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Abstract

We extend our previous results on small- x resummation in the pure Yang–Mills theory
to full QCD with nf quark flavours, with a resummed two-by-two matrix of resummed
quark and gluon splitting functions. We also construct the corresponding deep–inelastic
coefficient functions, and show how these can be combined with parton densities to give
fully resummed deep–inelastic structure functions F2 and FL at the next-to-leading loga-
rithmic level. We discuss how this resummation can be performed in different factorization
schemes, including the commonly used MS scheme. We study the importance of the re-
summation effects by comparison with fixed-order perturbative results, and we discuss
the corresponding renormalization and factorization scale variation uncertainties. We find
that for x below 10−2 the resummation effects are comparable in size to the fixed order
NNLO corrections, but differ in shape. We finally discuss the phenomenological impact of
the small–x resummation, specifically in the extraction of parton distribution from present
day experiments and their extrapolation to the kinematics relevant for future colliders such
as the LHC.
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1. Introduction

The main motivation behind the recent progress in higher order calculations in perturbative
QCD is the need of accurate phenomenology at hadron colliders, and in particular the LHC.
Therefore, the interest of such calculations lies mostly in their ability to actually lead to
an improvement in the accuracy of theoretical predictions of measurable processes. The
frontier of present-day perturbative calculations is the next-to-next-to leading (NNLO)
order, thanks to the recent determination of three–loop splitting functions [1] as well as
the hard partonic cross sections for several processes [2] (for recent results see, for example,
[3,4]). However, perturbative evolution at NNLO is unstable in the high energy (small x
limit): the size of the NNLO corrections diverges as x → 0 at fixed scale.

The fact that at high energy corrections to perturbative evolution and to hard cross
sections are potentially large has been known for a long time (see e.g. Ref. [5]). However,
even though the study of the leading high energy corrections [6] and their inclusion in
perturbative anomalous dimensions [7] has a rather long history, it is only over the last
few years that a fully resummed approach to perturbative evolution has been constructed
[8,9], mostly stimulated by the availability of deep–inelastic data at very high energy from
the HERA collider [10]. In fact, it turns out that even though at fixed perturbative
order corrections are very large at small x, their full resummation leads to a considerable
softening of small x terms, consistent with the fact that the data do not show any large
departure from next-to-leading (NLO) order predictions. However, in order to obtain
the resummed results one must include several classes of subleading terms, motivated
by various physical constraints, such as momentum conservation, renormalization group
invariance and gluon exchange symmetry. The existing approaches to this resummation,
as discussed respectively in refs. [8,11–15] and [9,16–19] (see also ref. [20]) though rather
different in many technical respects, are essentially based on the same physical input and
yield results which agree with each other within the expected theoretical uncertainty.

Because the leading high energy corrections are dominated by gluon exchange, the
resummation is most easily performed in the pure Yang-Mills theory, and indeed the fully
resummed results for perturbative evolution of refs. [8,9,11–19] have been obtained with
nf = 0. In order to actually get predictions for (flavour singlet) physical observables, one
needs to combine three ingredients: the eigenvalues of the singlet quark and gluon anoma-
lous dimension matrix, the resummed partonic cross sections (coefficient functions) for
the relevant physical process in some factorization scheme, and the linear transformation
which relates the eigenvectors of the evolution matrix to the singlet quark and the gluon
in the same factorization scheme. The first ingredient is readily available: because the
effect of one of the two evolution eigenvalues is suppressed by a power of x at small x, it is
enough to generalize the results of refs. [8-19] for the “large” eigenvalue to the case nf 6= 0.
The second ingredient is also available, at least for a small number of processes [21–23] for
which the high–energy resummation of partonic cross sections has been performed. In par-
ticular, deep–inelastic coefficient functions have been determined in the MS and DIS (and
related) schemes in ref. [22]. However, it is nontrivial to combine resummed coefficient
functions and parton distributions at the running coupling level: the way to do this has
only been recently developed in ref. [24]. Hence, in order to obtain complete results what
we need is to construct the evolution eigenvectors in terms of quarks and gluons at the
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resummed level in these schemes. This can be done by extending to the running coupling
case the general technique for the construction of resummed factorization schemes which
was developed in refs. [12,25].

In this paper, we will present a construction of resummed physical observables in
the MS and related schemes, based on the approach to resummation of refs. [8,11-15],
using the strategy that we just outlined, and apply it to the specific case of deep–inelastic
scattering. We start by summarising the results on small x resummation of singlet evolution
developed in previous papers for the pure Yang-Mills theory. We then construct the two
eigenvalues of the anomalous dimension matrix when nf 6= 0, by a suitable generalization
of the technique of ref. [15]. Next, we show how the deep–inelastic structure functions
F2(x, Q2) and FL(x, Q2) can be obtained by combining resummed coefficient functions
with parton distributions which satisfy resummed evolution equations, exploiting the recent
results of ref. [24]. Then, we construct the transformation from the basis of eigenvectors
of perturbative evolution to that of quarks and gluons in the MS and Q0MS schemes
and we use it to construct the two-by-two matrix of splitting functions in these schemes.
Finally, we discuss the phenomenological consequence of the resummation: first we assess
the impact on splitting functions and on the evolution of representative quark and gluon
distributions, and then we determine the effect on the deep inelastic structure functions
F2(x, Q2) and FL(x, Q2).

Recently, the full nf 6= 0 resummed evolution matrix has also been constructed ex-
plicitly in ref. [26], based on the approach of refs. [9,16-19]. This result has been obtained
by extending a BFKL–like approach to coupled quark and gluon evolution. This has the
advantage of giving evolution equations for off-shell, unintegrated parton distributions, but
it has the shortcoming of providing results in a factorization scheme which only coincides
with MS up to the next-to-leading fixed order, and differs from it at the resummed level: it
is therefore difficult to compare our results to those of this reference, where no predictions
for physical observables are given.

2. Resumming the singlet anomalous dimension matrix

When nf 6= 0, we must consider the full set of splitting functions Pij(αs, x), where i, j
run over quarks, gluons, or linear combinations thereof. However, the resummation of the
full set of Pij(αs, x) can be obtained from the resummation of the largest (gluon-sector)
eigenvector of the anomalous dimension matrix

γij(αs, N) =

∫ 1

0

dx xN−1Pij(αs, x), (2.1)

as discussed long ago in ref. [12]. The construction of the resummed anomalous dimension
when nf = 0 was in turn described in detail in ref. [15]. In this section, we will recall
the general structure of the resummation of the large anomalous dimension of ref. [15],
concentrating on the aspects which require modification when nf 6= 0, while referring to
ref. [15] for details of the resummation.

As is well known, all nonsinglet splitting functions are suppressed by a power of x in
comparison to the singlet [27]: namely, the rightmost singularity of γij is at N = 0 in the
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singlet channel and at N = −1 in the nonsinglet channel. Therefore we will henceforth
only consider the singlet sector, where the anomalous dimension is a two-by-two matrix
which provides the evolution of the Mellin moments

f(N, t) =

∫ 1

0

dx xN−1f(x, t), (2.2)

of the parton distributions

f(x, t) =

(

Q(x, t)
G(x, t)

)

=

(

xq(x, t)
xg(x, t)

)

, (2.3)

(where q and g are the usual singlet quark and gluon parton densities) according to the
evolution equation

d

dt
f(N, t) = γ(αs(t), N)f(N, t), (2.4)

where t = ln(Q2/µ2). As also well known, the reason why only one of the eigenvalues
γ±(αs, N) of this matrix needs to be resummed is that only one eigenvalue is nonvanishing
at the leading log x (LLx) level, i.e., only one eigenvalue has a k-th order pole at N = 0
when evaluated at order αk

s , so

γ+
LLx(αs, N) = γ+

s

(

αs

N

)

,

γ−

LLx(αs, N) = 0.
(2.5)

It follows that it is possible to choose the factorization scheme in such a way that γ−(αs, N)
is regular at N = 0 [12,25]. In particular, this is the case at the next-to-leading log x level
in the MS and DIS schemes [22]. We will henceforth only consider schemes where γ− is
regular at N = 0, and thus only γ+ has to be resummed.

