663 research outputs found

    Advancing performability in playable media : a simulation-based interface as a dynamic score

    Get PDF
    When designing playable media with non-game orientation, alternative play scenarios to gameplay scenarios must be accompanied by alternative mechanics to game mechanics. Problems of designing playable media with non-game orientation are stated as the problems of designing a platform for creative explorations and creative expressions. For such design problems, two requirements are articulated: 1) play state transitions must be dynamic in non-trivial ways in order to achieve a significant level of engagement, and 2) pathways for players’ experience from exploration to expression must be provided. The transformative pathway from creative exploration to creative expression is analogous to pathways for game players’ skill acquisition in gameplay. The paper first describes a concept of simulation-based interface, and then binds that concept with the concept of dynamic score. The former partially accounts for the first requirement, the latter the second requirement. The paper describes the prototype and realization of the two concepts’ binding. “Score” is here defined as a representation of cue organization through a transmodal abstraction. A simulation based interface is presented with swarm mechanics and its function as a dynamic score is demonstrated with an interactive musical composition and performance

    Designing and Composing for Interdependent Collaborative Performance with Physics-Based Virtual Instruments

    Get PDF
    Interdependent collaboration is a system of live musical performance in which performers can directly manipulate each other’s musical outcomes. While most collaborative musical systems implement electronic communication channels between players that allow for parameter mappings, remote transmissions of actions and intentions, or exchanges of musical fragments, they interrupt the energy continuum between gesture and sound, breaking our cognitive representation of gesture to sound dynamics. Physics-based virtual instruments allow for acoustically and physically plausible behaviors that are related to (and can be extended beyond) our experience of the physical world. They inherently maintain and respect a representation of the gesture to sound energy continuum. This research explores the design and implementation of custom physics-based virtual instruments for realtime interdependent collaborative performance. It leverages the inherently physically plausible behaviors of physics-based models to create dynamic, nuanced, and expressive interconnections between performers. Design considerations, criteria, and frameworks are distilled from the literature in order to develop three new physics-based virtual instruments and associated compositions intended for dissemination and live performance by the electronic music and instrumental music communities. Conceptual, technical, and artistic details and challenges are described, and reflections and evaluations by the composer-designer and performers are documented

    Paradoxes of interactivity: perspectives for media theory, human-computer interaction, and artistic investigations

    Get PDF
    Current findings from anthropology, genetics, prehistory, cognitive and neuroscience indicate that human nature is grounded in a co-evolution of tool use, symbolic communication, social interaction and cultural transmission. Digital information technology has recently entered as a new tool in this co-evolution, and will probably have the strongest impact on shaping the human mind in the near future. A common effort from the humanities, the sciences, art and technology is necessary to understand this ongoing co- evolutionary process. Interactivity is a key for understanding the new relationships formed by humans with social robots as well as interactive environments and wearables underlying this process. Of special importance for understanding interactivity are human-computer and human-robot interaction, as well as media theory and New Media Art. "Paradoxes of Interactivity" brings together reflections on "interactivity" from different theoretical perspectives, the interplay of science and art, and recent technological developments for artistic applications, especially in the realm of sound

    Paradoxes of Interactivity

    Get PDF
    Current findings from anthropology, genetics, prehistory, cognitive and neuroscience indicate that human nature is grounded in a co-evolution of tool use, symbolic communication, social interaction and cultural transmission. Digital information technology has recently entered as a new tool in this co-evolution, and will probably have the strongest impact on shaping the human mind in the near future. A common effort from the humanities, the sciences, art and technology is necessary to understand this ongoing co- evolutionary process. Interactivity is a key for understanding the new relationships formed by humans with social robots as well as interactive environments and wearables underlying this process. Of special importance for understanding interactivity are human-computer and human-robot interaction, as well as media theory and New Media Art. »Paradoxes of Interactivity« brings together reflections on »interactivity« from different theoretical perspectives, the interplay of science and art, and recent technological developments for artistic applications, especially in the realm of sound

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Ontology of music performance variation

    Get PDF
    Performance variation in rhythm determines the extent that humans perceive and feel the effect of rhythmic pulsation and music in general. In many cases, these rhythmic variations can be linked to percussive performance. Such percussive performance variations are often absent in current percussive rhythmic models. The purpose of this thesis is to present an interactive computer model, called the PD-103, that simulates the micro-variations in human percussive performance. This thesis makes three main contributions to existing knowledge: firstly, by formalising a new method for modelling percussive performance; secondly, by developing a new compositional software tool called the PD-103 that models human percussive performance, and finally, by creating a portfolio of different musical styles to demonstrate the capabilities of the software. A large database of recorded samples are classified into zones based upon the vibrational characteristics of the instruments, to model timbral variation in human percussive performance. The degree of timbral variation is governed by principles of biomechanics and human percussive performance. A fuzzy logic algorithm is applied to analyse current and first-order sample selection in order to formulate an ontological description of music performance variation. Asynchrony values were extracted from recorded performances of three different performance skill levels to create \timing fingerprints" which characterise unique features to each percussionist. The PD-103 uses real performance timing data to determine asynchrony values for each synthesised note. The spectral content of the sample database forms a three-dimensional loudness/timbre space, intersecting instrumental behaviour with music composition. The reparameterisation of the sample database, following the analysis of loudness, spectral flatness, and spectral centroid, provides an opportunity to explore the timbral variations inherent in percussion instruments, to creatively explore dimensions of timbre. The PD-103 was used to create a music portfolio exploring different rhythmic possibilities with a focus on meso-periodic rhythms common to parts of West Africa, jazz drumming, and electroacoustic music. The portfolio also includes new timbral percussive works based on spectral features and demonstrates the central aim of this thesis, which is the creation of a new compositional software tool that integrates human percussive performance and subsequently extends this model to different genres of music

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    Agent-Based Graphic Sound Synthesis and Acousmatic Composition

    Get PDF
    For almost a century composers and engineers have been attempting to create systems that allow drawings and imagery to behave as intuitive and efficient musical scores. Despite the intuitive interactions that these systems afford, they are somewhat underutilised by contemporary composers. The research presented here explores the concept of agency and artificial ecosystems as a means of creating and exploring new graphic sound synthesis algorithms. These algorithms are subsequently designed to investigate the creation of organic musical gesture and texture using granular synthesis. The output of this investigation consists of an original software artefact, The Agent Tool, alongside a suite of acousmatic musical works which the former was designed to facilitate. When designing new musical systems for creative exploration with vast parametric controls, careful constraints should be put in place to encourage focused development. In this instance, an evolutionary computing model is utilised as part of an iterative development cycle. Each iteration of the system’s development coincides with a composition presented in this portfolio. The features developed as part of this process subsequently serve the author’s compositional practice and inspiration. As the software package is designed to be flexible and open ended, each composition represents a refinement of features and controls for the creation of musical gesture and texture. This document subsequently discusses the creative inspirations behind each composition alongside the features and agents that were created. This research is contextualised through a review of established literature on graphic sound synthesis, evolutionary musical computing and ecosystemic approaches to sound synthesis and control
    • …
    corecore