripke frame for LT if it is true for any valuation on the Kripke frame. A
sequent is true in a Kripke model for LT if the 
formula is true in it, and valid in a Kripke frame for LT if the 
formula is valid in it.
The Kripke model defined has a natural informational interpretation due 
to Urquhart (Urquhart, 1972) and Wansing (Wansing, 1993a; Wansing, 1993b). M is a set of 
information pieces,  is the addition of information pieces,  is the infinite addition of 
information pieces, and  is the empty piece of information. Then the forcing relation 

 can read as “the resource  is obtained at the time i by using the information 
piece x.”
Theorem 12 (Soundness) Let C be a class of Kripke frames for and

Proof It is su cient to prove the following: for any sequent S, if S is provable, then S is valid 
in any frame . This is proved by induction on a proof P of 
S. We distinguish the cases according to the last inference rules and initial sequents in P . Let 

 be a valuation on F . In the following, we sometimes use implicitly the fact that  is a pre-
order,  is a commutative monoid with the identity ,  is monotonic, and  has the 
hereditary condition (Proposition 10). We show some cases.  

Case (!left): It is shown that L(C) is closed under (!left), i.e. for any formula  and any 

multiset  of formulas, if is valid in F then so is . In the following, we 
consider only the case that  is nonempty (the empty case can be shown similarly). Suppose 

that . We will show 
. By (2), there exist  such that   and 

. By (4), there exists  such that  By 
(6), the frame condition C1 and the transitivity of , we have  . Moreover, by (8) 

and the monotonicity of ·, we have  By (9), (3) and the transitivity of ,
we have . Thus, by (10), (7) and (5), we obtain the following: there exist 

 such that . Hence, by (1) we have 
.

Case (!right): It is shown that L(C) is closed under (!right), i.e. for any formula  and any 
multiset  of formulas, if  is valid in F then so is .
We only show the case that  is nonempty (the empty case can easily be shown using the 

frame condition C0). Suppose (1)  for any 
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 and (2) . We will show . By (1), we have that 
there exist  such that (3) , and (4) .

Then, by (4), we have that for any , there exists such that (5)  

and (6) . By (6), the frame condition C1 and the hereditary condition of , we 

obtain (7) . Thus we have that there exists  (because M is  closed under 

, and there exists ) such that  (by the frame condition C2)  and 

 (by (7)). This means that (8)  for any  

. Further we have (9)   since  is reflexive. Hence we  
have that there exist  such that (8) and (9). This 

means ,  i.e. (10)  . By the 

hypothesis (2) and the fact   (10), we have (11) 

. By the facts (3), (5), the monotonicity of · and the frame conditions C2, 

C3, we have (12) 

Hence we obtain the following: there exist  (because M is closed under ·) 

such that  (by (12) and the transitivity of ) and  (by 

(11)). This means .
Case (!co)): It is shown that L(C) is closed under (!co), i.e. for any formulas  and any 

multiset  of formulas, if  is valid in F then so is . In the 
following we consider only the case that  is nonempty (the empty case can be shown 

similarly). Suppose (1)  for any  and (2) .
We will show . By (1), there exist  such that (3) , (4) 

 and (5) . By (4), we have that there exists  such that (6) 

 and  (7) . By (3), (6) and the monotonicity of ·, we have (8) 

. On  the other hand, we have that there exists  such that 

 (by the frame condition C4),  (because, by (7), the frame 

conditions C1, C2 the hereditary  condition of , we have that there exists  such 

that . This means (9) . Further we have 

that there exist  such  that   (by (8) and the transitivity of ),

 (by (9)) and  (by (5)). This means (10) 

. By the hypothesis (2) and the fact (10), we obtain .
Case (!we): It is shown that L(C) is closed under (!we), i.e. for any formulas  and any 

multiset  of formulas, if  is valid in F then so is . In the following we 
consider only the case that  is nonempty (the empty case can be shown similarly). Suppose  

(1)  for any  and (2) . We will show . By 

(1), we have that there exist  such that (3)  , (4)  and (5)  

 . By (4), we have that there exists  such that (6) .

Then we obtain (7)   since we have  by (3), (6), the 
monotonicity of  , the transitivity of  and the frame condition C5. Hence, by (7), (5) and 

the hereditary condition of , we obtain (8) . Thus we obtain  by the 
hypothesis (2) and the fact (8).  

Case (Gleft): It is shown that L(C) is closed under (Gleft), i.e. for any formulas  and 

multiset  of formulas, if   is valid in F thenso is . In the 
following, we consider only the case that  is nonempty (the empty case can be shown 
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similarly).  

Suppose

and  implies . We will show 

. It 

is thus enough to show that . Suppose 

 . Then 

. Thus we obtain .