2.1. The dominant singlet eigenvector

The resummation of γ+ is performed as discussed in ref. [15]. In order to understand
this resummation, it is useful to recall that the solution of the GLAP equation (2.4) for
the large eigenvector f+ of γ,

d

dt
f+(N, t) = γ+(αs(t), N)f+(N, t), (2.6)

coincides at leading twist with the solution to the BFKL equation

d

dξ
f+(x, M) = χ(α̂s, M)f+(x, M), (2.7)

where ξ = ln(1/x), f+(x, M) is the Mellin transform

f+(x, M) =

∫ ∞

−∞

dt e−Mtf+(x, t), (2.8)
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α̂s is the operator obtained from αs(t) by the replacement t → − ∂
∂M , and the kernel1

χ(α̂s, M) = α̂sχ0(M) + α̂2
sχ1(M) + · · · (2.9)

is determined by the kernel γ (or conversely) by a suitable duality relation [29,11,13,28].
Because parton distributions behave as a constant at large Q2, while they vanish linearly
with Q2 as Q2 → 0, the integral eq. (2.8) exists when 0 < ReM < 1 (physical region,
henceforth), and it can be defined elsewhere by analytic continuation.

At fixed coupling the duality relations between the kernels are simply

χ(αs, γ
+(αs, N)) = N,

γ+(αs, χ(αs, M)) = M,
(2.10)

which imply that if we expand γ+(αs, N) in powers of αs at fixed αs/N

γ+(αs, N) = γ+
s (αs

N ) + αsγ
+
ss(

αs

N ) + · · · , (2.11)

γ+
s is determined by χ0 (and conversely), γ+

ss by χ0 and χ1 and so on. At the running
coupling level it is still true that the first n orders of the expansion eq. (2.11) are determined
by χ(αs, M), eq. (2.9), up to n-th order, but eq. (2.10) holds only at leading order (i.e.
for χ0 and γs), while beyond the leading order it gets corrected by a series of terms
up to O[(β0αs)

n−1], which can be determined explicitly order-by-order in perturbation
theory [28]. Conversely, the first n orders of the expansion of χ in powers of M at fixed
M−1α̂s

χ(α̂s, M) = χs(M
−1α̂s) + α̂sχss(M

−1α̂s) + · · · (2.12)

are determined by knowledge up to n-th order of the expansion of γ+ at fixed N

γ+(αs, N) = αsγ
+
0 (N) + α2

sγ
+
1 (N) + · · · . (2.13)

Of course, different orderings of M−1 and α̂s in the argument of the coefficients χsn of
the expansion eq. (2.12) lead to a different functional form of the coefficients; the ordering
eq. (2.12) is particularly convenient because with it the leading order coefficient χs has the
same form as that obtained from γ0 using fixed-coupling duality eq. (2.10) [28].

The resummation of γ+(αs, N) at k-th order consists of supplementing the k-th order
of its expansion in powers of αs eq. (2.13) with three further classes of terms: (a) terms
up to k–th order in the expansion of γ+ in powers of αs with αs/N fixed, eq. (2.11),
(double-leading resummation, henceforth); (b) contributions which are subleading with
respect to the double-leading resummation but which enforce the physical constraints of
momentum conservation and gluon exchange symmetry (symmetrization, henceforth); (c)
contributions which are subleading with respect to the double-leading expansion but which
are needed in order to ensure the uniform convergence of that expansion in the physical

1 Different choices of ordering for the operator α̂s in the definition of the kernel correspond to

different choices for the argument of the running coupling [28].
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region (running-coupling resummation, henceforth). Let us now discuss the resummation
of these classes of terms in turn.

The double–leading resummation (first step) is performed by combining the first k
orders of the expansion of γ+ in powers of αs at fixed N eq. (2.13) and at fixed αs/N
eq. (2.11) (double-leading expansion [30,11]), and subtracting double counting:

γ+
DL(N, αs) =

[

αsγ
+
0 (N) + γ+

s

(

αs

N

)

− ncαs

πN

]

+ αs

[

αsγ
+
1 (N) + γ+

ss

(

αs

N

)

− αs

(

e+

2

N2 +
e+

1

N

)

− e0

]

+ · · · .
(2.14)

The key observation is that one can prove [11] that the double–leading expansion of γ+

eq. (2.14) and the double leading expansion of χ are order by order dual to each other.
This is crucial because the subsequent steps of the resummation (symmetrization and
running-coupling resummation) are performed by manipulating χ. The construction of the
resummed γ+ thus starts [15] by transforming the double–leading γ+

DL(N, αs) eq. (2.14)
into its dual

χDL =
[

αsχ0(M) + χs(
αs

M
) − ncαs

πM

]

+ αs

[

αsχ1(M) + χss(
αs

M ) − αs

(

f2

M2 + f1

M

)

− f0

]

+ . . . .
(2.15)

The kernel χ eq. (2.15) has a stable perturbative expansion for small M . This is a
consequence of the fact that momentum conservation implies [12] that γ+(1) = 0, which,
by duality, entails χ(0) = 1 (up to running coupling corrections). These properties are
exactly satisfied order-by-order by the perturbative expansion eq. (2.13) of γ+, and thus
only violated by (small) subleading terms in the double–leading expansion eq. (2.15) of
χ, which is thus finite (and close to one) at M = 0 despite the fact that subsequent
orders of the expansion eq. (2.9) of χ have poles of increasingly high order and alternating
sign coefficients: these poles are removed by the double leading resummation eq. (2.15).
However, order by order in the expansion eq. (2.9) the kernel χ also has poles at M =
1. Hence, the double–leading expansion of χ is still perturbatively unstable when M
grows sufficiently large. This is problematic because perturbative evolution at small x is
controlled by the small N behaviour of γ+, which by duality corresponds to the large M
behaviour of χ.

This instability can be cured by exploiting a symmetry of the set of Feynman diagrams
which determine the kernel χ, that implies that the kernel satisfies the reflection relation
χ(M) = χ(1−M) order by order in perturbation theory. This exchange symmetry is broken
by an asymmetric choice of kinematic variables, as is necessary for the application to deep
inelastic scattering, and by running coupling effects [16,18]. The double–leading kernel can
thus be symmetrized by first undoing all sources of symmetry breaking, then symmetrizing,
and finally restoring the symmetry breaking. The symmetrization must be performed in
such a way that the symmetrized kernel χΣ only differs from the double-leading χDL by
subleading terms. This introduces a certain ambiguity, which however is controlled by the
requirement of momentum conservation, which fixes the value of χ at M = 0. The way
the symmetrization can be implemented at the leading- and next-to-leading order of the
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double-leading expansion was described in detail in ref. [15] to which we refer, since the
procedure is unchanged regardless of the value of nf . Once the resummed, symmetrized
kernel χΣ(M) has been constructed to the desired order, the corresponding resummed
anomalous dimension γ+

Σ can be obtained from it using running–coupling duality, as we
shall see shortly.

An important consequence of the symmetrization of χ is that the symmetrized kernel
always has a minimum in the physical region 0 ≤ Re M ≤ 1, and it is an entire function of
M for Re M > 0. The existence of the minimum is a generic consequence of symmetrization
of the behaviour around the momentum conservation value χ(0) = 1, where the kernel
has negative derivative; this in turn is, by duality, a generic consequence of the physical
requirement that γ+ decreases as N increases. The fact that the kernel is an entire function
then follows from the transformation from the kinematics in which the kernel is symmetric
(appropriate for processes such as two-jet production in p–p scattering) to that of DIS [15].
The transformation from symmetric to DIS variables leaves unchanged the value of χ at
the minimum (and the curvature of χ at the minimum [15]), but shifts the position of the
minimum away from M = 1

2 by small corrections.
The existence of a minimum of χ is what makes the third step, the running-coupling

resummation, necessary. Indeed, the double–leading improvement eq. (2.14) of the expan-
sion (2.13) of γ+ is necessary but not sufficient for the perturbative corrections to γ+ to
be uniformly small in the small x limit: the inclusion of the first k orders of the expansion
eq. (2.11) of γ+ in powers of αs at fixed αs/N guarantees that the O(k + 1) is O(αs) if
αs/N is kept fixed as N decreases, but not if N decreases at fixed αs. Now, if χ has a
minimum at M = M0, in the vicinity of the minimum we can expand

χq(α̂s, M) = c(α̂s) + 1
2
κ(α̂s) (M − M0)

2
+ O

[

(M − M0)
3
]

. (2.16)

The fixed–coupling dual to χq eq. (2.16) is

γ+
q (αs, N) = M0 −

√

N − c(αs
1
2κ(αs)

, (2.17)

which has square-root branch cut at N = χq(αs, M0). However, the running coupling
correction to γss in the vicinity of the minimum is

γβ0

ss (αs, N) = −β0

χ′′
0 (γ+

q )χ0(γ
+
q )

2[χ′
0(γ

+
q )]2

= −1

4
β0

N

N − c(αs)
,

(2.18)

which has a simple pole at N = χ(M0).
In general, the running coupling correction to γsn has an order n pole at M =

M0 [28,31]. This implies the growth of the associated splitting function by a power of
ln 1/x equal to the order of the pole in comparison to a pole–free splitting function. Hence
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the running coupling contributions are not uniformly small at small x and they must be
resummed.

