19,562 research outputs found

    Perturbation splitting for more accurate eigenvalues

    Get PDF
    Let TT be a symmetric tridiagonal matrix with entries and eigenvalues of different magnitudes. For some TT, small entrywise relative perturbations induce small errors in the eigenvalues, independently of the size of the entries of the matrix; this is certainly true when the perturbed matrix can be written as T~=XTTX\widetilde{T}=X^{T}TX with small ∣∣XTX−I∣∣||X^{T}X-I||. Even if it is not possible to express in this way the perturbations in every entry of TT, much can be gained by doing so for as many as possible entries of larger magnitude. We propose a technique which consists of splitting multiplicative and additive perturbations to produce new error bounds which, for some matrices, are much sharper than the usual ones. Such bounds may be useful in the development of improved software for the tridiagonal eigenvalue problem, and we describe their role in the context of a mixed precision bisection-like procedure. Using the very same idea of splitting perturbations (multiplicative and additive), we show that when TT defines well its eigenvalues, the numerical values of the pivots in the usual decomposition T−λI=LDLTT-\lambda I=LDL^{T} may be used to compute approximations with high relative precision.Fundação para a Ciência e Tecnologia (FCT) - POCI 201

    Comparing periodic-orbit theory to perturbation theory in the asymmetric infinite square well

    Full text link
    An infinite square well with a discontinuous step is one of the simplest systems to exhibit non-Newtonian ray-splitting periodic orbits in the semiclassical limit. This system is analyzed using both time-independent perturbation theory (PT) and periodic-orbit theory and the approximate formulas for the energy eigenvalues derived from these two approaches are compared. The periodic orbits of the system can be divided into classes according to how many times they reflect from the potential step. Different classes of orbits contribute to different orders of PT. The dominant term in the second-order PT correction is due to non-Newtonian orbits that reflect from the step exactly once. In the limit in which PT converges the periodic-orbit theory results agree with those of PT, but outside of this limit the periodic-orbit theory gives much more accurate results for energies above the potential step.Comment: 22 pages, 2 figures, 2 tables, submitted to Physical Review

    Excitation energies from density functional perturbation theory

    Full text link
    We consider two perturbative schemes to calculate excitation energies, each employing the Kohn-Sham Hamiltonian as the unperturbed system. Using accurate exchange-correlation potentials generated from essentially exact densities and their exchange components determined by a recently proposed method, we evaluate energy differences between the ground state and excited states in first-order perturbation theory for the Helium, ionized Lithium and Beryllium atoms. It was recently observed that the zeroth-order excitations energies, simply given by the difference of the Kohn-Sham eigenvalues, almost always lie between the singlet and triplet experimental excitations energies, corrected for relativistic and finite nuclear mass effects. The first-order corrections provide about a factor of two improvement in one of the perturbative schemes but not in the other. The excitation energies within perturbation theory are compared to the excitations obtained within Δ\DeltaSCF and time-dependent density functional theory. We also calculate the excitation energies in perturbation theory using approximate functionals such as the local density approximation and the optimized effective potential method with and without the Colle-Salvetti correlation contribution

    Quantization with operators appropriate to shapes of trajectories and classical perturbation theory

    Get PDF
    Quantization is discussed for molecular systems having a zeroth order pair of doubly degenerate normal modes. Algebraic quantization is employed using quantum operators appropriate to the shape of the classical trajectories or wave functions, together with Birkhoff-Gustavson perturbation theory and the W eyl correspondence for operators. The results are compared with a previous algebraic quantization made with operators not appropriate to the trajectory shape. Analogous results are given for a uniform semiclassical quantization based on Mathieu functions of fractional order. The relative sensitivities of these two methods (AQ and US) to the use of operators and coordinates related to and not related to the trajectory shape is discussed. The arguments are illustrated using principally a Hamiltonian for which many previous results are available

    The double well potential in quantum mechanics: a simple, numerically exact formulation

    Full text link
    The double well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of `classical' states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double well potentials that are accessible to the undergraduate student. We describe a method for obtaining the numerically exact eigenenergies and eigenstates for such a model, along with the energies obtained through the Wentzel-Kramers-Brillouin (WKB) approximation. The exact solution is accessible with elementary mathematics, though numerical solutions are required. We also find that the WKB approximation is remarkably accurate, not just for the ground state, but for the excited states as well.Comment: 10 pages, 4 figures; suitable for undergraduate courses in quantum mechanic

    Small x Resummation with Quarks: Deep-Inelastic Scattering

    Get PDF
    We extend our previous results on small-x resummation in the pure Yang--Mills theory to full QCD with nf quark flavours, with a resummed two-by-two matrix of resummed quark and gluon splitting functions. We also construct the corresponding deep-inelastic coefficient functions, and show how these can be combined with parton densities to give fully resummed deep-inelastic structure functions F_2 and F_L at the next-to-leading logarithmic level. We discuss how this resummation can be performed in different factorization schemes, including the commonly used MSbar scheme. We study the importance of the resummation effects by comparison with fixed-order perturbative results, and we discuss the corresponding renormalization and factorization scale variation uncertainties. We find that for x below 0.01 the resummation effects are comparable in size to the fixed order NNLO corrections, but differ in shape. We finally discuss the phenomenological impact of the small-x resummation, specifically in the extraction of parton distribution from present day experiments and their extrapolation to the kinematics relevant for future colliders such as the LHCComment: 45 pages, 16 figures, plain TeX with harvma

    Quantum Dot Potentials: Symanzik Scaling, Resurgent Expansions and Quantum Dynamics

    Get PDF
    This article is concerned with a special class of the ``double-well-like'' potentials that occur naturally in the analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton configurations of the form exp(-a/g), where a is the instanton action. The instanton effects are most naturally taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the generalized perturbative expansions (so-called resurgent expansions) for the energy values of the Fokker-Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization conditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in powers of g^(-2/3). Detailed calculations are performed for a wide range of coupling parameters g and indicate a considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical integration of the (single-particle) time-dependent Schroedinger equation and, hence, for studying the dynamical evolution of the wavepackets in the double-well-like potentials.Comment: 13 pages; RevTe

    Tunnel splittings for one dimensional potential wells revisited

    Full text link
    The WKB and instanton answers for the tunnel splitting of the ground state in a symmetric double well potential are both reduced to an expression involving only the functionals of the potential, without the need for solving any auxilliary problems. This formula is applied to simple model problems. The prefactor for the splitting in the text book by Landau and Lifshitz is amended so as to apply to the ground and low lying excited states.Comment: Revtex; 1 ps figur
    • …
    corecore