Case (Gright): It is shown that L(C) is closed under (Gright), i.e. for any formula  and 
multiset  of formulas, if  (for all ) are valid in F then so is . We 
consider here only the case that  is nonempty (the empty case can be shown similarly). 

Suppose  for all , i.e. for all  implies 

. We will show  implies 

. It is thus enough to show that  implies 

. Suppose .

Then we obtain  as follows: 

 i . Q.E.D.

3.2 Completeness 
In order to prove the completeness theorem, constructing a canonical model is needed, and 
the resulting canonical model will be used to show the relationship between a timed Petri 
net and LT. 
Definition 13 A canonical model is a structure  such that 

It can then be shown that is a Kripke frame for LT. It is remarked that the 
condition C0 corresponds to is defined by where {} is 
the empty multiset. It is also remarked that the sequent  is not true in this canonical 

model. is interpreted as ) but does not correspond to 
. Also   is not true in any Kripke model, because  is interpreted as (i.e., 

).
Further it will be proved that is a Kripke model for LT. To show this 
fact is essentially to show the completeness theorem. To achive the completeness theorem, 
the following lemma is needed. 
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Lemma 14 Let be the canonical model defined in Definition 13. Then, for 

any formula , any and any ,

.

Proof  This lemma is proved by induction on the complexity of . We show some cases.  
(Case ) : By the definition of .

(Case ): Suppose . Then we have i  i i

.  Thus we obtain  :

Conversely, suppose . Then we have 

and hence 
 (Case ): First we show that implies . Suppose 

 implies for any .  We take for
. We have by the induction hypothesis, and by the 

hypothesis. Thus we have by the induction hypothesis, and hence 
. Conversely, suppose 

for any . Then we have by the induction hypothesis. We obtain: 

and hence by the induction hypothesis. 
: First we show that  for 

any . Suppose . Then we have . We 
obtain by the hypothesis of induction. Thus we have 

. Conversely, suppose . Then we have  

Thus we have by the induction hypothesis, and hence 
.
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 First, we show that implies for any .
Suppose . Then there exists  such that . By 
the hypothesis of induction, we obtain  . Thus we obtain :

Conversely, suppose . We will show , i.e. there exists  such 
that  . We take . Then we obtain by
the induction hypothesis. Using the hypothesis , we obtain :

Thus, we obtain .

  (by the induction 

hypothesis) i .
 Suppose . Then we have , and hence 

by the induction hypothesis. This means , and 
thus by (Gright). Conversely, suppose . Then we have: 

for any . By the hypothesis of induction, we obtain 

and hence . Q.E.D. 

Lemma 15 The canonical model defined in Definition 13 is a Kripke model for 
LT such that

for any formula .
Proof The hereditary condition on  is obvious. By taking 0 for i and taking  for  in 
Lemma 14, the required fact is obtained. Q.E.D.
By using Lemma 15, the following theorem is obtained, because for any sequent , it 
can take the formula  such that .
Theorem 16 (Completeness) Let C be a class of Kripke frames for
and . Then .
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4. Timed Petri net interpretation 

The following definition of timed Petri net is roughly the same as that in (Tanabe, 1997). 
Definition 17 (Timed Petri net) A timed Petri net is a structure such that
8. N is the set of natural numbers representing liner-time,
9. P is a set of places,
10. T is a set of transitions,
11. and are mappings from T to the set S of all multisets over P × N.
For are called the pre-multiset and the post-multiset of t respectively. Each
element of S is called a timed marking. 
In this definition,  indicates the waiting time until the pending tokens which are 
usable in future become available in a place. Thus, an expression , which 
corresponds to the formula , means “A token   has pending time i, i.e.,  will be active 
after i time units.” In such an expression, a token  is called an active token, and a token 

with is called a pending token.

Definition 18 (Reachability relation) A firing relation is defined as 

follows: for any m1, m2  S, 

A reachability relation on S is defined as follows: for any ,

.
It is remarked that  is transitive and reflrxive.
We sometimes have to add certain time passage functions and timing conditions to the 
definitions of timed Petri net, firing relation and reachability relation, in case-by-case. A time 
passage function , which means the passage of time by i time units, is a function on S such 
that  . A firing relation may be extended with respect to 
such time passage functions such that . A timing condition TC is a 
binary relation on S. Then an extended reachability relation  on S may have, for example, 
the following conditions:  

Following (Tanabe, 1997), we give an example of timed Petri nets. 
Example 19 (Apple drinks 1) Suppose that we have just picked up three apples from an 
apple tree, and we can choose apple drinks between two options according to the following 
two rules.

(Rule 1): from an apple of less than one month old (i.e., less than a month has 
passed since picked from the tree), we can make a glass of apple juice.
(Rule2): from two apples of between 10 and 20 months old, we can make a glass of cider.