The resummation of running coupling singularities is possible [13] thanks to the fact
that the running-coupling BFKL equation (2.7) can be solved in closed form either for a
quadratic kernel which is linear in αs [32] or, at the leading log level, for a quadratic kernel
which is a generic function of αs. As derived in detail in refs.[14,15], the inverse Mellin
transforms of these two closed form solutions can be written down in terms of an Airy
function or a Bateman function, GA(N, t) or GB(N, t), respectively. It is then possible to
determine the associated anomalous dimensions as their logarithmic derivative:

γB(αs, N) =
∂

∂t
lnGB(N, t). (2.19)

The Bateman result includes the Airy case to which it reduces for a kernel which is pro-
portional to αs.

The “Bateman” anomalous dimension eq. (2.19) resums to all orders the leading sin-
gular running coupling corrections to duality. The leading singularity which controls the
small x behaviour is then the singularity of the Bateman anomalous dimension, which is
a simple pole:

γB(αs(t), N) =
1

N − N0
rB + O[(N − N0)

0], rB = 2β0ᾱs [N0 − c̄(αs)] , (2.20)

where N0 is related to the location of the zeros of the Bateman function in eq. (2.19). The
value of N0 depends on the values of c(αs) and κ(αs). It is plotted as a function of αs(t) at
LO and NLO in ref. [15]. Specifically, for αs = 0.2, N0 ≈ 0.17 at both LO and NLO. This
value corresponds to a drastic suppression of the asymptotic rise at small x with respect
to the fixed coupling case. Moreover, the smallness of the associated residue rB delays the
onset of the powerlike asymptotic behaviour to values of x below the region of the HERA
data.

A resummed result which is uniformly stable at small x is found by simply combining
the anomalous dimension obtained using running coupling duality from the symmetrized
kernel χΣ with the “Bateman” resummation eq. (2.19) of the running coupling corrections,
and subtracting the double counting. Namely, at next-to-leading order, one first constructs

γ+ rc, pert
Σ NLO (αs(t), N) = γ+

Σ NLO(αs(t), N) − β0αs(t)

[

χ′′
0(γ+

s (αs

N
))χ0(γ

+
s (αs

N
))

2[χ′
0(γ

+
s (αs

N ))]2
− 1

]

, (2.21)

where γ+
Σ NLO(N, αs(t)) is obtained from the NLO symmetrized kernel χΣ NLO using fixed–

coupling duality eq. (2.10), and the term proportional to β0 is the running coupling cor-
rection. Then the result is combined with the Bateman resummation:

γ+ res
NLO ≡ γ+ rc

Σ NLO(αs(t), N) = γ+ rc, pert
Σ NLO (αs(t), N) + γB(αs(t), N)+

− γB
s (αs(t), N) − γB

ss(αs(t), N) + γmatch(αs(t), N) + γmom(αs(t), N),
(2.22)
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where the double counting subtractions γB, s and γB, ss are defined from the expansion

γB(αs, N) = γB, s(
αs

N ) + αsγB, ss(
αs

N ) + O(α2
s), (2.23)

γmom is a subleading correction which enforces exact momentum conservation, and γmatch is
a subleading correction which ensures that at large N the resummed result exactly coincides
with the unresummed NLO result γ+

NLO rather than just reducing to it up to NNLO terms,
and specifically that all subleading terms induced by the resummation vanish at least as
1/N as N → ∞.

2.2. Virtual quark effects

The construction of the resummed anomalous dimension discussed so far is the same
as that of ref. [15], the only difference being that when nf = 0 there is only one parton dis-
tribution and one anomalous dimension, while when nf 6= 0 the anomalous dimension one
resums is the eigenvector γ+ of the two-by-two singlet anomalous dimension matrix. There
is a complication however. Namely, the two eigenvalues of the leading–order anomalous
dimension matrix γ0 become equal at a pair of complex conjugate values Nd = Nd

r ± iNd
i ,

with Nd
r > 0, where the square root of the discriminant of the quadratic secular equation

vanishes, i.e. when
(γqq

0 − γgg
0 )2 + 4γqg

0 γgq
0 = 0. (2.24)

Thus when nf 6= 0, γ+
0 has a pair of branch cuts. These singularities are manifestly

unphysical, and indeed they cancel in the solution of the evolution equations. Because they
are to the right of N = 0, if uncancelled they would lead to a spurious oscillation of the
solution to the evolution equations: the splitting function computed as the inverse Mellin
transform of γ+

0 is oscillatory at small x. After resummation, however, the cancellation
of singularities can be spoiled by subleading corrections. Even though these corrections
are formally subleading, they can lead to large effects due to the small x instabilities they
induce. In order to avoid unphysical behaviour of the solutions, we must make sure that
the resummation corrections are implemented in such a way that the cancellation of these
singularities remains exact in the final solution, which in turn requires that the unphysical
branch cuts in the anomalous dimension be identical to those in the fixed order anomalous
dimension.

We do this in the following way. Firstly we separate off the nf dependent resummation
correction ∆resγ+ res

NLO to the resummed anomalous dimension γ+ res
NLO eq. (2.22):

γ+ res
NLO (αs, N ; nf) ≡ γ+ res

NLO (αs, N ; 0) + γ+ cut
NLO(αs, N ; nf) + ∆γ+ res

NLO (αs, N ; nf), (2.25)

γ+ cut
NLO (αs, N ; nf) ≡ αsγ

+
0 (N ; nf) + α2

sγ
+
1 (N, nf ) − (αsγ

+
0 (N ; 0) + α2

sγ
+
1 (N, 0)),(2.26)

where eq. (2.25) can be viewed as a definition of ∆γ+ res
NLO in terms of γ+ res

NLO . All the nf de-
pendence is now made explicit: γ+ res

NLO (αs, N ; 0) is cut free, while γ+ cut
NLO (αs, N ; nf) contains

the fixed order cuts described above, but vanishes at nf = 0. The formally subleading but
asymptotically dominant singularities would arise if ∆γ+ res

NLO (αs, N ; nf) were calculated
using the nf 6= 0 version of eq. (2.22): the cut in γ+ cut

NLO would propagate into χs and
thus χDL eq. (2.15). To circumvent this difficulty, we instead compute the resummation
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correction ∆γ+ res
NLO using a rational approximation to γ+, cut

NLO eq. (2.26), γ+, rat
NLO , which is

accurate when N is small (in the resummation region), and goes away at large N (where it
is irrelevant), but is free of cuts. Thus we extend the double–leading expansion eq. (2.14)
from nf = 0 to nf 6= 0 by adding to it γ+, rat

NLO instead of γ+, cut
NLO , include the nf dependent

pieces in χ1, and then follow from then onwards the same procedure as before as far as
eqn.(2.22), to give us γ+ res,rat

NLO (αs, N ; nf). Subtracting the nf = 0 anomalous dimension
then gives us the desired result:

∆γ+ res
NLO (αs, N ; nf) = γ+ res,rat

NLO (αs, N ; nf) − γ+ res
NLO (αs, N ; 0), (2.27)

free from cuts. This procedure ensures that the resummed anomalous dimension is every-
where accurate, provided only the rational approximation is accurate in the small N <∼ 0.5
region where the resummation kicks in: for larger values of N , where the resummed and
unresummed results coincide by construction, and the exact γ+

NLO is restored, complete
with cut.

The rational approximation itself is constructed as a systematic improvement of the
Laurent expansion of γ+ cut

NLO eq. (2.26), about its leading singularity at N = 0. It is
based on the physical requirements that it must only has singularities on the negative
real axis, so the small x behaviour of the associated splitting function is only modified
by terms suppressed by powers of x, and that it goes to a constant at large N , so that
no large cancellations occur when the exact large N behaviour is restored. Finally, exact
momentum conservation is imposed consistent with these requirements. In practice, we
first construct a i–th order approximation

γ̄rat
(1) (N) = c−1

1

N
+ c0 + c1

N

1 + N
,

γ̄rat
(2) (N) = c−1

1

N
+ c0 + c1

N(1 + 2N)

(1 + N)
2 + c2

N2

(1 + N)
2 ,

γ̄rat
(3) (N) = c−1

1

N
+ c0 + c1

N(1 + 3N + 3N2)

(1 + N)
3 + c2

N2(1 + 3N)

(1 + N)
3 + c3

N3

(1 + N)
3 , etc,

(2.28)
where the polynomials in the numerator of the rational coefficients of ci are adjusted so
that

γ̄rat
(i) (N) =

i
∑

k=−1

ckNk + O(Nk+1). (2.29)

We then impose momentum conservation while preserving eq. (2.29):

γrat
(i) (N) = γ̄rat

(i) (N) −
(

2N

1 + N

)

γ̄rat
(i) (1). (2.30)

The rational approximations to γ+
0 (N) eq. (2.13) is constructed by using eq. (2.30), with

the first i coefficients ci equated to the coefficients of the Laurent expansion of γ+
0 (N) about

N = 0. The same procedure can be used for γ+
1 (N), and in fact also for the subsequent
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orders γ+
k (N) by simply adding the necessary negative powers of N to reproduce higher

order poles at N = 0.

Clearly, the rational approximation can be made arbitrarily accurate at small N by
adding more terms; however the subsequent terms of the expansion, as the order of the
approximation is increased, build up again the spurious cut singularity at Nd. In practice,
we find that the quadratic approximation γ2

rat(N) is adequate: its accuracy is better than
1% at leading order for N ≤ 0.5 and better than 8% for the next–to–leading order term,
which in turn is however a few percent of γ+

NLO. For N ≤ 0.3 these figures drop to 0.2%
and 2% respectively. Since the nf dependence of the resummation is itself only a small
correction to the result when nf = 0, this is sufficient for our purposes.

Equation (2.25) with the resummed anomalous dimension computed using the rational
approximation γ+ res

NLO, rat now gives us a resummed expression for the large eigenvalue of the
anomalous dimension matrix. The NLO resummation is obtained by combining this with
the standard NLO unresummed expression for the small eigenvalue γ−. A full solution
of the evolution equation is then obtained in terms of the two eigenvalues, and projectors
M±(αs, N) on the eigenvectors of the anomalous dimension matrix, such that

γ = M+γ+ + M−γ−, M+ + M− = 11 , M±M± = M±, M±M± = 0. (2.31)

The projectors eq. (2.31) have the form [12]

M+ =
1

γ+ − γ−

(

γqq − γ− γqg

X γ+ − γqq

)

,

M− =
1

γ+ − γ−

(

γ+ − γqq −γqg

−X γqq − γ−

)

,

(2.32)

where X = (γ+ − γqq)(γqq − γ−)/γqg.

2.3. Resummed eigenvalues

In summary, we have completely specified the resummed form of the eigenvalues of
the anomalous dimension. The small eigenvalue γ− is not modified by the resummation
and thus it is determined by fixed order perturbation theory. For the large eigenvalue
the resummed result is obtained by combining eq. (2.22) with eqs. (2.25). All quantities
appearing in these equations are either defined directly in this paper or in ref. [15]. From the
expressions of the eigenvalues of the anomalous dimension we can construct the solutions of
the evolution equations by using the projector formalism described above. The projectors
M±(αs, N) are fully determined from the knowledge of the eigenvectors γ± and the quark–
sector matrix elements γqq and γqg.

The resummation of the quark sector anomalous dimensions requires understanding,
at the resummed level, firstly how to combine coefficient functions with evolved parton
distributions, and secondly how to select the factorization scheme. We will discuss both
issues in the following two sections.
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3. Resummation of physical observables

Resummed physical observables are obtained by combining parton distributions which
obey resummed evolution equations with resummed coefficient functions. In the specific
case of deep–inelastic scattering, we consider the flavour singlet component of the structure
functions F2(x, t) and FL(x, t). Because, as already mentioned, in the nonsinglet channel
the leading singularity at small x is suppressed by a power of x, we will not consider
nonsinglet contributions and henceforth we will denote with Fi the singlet part of the
structure functions. The N–Mellin transform of the structure functions

Fi(N, t) =

∫ 1

0

dx xN−1Fi(x, t), (3.1)

can generally be written in N space as

Fi(N, t) = ci
q(N, αs(t))Q(N, t) + ci

g(N, αs(t))G(N, t)

= c(N, αs(t))f(N, t),
(3.2)

where f(N, t) is the parton distribution eq. (2.2),(2.3), and the elements ci
j(N, αs(t)) (i =

2, l, j = q, g) of the matrix c(N, αs(t)) of coefficients are moments of a partonic cross
section

ci
j(N, αs(t)) =

∫ 1

0

dx xN−1 ci
j(x, αs(t)). (3.3)

3.1. Double leading expansion of the coefficient functions

In order to construct the small x expression of the coefficient functions we exploit
the fact that the factorized expression eq. (3.2) can be derived from a more general kT –
factorization (or high–energy factorization) formula [21]. This factorization formula re-
duces to the more familiar kT integrated form in the collinear limit, and is useful for our
present purposes. The kT –factorized form of structure functions is conveniently written in
terms of the double Mellin transform eqs. (2.2),(2.8) of k2–dependent coefficient functions
C and parton distributions F :

Fi(N, M) = Ci
q(N, M, α̂s)Q(N, M ; µ2) + Ci

g(N, M, α̂s)G(N, M ; µ2), (3.4)

i.e., in vector notation:

F (N, M) = C(N, M, α̂s)F(N, M ; µ2). (3.5)

The k2–dependent coefficient functions are

Ci
j(N, M) =

∫

dk2

k2

(

Q2

k2

)−M

σi
j

(

Q2

k2
, N

)

, (3.6)
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the Mellin transform of the partonic i-th structure function (i = 2, L) for scattering of a
virtual photon with virtuality −Q2 off a parton j (j = q, g) with virtuality −k2.2

The coefficient function eq. (3.3) is obtained from eq. (3.4) using collinear factorization,
i.e. extracting the collinear contribution to the Mellin inversion integral

Fi(N, t) =

∫ c+i∞

c−i∞

dM

2πi
eMtFi(N, M), (3.7)

where the integration path runs to the right of the singularities near M = 0 in the complex
M plane. After factorizing all collinear logs in the evolution of the parton distribution, the
coefficient function has a single collinear log, related to the integration over the transverse
momentum of the corresponding off-shell parton line. Because upon M -Mellin transform

powers of t = ln Q2

µ2 become powers of 1
M , this means that the (M, N) space kT –factorized

parton distributions F(N ,M) have multiple M = 0 poles, whereas the coefficient functions
Ci

j(N, M) have a simple pole. The contribution of these poles to the Mellin inversion
integral eq. (3.7) then gives the collinear factorized result eq. (3.2), with

ci
q(N, αs(t)) = Ci

j(N, M)
∣

∣

∣

M=0
, Ci

j(N, M) ≡ MCi
j(N, M), (3.10)

and

f(N, t) = Γ(N, t)f(N, 0), (3.11)

where Γ(N, t) contains the contribution of the collinear M poles. The initial parton dis-
tribution, evaluated at Q2 = µ2 (i.e. t = 0), is given by

f(N, 0) = F(N, M ; µ2)
∣

∣

∣

M=0
, (3.12)

as follows from an evaluation of the integral eq. (3.7) at Q2 = µ2, where the parton
distribution is free of poles.