We then give a timed Petri net with two time passage functions 1 and 11, and 
two timing conditions TC1 and TC2. Let P be {A, J, C} where A, J and C correspond to an apple, a 
glass of juice and a glass of cider, respectively. Let T be {t1,t2}, be {(A, i)}, be {(J, i)}, be 
{(A, i), (A, i))}, and be {(C, i)}. Let TC1 be {(A, x)} {(J, 0)} , and TC2 be

. It is remarked that TC1 and TC2 
correspond to (Rule1) and (Rule2), respectively. Graphically this becomes the following:
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In this net,  indicates a timed token (A, i). 

Example 20 (Apple drinks 2) In Example 19, we consider the situation (Tanabe, 1997) that 
starting from three apples, how can we get a glass of juice and a glass of cider? Going 
through the stage of getting drinks. 
1. We have three fresh apples: {(A, 0), (A, 0), (A, 0)}.  
2. One month has passed, i.e., all the apples has become one month old:  
3. {(A, 1), (A, 1), (A, 1)}.  
4. A glass of juice is made from an apple: {(J, 0), (A, 1), (A, 1)}.  
5. More eleven months have passed: {(J, 11), (A, 12), (A, 12)}.  
6. We finally have a glass of juice and a glass of cider: {(J, 11), (C, 0)}.
 Then this situation is expressed as follows:  

   
Thus we can obtain:  

In the next example, this will be verified using LT.
In order to compare timed Petri net and LT, the following definition is considered. It is 
assumed here that there is no time passage function or timing condition, since these are 
additional items in case-by-case.  
Definition 21 (Timed Petri net structure) A timed Petri net structure is a structure

such that 
7. N is the set of natural numbers representing liner-time,  
8. S is the set of all timed-markings,  
9. + is a multiset union operation on S,  
10.  is the empty multiset,  
11.  is a reachability relation on S.  
It is remarked that a timed Petri net structure satisfies the following 
conditions:
1.  is a commutative monoid,  
2.  is a pre-ordered set,  

3.
We then have the following basic proposition. 
Proposition 22 (Correspondence: Timed Petri net and Kripke frame)
A timed Petri net structure is just a -free reduct of a Kripke frame for LT. 
By this prposition and the canonical model defined in Definition 13, a timed Petri net 
interpretation for LT is obtained. 
1. A timed token or place name, , corresponds to the formula .
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2. The reachability of a timed Petri net corresponds to the provability of a sequent in LT, 
i.e. corresponds to .

Then we have the remained question: “What is the Petri net interpretation of the exponential 
operator?” The following example is an answer from the idea of Ishihara and Hiraishi 
(Ishihara & Hiraishi, 2001). 
Example 23 (Exponential operator) We give a timed Petri net with 

,
, where all tokens are active tokens, i.e., tokens with 

. Graphically this becomes the following:

This net corresponds to the facts  .  In this net, the place !
 (if it has a timed token) can produce a number of tokens in many-times (i.e. as many as needed). 

We now show a LT based expression of the timed Petri net in the apple drink examples 
discussed before. 
Example 24 (Apple drinks 3) We recondider Examples 19 and 20 based on a sequent 
calculus expression for LT. 
The time passage functions 1 and 11, and the timing conditions TC1 and TC2 are expressed as 
initial sequents (non-logical axioms) for LT.

In the following, we verify ,
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5. Concluding remarks 

In this paper, a new logic, called linear-time linear logic, was introduced as two equivalent 
cut-free sequent calculi LT and 2LT, which are the linear logic versions of Kawai’s LT and 
Baretella and Masini’s 2S  for the standard linear-time temporal logic. The completeness 
theorem w.r.t. the Kripke semantics with a natural timed Petri net interpretation was proved 
for LT as the main result of this paper. By using this theorem, a relationship between LT and 
a timed Petri net with timed tokens was clarified, and the reachability of such a Petri net was 
transformed into the provability of LT and also 2LT. This means that the timed Petri net can 
naturally be expressed as the proof-theoretic framework by LT. 
In the following, some technical remarks are given. The Kripke semantics presented is 
similar to the Kripke semantics (or resource algebras) with location interpretations by 
Kobayashi, Shimizu and Yonezawa (Kobayashi et al., 1999)) and Kamide (Kamide, 2004). 
The sequent calculi and Kripke semantics for LT can also be adapted to Lafont’s 
(intuitionistic) soft linear logic (Lafont, 2004) by using the framework presented in (Kamide, 
2004). The framework posed in this paper can be extended to a rich framework with the 
first-order universal quantifier ,based on the technique posed in (Kamide, 2004). It is 
known in (Lilius, 1992) that the linear logic framework with the first-order quantifiers
correspond to a high-level Petri net framework. 
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