The parton distribution satisfies the evolution equation (2.4) thanks to the t depen-
dence due to the M = 0 poles included in the factor Γ(N, t): specifically, eq. (2.6) for the
large eigenvector (2.5) implies

d

dt
Γ+(N, t)f+(N, µ2) =

∫ c+i∞

c−i∞

dM

2πi
eMtMf+(N, M)

= γ+(α̂s, N)

∫ c+i∞

c−i∞

dM

2πi
eMtf+(N, M).

(3.13)

2 The factorization formula of ref. [21] is yet more general, in that it applies to coefficient

functions and parton distribution which depend on ~k. Here we are not interested in the angular

dependence and thus we discuss only the more restrictive version which is obtained from it after

averaging over the angular dependence of ~k and only retaining the dependence on k2.
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It is useful to view this as an equation satisfied by f+(N, M) at the collinear pole [28]:

Mf+(N, M) = γ+(α̂s, N)f+(N, M). (3.14)

The GLAP evolution equation (3.14) is, of course, satisfied to any logarithmic order thanks
to the fact [33] that collinear singularities can be factored into the parton distribution.
Hence, γ+(α̂s, N) in eq. (3.14) is an operator which at the leading (next-to-leading, . . . )
lnQ2 level can be determined trivially from the GLAP kernel. Furthermore, using running–
coupling duality [28], γ+(α̂s, N) can also be determined at the leading (next-to-leading,
. . . ) lnx level from the BFKL kernel.

High–energy factorization thus reproduces collinear factorization, in that the coeffi-
cient function thus obtained coincides with the collinear coefficient function eq. (3.8), while
the parton distribution satisfies the GLAP equation (3.14).

However, here the main interest of kT factorization is that at high energy eq. (3.4)
holds even away from the collinear M = 0 pole, namely, the Mellin inverse eq. (3.7) of
the kT -factorized structure function eq. (3.4) gives the correct expression for the structure
function, at least at the leading lnx level. This is sufficient for the determination [22] of
the structure functions to the next-to-leading lnx level, and thus for the construction of
the next-to-leading order of the double–leading expansion [12] of the coefficient functions,
because the coefficients Ci

j(N, M) have the form

C(N, M) =
1

M

[

C0 + α̂sC1(N, M) + O(α̂2
s)

]

, (3.15)

with C0 =
(

1 0
0 0

)

.
The expansion of c(N, αs(t)) in powers of αs(t) at fixed αs(t)/N can then be deter-

mined to first nontrivial order (i.e. to next-to-leading lnx order) using eq. (3.14). Indeed,
by dividing and multiplying by M the right–hand side of the factorized expression (3.5)
and performing the Mellin inversion integral, we get

F (N, t) = C0f(N, t) + αs(t)

∫ c+i∞

c−i∞

dM

2πi
eMtC1(N, M)f(N, M) + O(α2

s(t)), (3.16)

where f(N, t) is the parton distribution eq. (3.11), f(N, M) its Mellin transform (2.8), and
C0, C1 are as in eq. (3.15).

However, the GLAP equation (2.6),(3.14) implies that, at the collinear pole, the inte-
grals

Ik ≡
∫ c+i∞

c−i∞

dM

2πi
eMtMkf(N, M) (3.17)

are equal to:

I1 = γ(αs(t), N)f(N, t),

I2 =
(

γ2 + γ̇
)

f(N, t),

I3 =
(

γ3 + 3γγ̇ + γ̈
)

f(N, t), etc.

(3.18)
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The dot denotes differentiation with respect to t and γ is the anomalous dimension matrix
acting on the parton distributions f(N, t) eq. (3.11). Of course, all contributions propor-
tional to t derivatives of γ on the right–hand side of eq. (3.18) vanish at the fixed coupling
level. Note that eq. (3.16) only holds at the leading lnx level, but eqs. (3.17)-(3.18) follow
from the GLAP equation and thus hold at all logarithmic orders.

If γ(αs, N) = γs

(

αs

N

)

(leading lnx), then γ̇ is next-to-leading lnx and so forth: hence
all terms beyond the first in round brackets on the r.h.s. of eq. (3.18) are subleading, so
up to subleading terms In = γnf . Furthermore, C(N, M) is regular as N → 0 because
all N–poles i.e. all logs of x are included in the evolution: we can thus set N = 0 in it,
since positive powers of N lead to subleading contributions. It follows that the expansion
of c(N, αs(t)) in powers of αs at fixed αs/N is

c(N, αs(t)) = C0 + αs(t)css

(

γ+
s

(

αs(t)
N

))

M+ + O(α2
s) (3.19)

where M+ is the projector eq. (2.31), and

css(M) = C1(0, M). (3.20)

In order to derive eq. (3.19) we inserted 11 = M+ + M− in eq. (3.16) between C1 and
f and recalled that γ−

s = 0 (see eq. (2.5)). The explicit expression for the four matrix
elements css(M) in the MS scheme is given in ref. [22].

The double leading expression for the coefficient function is obtained combining the
first k orders of the expansion of c(N, αs(t)) in powers of αs at fixed αs/N with the first k
orders of the standard expansion of c(N, αs(t)) in powers of αs at fixed N , and subtracting
double counting: up to next-to-leading order

cDL(N, αs(t)) = C0 + αs(t)
[

(c1(N) − c1(0)) + css

(

γ+ res
NLO (αs(t), N)

)

M+

]

+ · · · , (3.21)

where c1(0) is the subtraction for double counting, and γ+ res
NLO is the resummed anomalous

dimension eq. (2.25). The identification of the second argument of css with γ+ res
NLO follows

from eq. (3.18) with γ = γ+ res
NLO , neglecting all subleading terms with t derivatives of γ. Of

course, the replacement of the leading lnx expression γ+
s with γ+ res

NLO is also subleading.
Nevertheless, this replacement is needed in order to ensure that the coefficient function
in N space doesn’t develop a spurious singularity at the location of the cut in γ+

s , which,
being to the right of the singularity (simple pole) which dominates the small x behaviour
of γ+ res

NLO (see fig. 6 of ref. [15]), would lead to large, spurious small x corrections.

3.2. Running coupling effects

We have seen in Sect. 2 that running coupling corrections to the anomalous dimension
start at next-to-leading lnx (2.18), but their all–order resummation is necessary to obtain
a stable small x limit, because their leading singularities are of increasingly higher order
at higher orders in β0αs. The all–order resummation of these singular terms actually
changes the nature of the leading singularity which dominates the small x behaviour of
the anomalous dimension and associated splitting function.
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Running coupling corrections to the coefficient functions, namely the terms propor-
tional to t derivatives of the anomalous dimension in eq. (3.18), start at next-to-next-to-
leading lnx. It is easy to see that they also have leading singularities of increasingly high
order. Indeed, differentiating the duality relation (2.10) with respect to t we get

γ̇+(αs, N) = − χ̇(αs, M)

χ′(αs, M)

∣

∣

∣

∣

M=γ(αs,N)

, (3.22)

where the dot denotes differentiation with respect to t and the prime indicates differenti-
ation with respect to M . This expression is clearly singular at the minimum of χ: indeed,
after running–coupling resummation of the anomalous dimension, γ has a simple pole at
N0(αs(t)) eq. (2.20). Hence, subsequent t derivatives of γ will have higher order poles
there. It follows that the double–leading result eq. (3.21) is not stable at small x: the
running–coupling corrections to the coefficient function must also be resummed to all or-
ders. This can be done using the technique developed in ref. [24], and (as in the case of the
anomalous dimension) it changes the nature if the singularity which dominates the small
x behaviour of the coefficient function.

After factorization of the collinear M = 0 poles, the coefficient functions css(M) have
simple poles on the real M axis for positive and negative values of M [22]. Those for
negative values of M correspond to higher-twist corrections and are of no concern. Those
for positive values of M start at M = 1, i.e. at the edge of the physical region for the
Mellin inversion integral eq. (2.8) and thus also seem immaterial. Nevertheless, if we
let M = γ+ res

NLO as in eq. (3.21), then at small x the resummed anomalous dimension is
dominated by the pole eq. (2.20), so, using the form eq. (2.20) of γ(αs, N), a simple pole
in the coefficient function at M = k becomes

1

k − M

∣

∣

∣

∣

M=γ(αs,N)

=
(N − N0)/k

N − (N0 + r/k)
, (3.23)

which has a pole to the right of the pole of the anomalous dimension. The pole in the coef-
ficient function at M = 1, after running coupling resummation of the anomalous dimension
but in the absence of running coupling resummation of the coefficient function, would thus
become the leading small x singularity. This is due to the fact that the identification
M = γ+(αs, N) in the coefficient function is equivalent to dominating the Mellin inversion
integral eq. (3.16) with a simple pole at M = γ+(αs, N), but if γ+ has the form eq. (2.20),
as N decreases this pole actually moves to the right of M = 1 thereby pinching the path
of M integration. Note that at the fixed coupling level this does not happen because the
anomalous dimension at small x then has the form eq. (2.17), which is bounded by M0

and thus does not lead to any new singularities.
However, the singularity eq. (3.23) is entirely spurious: indeed, it can be shown [24]

that the Mellin inversion integral for a coefficient function which has a simple pole in M
and a parton distribution which satisfies the running–coupling GLAP equation (3.13) has
no new N singularities on top of those already present in the parton distributions. In
particular, we can explicitly check this statement by performing the integral in the case
of a coefficient function given by a simple pole and an anomalous dimension linear in αs.
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In fact, taking γ+ = αs(t)γ
+
0 , and using the leading order β function β(αs) = −β0α

2
s, the

integral for any parton density f can be computed exactly [24]:

J(N, t) ≡
∫ c+i∞

c−i∞

dM

2πi
eMt 1

1 − M
f(N, M) = t−γ0(N)/β0etΓ(1+γ0(N)/β0, t)f(N, t), (3.24)

where Γ(x, t) is the incomplete Gamma function. Manifestly, J(N, t) eq. (3.24) is free of
N singularities besides those already present in f(N, t). In this case, it can further be
shown explicitly that the series of running coupling contributions on the right–hand side
of eq. (3.18) is an asymptotic expansion of the exact singularity–free result. Indeed, in this
case higher order t derivatives of γ can all be expressed in terms of γ̇ and γ, and eq. (3.18)
becomes

Ik = [γk]f(N, t), (3.25)

where we have defined [γk] as follows:

[γ] = γ(αs(t), N),

[γ2] = γ2

(

1 +
γ̇

γ2

)

,

[γ3] = γ3

(

1 +
γ̇

γ2

) (

1 + 2
γ̇

γ2

)

, etc,

(3.26)

so that recursively

[γn] = γ

(

1 + (n − 1)
γ̇

γ2

)

[γn−1]. (3.27)

It is then easy to see that if we determine J(N, t) eq. (3.24) by integrating the series
expansion of 1

1−M
term by term

J(N, t) =

∞
∑

k=0

[γk]f(N, t) (3.28)

and use eq. (3.26) we recover eq. (3.24) with the standard asymptotic expansion of Γ(x, t)
in inverse powers of t.

In summary the all-order resummation of the increasingly more divergent running cou-
pling corrections eq. (3.18) removes the spurious singularity eq. (3.23) which is produced
if these running coupling terms are neglected but the running coupling resummation is
included in the anomalous dimension. We could thus proceed analogously to the running
coupling resummation of the anomalous dimension: subtract the M poles from the coef-
ficient function, resum them using the exact result of ref. [24], and treat the remaining
regular part of the coefficient function in the M = γ approximation, the corrections to
which are now genuinely subleading. However, in the MS scheme, only the FL coefficient
functions, i.e. the second column of the matrix c1(M) are known in closed form, whereas
for the F2 coefficient functions only a series expansion in powers of M is known [22], and
this procedure is not viable.
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However, we may instead use the explicit result eq. (3.26) to perform the inverse
Mellin transform order by order using the power series expansion of the coefficient function.
Indeed, eq. (3.26) was derived assuming the leading order form of γ and the running of
αs. Hence, for a generic anomalous dimension γ(N, t) it holds up to O(α2

s) corrections.
Furthermore, we know that, for a coefficient function which has simple poles, if running
coupling terms are included to all orders in αs (in the expanded case using eq. (3.18)) the
coefficient function does not have any singularities. Because the result to O(αs) found
using eq. (3.26) is already free of singularities, it follows that the remaining corrections are
genuinely subleading. We conclude that a running coupling resummation of cDL eq. (3.21)
is given by

cDL(N, αs(t)) = C0 + αs(t)
{

(c1(N) − c1(0)) +
[

css

(

[γ+ res
NLO ]

)

−css([γ
+
0 (N) + αsγ

+
1 (N) − αs

N

(

nc

π
− αse

+
1

)

− e+
2

α2
s

N2 ])
]

M+

}

,

(3.29)
where by css([γ

+ res
NLO ]) we mean that css(M) is expanded in powers of M , and then evaluated

by replacing Mk with [γk] and using eq. (3.26) with γ = γ+ res
NLO . The term on the last line

is a matching term: it has been chosen to ensure that at large N , where γ+ res
NLO reduces to

γ+
0 (N) + αsγ

+
1 (N), the coefficient reduces to its standard large N form, while at small N

it reduces to css([γ
+ res
NLO ]), as it should.

In practice, use of eq. (3.29) is subject to the limitation that the series expansion
that one obtains is only asymptotic, and it must thus be truncated after a finite number of
terms. Clearly, the divergence sets in earlier at small Q2 and small x, where the anomalous
dimension γ(N, αs) grows large, Unfortunately, it turns out that for typical values of the
kinematic variables, such as x <∼ 10−3, αs

>∼ 0.2, the series for the matrix elements already
starts diverging after a rather small number of terms, which leads to an unacceptably large
ambiguity in the results.

However, we can treat the asymptotic series by Borel resummation. Namely, the n-th
order contribution to eq. (3.26) is written as

[γn] =

∫ ∞

0

ds K(s)
sn

f(n)
γn

(

1 +
γ̇

γ2

)

. . .

(

1 + (n − 1)
γ̇

γ2

)

, (3.30)

where K(s) is chosen in such a way that f(n) grows with n, thereby improving the con-
vergence of the series. For instance, the standard choice is

K(s) = e−s, f(n) = n!. (3.31)

With this choice, in the specific case of J(N, t) eq. (3.24) the divergent series eq. (3.24)
becomes convergent, and one gets

J(N, t) = c(N, t)f(N, t), (3.32)

c(N, t) =

∫ ∞

0

ds e−sc(N, t; s), (3.33)

c(N, t; s) =

[

1 − s
γ̇(N, αs(t))

γ(N, αs(t))

]−γ2/γ̇

. (3.34)
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However, the expansion of c(N, t; s) eq. (3.32) in powers of s has finite radius of
convergence. Because in general we cannot sum the series in closed form, this would
prevent a numerical evaluation of the integral over s eq. (3.30). We can solve this problem
by choosing K(s) in such a way that f(n) grows more than factorially with n. Specifically,
we make the choice

K(s) = K0(
√

s); f(n) = (n!)2, (3.35)

where K0 is a modified Bessel function. Now

c(N, t) =

∫ ∞

0

ds K0(
√

s)c̄(N, t; s), (3.36)

and the expansion of c̄(N, t; s) has infinite radius of convergence, because its n–th order
term is factorially smaller than the corresponding term in the series expansion of c(N, t; s)
which had finite radius of convergence. In the particular case of J(N, t) eq. (3.24), the
function c̄(N, t; s) eq. (3.36) is given by

c̄(N, t; s) = M
(

γ2

γ̇ , 1, s γ̇
γ

)

, (3.37)

where M(x, y, z) is the confluent hypergeometric function.
We can thus use eq. (3.36) to evaluate the series expansion of the coefficient function

eq. (3.29), at least to the extent that the dominant singularities of the coefficient function
are poles. In practice, since we only know the expansion of css in powers of M , we
cannot sum the power series expansion in closed form before performing the Borel inversion
integral over s eq. (3.32). This seems problematic because the integral of any finite–order
truncation of the expansion of the right–hand side of eq. (3.32) leads back to the original
divergent series. Nevertheless, if the Borel inversion integral exists, then one can obtain an
arbitrarily accurate approximation to it by integrating up to a given cutoff Λ. But because
the series has infinite radius of convergence, for any finite value of Λ the integrand can be
determined to any desired accuracy by including a finite number of terms in the series. In
practice, instead of truncating the s integration at some large cutoff value, we may replace
c̄(N, t; s) with an extrapolation for s > Λ, either linear, or based on the hypergeometric
form eq. (3.37).

3.3. Resummed coefficient functions

Summarizing, we constructed a resummed coefficient function based on the running–
coupling resummation of the double leading coefficient function eq. (3.21). The result has
the form eq. (3.29), where the running coupling resummation is effected by evaluating the
argument of the next-to-leading lnx coefficient functions css by means of eq. (3.26). The
ensuing divergent series are summed through Borel transformation eq. (3.36). The Borel
transformed series is truncated and summed numerically, and the Borel inversion integral is
also performed numerically by integrating up to a cutoff Λ, whence it is extrapolated using
the form of eq. (3.37), which gives the contribution to the series from the dominant M = 1
pole. The accuracy of the result can is verified by checking its approximate independence
of the chosen value of the cutoff Λ.
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4. Factorization schemes and the quark sector

A factorization scheme change is a redefinition of the parton distribution of the form

f ′(N, t) = U(N, αs(t))f(N, t). (4.1)

Invariance of physical observables them implies that coefficient functions transform as

C′(N, t) = C(N, t)U−1(N, αs(t)). (4.2)

The anomalous dimensions in the primed and unprimed schemes eq. (4.1) are then related
by

γ′(N, αs(t)) = U(N, αs(t))γ(N, αs(t))U
−1(N, αs(t))+

d

dt
U(N, αs(t))U

−1(N, αs(t)). (4.3)

4.1. Resummed factorization schemes

The theory of factorization scheme changes at the resummed level has been developed
in ref. [25], and in ref. [12] at the double leading level; we recall some of the main results.
If we consider the effect of a change of factorization scheme both on the expansion of
anomalous dimension in powers of αs at fixed N eq. (2.13) and at fixed αs/N eq. (2.11),
the requirement that a change in factorization scheme leaves the leading–order anomalous
dimension invariant allows a wider class of factorization scheme changes at small x. This
is a consequence of the fact that the leading lnx anomalous dimension matrix has the form

γs =

(

0 0
γgq

s

(

αs

N

)

γgg
s

(

αs

N

)

)

, (4.4)

where the nonvanishing entries satisfy the colour-charge relation

γgq
s = CF

CA
γgg

s . (4.5)

It follows that if parton distributions are redefined by a leading lnx function Us(
αs

N ), the
leading lnx anomalous dimension eq. (4.4) is unchanged provided only [25]

Us

(

αs

N

)

=

(

1 0
CF

CA
zgg
s (αs

N ) zgg
s (αs

N )

)

, (4.6)

where zgg
s (αs

N
) = 1 + zgg

s, 1
αs

N
+ . . . .

The scheme change eq. (4.6) is thus a redefinition of the small x normalization of the
gluon distribution, and it changes γqg and γ+ according to

γqg ′

ss = γqg
ss /u(γ+

s )

γ+ ′

ss = γ+
ss +

β0

4π

χ0(γ
+
s )

χ′
0(γ

+
s )

d lnu

dM

∣

∣

∣

M=γ+
s

,
(4.7)
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where the function u(M) is defined by the implicit equation

zgg
s (αs

N ) = u(γs(
αs

N )). (4.8)

Further small x scheme changes have the standard next-to-leading form

U(N, αs) = 11 + αszss

(

αs

N

)

, (4.9)

where zss(0) = 0. The scheme change eq. (4.9) affects the next-to-leading ln x anomalous
dimension according to

γ′

ss = γss + [zss, γs]. (4.10)

The form eq. (4.4),(4.5) of γs implies that the effect on the anomalous dimensions of a
scheme change of the form of eq. (4.9) is particularly simple [25]:

γ′ = γ +

( CF

CA
zqg
ss

(

αs

N

)

zqg
ss

(

αs

N

)

CF

CA

(

zgq
ss

(

αs

N

)

− zqg
ss

(

αs

N

))

− zgg
ss

(

αs

N

)

CF

CA
zqg
ss

(

αs

N

)

)

γgg
s . (4.11)

This is useful since the component γgq of γss in fact has no effect on a calculation at the
next-to-leading order of the resummed or double–leading expansion [12], so in practice at
NLO it is only necessary to fix zqg

ss .
It is interesting to observe that the form eq. (4.4),(4.5) of γs, together with the require-

ment eq. (2.5) that only one of the two eigenvalues of γ has leading small x singularities,
also entails some scheme–independent relations between singular contributions to matrix
elements of γ. Indeed, the trace and determinant conditions for the eigenvalues γ±, if the
singular contributions to γ− vanish, imply

γgg + γqq = γ+; γggγqq = γqgγgq. (4.12)

These relations clarify the meaning of the colour-charge relation. Indeed, to next-to-
leading lnx the second of eq. (4.12), when combined with eq.(4.5), implies that

γqq
ss (αs

N
) = CF

CA
(γqg

ss (αs

N
) − γqg

ss (0)). (4.13)

To higher orders, the colour charge relation is sufficient but not necessary for eq. (4.12) to
hold.

4.2. Construction of the MS and Q0MS schemes.

Let us now turn to the explicit construction of factorizations schemes, in order to
construct resummed physical observables. To this purpose, we first summarize the available
information on the coefficient functions and quark–sector anomalous dimensions in various
factorization schemes. The leading small x coefficient function matrix (i.e. the function
css(M) eq. (3.20)), as well as the anomalous dimension γqg (and thus γqq, by eq. (4.13))
have been determined at leading order in ref. [22] in both the MS and DIS schemes. In
particular, γqg takes the form

γqg
ss (αs

N ) = h
(

γ+(αs

N )
)

, (4.14)
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where the function h(M) may be extracted from the computation of the quark–antiquark
production cross section from photon–virtual gluon fusion, using the high–energy factor-
ization techniques discussed in sect. 3.2. In the DIS scheme the function h(M) is known
in closed form, while in MS h(M) and css(M) are known to all orders in their power series
expansion about M = 0.

The DIS scheme is defined by the identification of the structure function F2 with the
quark distribution: F2(x, Q2) = QDIS(x, t). This does not fix the scheme completely, but
it is sufficient to fix it at the next-to-leading lnx level. In particular, because C2, DIS

g = 0,

eq. (4.2) immediately implies that for the DIS→MS scheme change

zqq(N, αs(t)) = 1 − C2, MS
q (N, αs(t))

zqg(N, αs(t)) = −C2, MS
g (N, αs(t)).

(4.15)

Due to eq. (4.11) and the fact that γgq is only relevant at the next-to-next-to leading lnx
level, the effect of the scheme change is thus fully determined.

The small x singular contributions to the large eigenvalue γ+ eq. (2.11) are the same
in the MS and DIS schemes: indeed, eq. (4.10) implies that up to this order the trace
Trγ = γ+ + γ− is invariant, but the singular part of γ− vanishes in both schemes, so γ+

is invariant. Hence γ+
ss in eq. (2.14) is the same in the DIS and MS scheme.

The function γ+
ss on which the resummation of ref. [15] is based, as summarized in

sect. 2, is however given in a scheme which differs from MS by a small-x scheme change
eq. (4.11), the so–called Q0MS scheme [34]. This is due to the fact that in the MS scheme
the running coupling corrections to duality eq. (2.18), order by order in the expansion
eq. (2.11) in powers of αs at fixed αs/N , are actually factorized in the coefficient function.
These schemes are thus not suitable for the resummation eq. (2.19) of the running coupling
corrections, because the singular contributions whose all–order resummation determines
the leading small x singularity sits in the coefficient function. The scheme–change function
u(M) which takes us from the MS scheme to the Q0MS scheme is of the form [15,21,8]

u(M) =
r(M)

√

−χ′
0(M)

, (4.16)

where χ0 is the leading-order BFKL kernel eq. (2.9) and the function r(M) is regular in
0 < ReM < 1. Using eq. (4.16) in eq. (4.7) one sees explicitly that the singular running–
coupling contribution eq. (2.18) is removed from the Q0MS scheme anomalous dimension
γss and factored in the coefficient function when transforming to the MS scheme.

Clearly, in a consistent calculation the coefficient functions and the anomalous di-
mensions must all be computed in the same scheme. Here we have (at least) two choices:
either we can work in the Q0MS scheme throughout, or we can work in the MS scheme.
If we choose to work in the Q0MS scheme, using the Q0MS scheme resummed anomalous
dimension γ+ eq. (2.25), we must transform the coefficient functions and quark–sector
anomalous dimensions of ref. [22] from the MS scheme by means of the scheme change
function eq. (4.16). Alternatively, if we choose to work in the MS (or DIS) scheme, we take
the coefficient functions and quark sector anomalous dimensions from ref. [22], then we
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perform the resummation of γ+ in the Q0MS scheme as discussed in sect. 2.3, and finally
we transform γ+ from Q0MS scheme to MS using (4.16) and (4.7). Because it is per-
formed after the resummation of γ+, the scheme change results in subleading terms which
multiply the resummed parton distribution, in the same way as a coefficient function, its
singularities, and in particular the singularity at M = 1

2 , eq. (4.16), may be treated in the
same way as the pole in eq. (3.24), i.e. removed by running coupling resummation.

Let us discuss these two alternatives in detail. When working in Q0MS scheme, we

start from γqg,MS
ss (αs

N ) and cMS
1 (N, M). We then define [30] the Q0 version of the MS

scheme by constructing a scheme change based on the requirements that γ+ be as in the
Q0MS scheme, while γqg

ss is unchanged, i.e. the same as in the MS scheme. Assuming we
perform the scheme change through a leading lnx scheme change eq. (4.11),(4.8), followed
by a next-to-leading scheme change eq. (4.9), the first requirement fixes

zgg
s

(

αs

N

)

= u
(

γs

(

αs

N

))

, (4.17)

with u(M) given by eq. (4.16), and the second requirement then, combining eq. (4.7) with
eq. (4.11) and demanding invariance of γqg

ss , gives

zqg
ss

(

αs

N

)

=
(

1 − 1

zgg
s

(

αs

N

)

)γqg,MS
ss (αs

N )

γgg
s (αs

N )
≡ v

(

γs

(

αs

N

))

, (4.18)

where

v(M) =

(

1 − 1

u(M)

)

h(M)

M
, (4.19)

with h(M) defined in eq. (4.14). Note that v(M) is regular at M = 0 since u(0) = 1.
Consequently, given the series expansion for the coefficient functions css(M) (eq. (3.20))
in MS, we can turn them into series expansions for the coefficient functions in Q0MS by
means of the combined scheme change eqs. (4.17),(4.18): the result is

c2,g Q0

ss (M) =
c2,g MS
ss (M)

u(M)
−

(

1 +
h(M)

M

) (

1 − 1

u(M)

)

,

cL,g Q0

ss (M) =
cL,g MS
ss (M)

u(M)
.

(4.20)

The quark coefficient functions are then given by the color-charge relation: modulo double
counting terms,

c2,q Q0

ss = CF

CA
c2,g Q0

ss ; cL,q Q0

ss = CF

CA
cL,g Q0

ss . (4.21)

Constructing the MS scheme is simpler in some respects, since the only scheme trans-
formation necessary is that required to change γ+ from Q0MS to MS, and this is given
by (4.7),(4.8), and (the inverse of) (4.16). The main complication here is in the consis-
tent treatment of running coupling effects, which is necessary because u(M) is singular.
The effect of this singularity arises when M acts on the parton distributions according
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to eq. (3.18), so we can treat it with a prescription based on that which we used for the
coefficient function in eq. (3.26):

d
dt [γ] = γ̇,

d
dt

[γ2] = 2γγ̇

(

1 +
γ̇

γ2

)

,

d
dt

[γ3] = 3γ2γ̇

(

1 +
γ̇

γ2

) (

1 + 2
γ̇

γ2

)

, etc.

(4.22)

so that

γ+,MS = γ+ − d
dt lnu

(

[γ+ res
NLO (αs(t), N)]

)

,

+ d
dt

lnu
(

[γ+
0 (N) + αsγ

+
1 (N) − αs

N

(

nc

π
− αse

+
1

)

− e+
2

α2
s

N2 ]
)

,
(4.23)

where the second term is evaluated in practice by first expanding u(γ) in powers of γ and
then using (4.22). The last term is a matching term, chosen in just the same way as in
eq. (3.29) to ensure that the resummation does not corrupt the anomalous dimension at
large N (and thus the splitting function at large x).

4.3. Resummed quark anomalous dimensions

Once the scheme is fixed, we can construct all the resummed anomalous dimensions
and coefficient functions. The anomalous dimension γ+ and its resummation in Q0MS
scheme are as in ref. [15], as summarized in sect. 2 of the present paper. If we are working
in MS, we must also add to this the contribution eq. (4.23), as explained above.

The resummed quark sector anomalous dimensions are then built as follows. First,
we note that γqq can be obtained from γqg using the colour–charge relation eq. (4.13).
Furthermore, γgg and γgq can be obtained from γ+ and the quark-sector entries of γ using

eq. (4.12). Hence we concentrate on the construction of γqg. We start from γqg,MS
ss (αs

N
),

written as in eq. (4.14). We then construct the double–leading expression

γqg
DL(αs

N ) = γqg
0 (N) + αsγ

qg,MS
1 (N) + αs

(

h
(

γgg
s (αs

N )
)

− h(0) − h′(0)nc

π
αs

N

)

, (4.24)

where the last two terms subtract the double counting. We then note that the function
h(M) eq. (4.14) has singularities in M analogous to those of the contribution from css(M)
eq. (3.20) to the coefficient function: we treat these by running coupling resummation
eq. (3.26). Putting everything together at the resummed level we thus get

γqg
res(

αs

N ) = γqg
0 (N) + αsγ

qg,MS
1 (N) + αsh

(

[γ+ res
NLO (αs(t), N)]

)

− αsh
(

[γ+
0 (N) + αsγ

+
1 (N) − αs

N

(

nc

π − αse
+
1

)

− e+
2

α2
s

N2 ]
)

− h(0)αs − h′(0)
(

nc

π − αse
+
1

)

αs

N ,

(4.25)
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where by h([γ]) we mean that h(M) is expanded in power series of M , and then evaluated
using eq. (3.26). The terms in the last two lines are matching and double–counting terms,
which have been constructed just as they were for the coefficient functions eq. (3.29).

This construction then gives us the resummed γqg both in the MS and Q0MS scheme.
The resummed coefficient functions in either the MS are then found using eq. (3.29) with
the expression of css given in ref. [22], while its counterpart in the Q0MS scheme is found
in the same way, but with css given by the scheme change eqs. (4.20), evaluated as function
of [γ+ res

NLO ] in the sense of eq. (3.26).

5. Phenomenological Implications

5.1. Splitting functions and coefficient functions

We now discuss the application of our results and their phenomenological impact.
We start by presenting the nf 6= 0 full matrix of resummed singlet splitting functions
together with the coefficients ci

q and ci
g (i=2,L) for the singlet structure functions F2 and

FL, respectively. The curves for the splitting functions for αs = 0.2, nf = 4 (the average
values relevant for HERA) versus 1/x are shown in figs. 1-2. There we show the plots of
the gluon splitting functions xPgg and xPgq (fig. 1), and the quark splitting functions xPqq

and xPqg (fig. 2) both in fixed order perturbation theory (at the LO, NLO and NNLO
level) and in the resummed case (at LO and NLO). The NLO resummed curves are given
both in the Q0MS and in the MS scheme, while at LO-resummed level there is no scheme
difference. In fixed order perturbation theory there is no difference between Q0MS and MS
up to and including the NNLO level but Q0MS and MS become different at higher orders.
An important achievement of our work is the complete control of all aspects of scheme
change at the resummed level. Resummed results for the splitting function matrix have
also been obtained in ref. [26] but in a scheme which differs from the commonly used MS
scheme by unknown, presumably small, terms. In contrast our results are given in either
the Q0MS or the MS schemes in a completely specified way.

We now discuss the main features of the resulting splitting functions. We show the
most important of the four, xPgg, in fig. 1. As for the nf = 0 case that we studied in our
previous work [15], the difference between the resummed and fixed order LO and NLO
curves in the x range relevant for collider experiments is moderate. But the strong insta-
bility shown by the NNLO fixed order perturbation theory is cured by the resummation.
Above x ∼ 0.1 the resummed curves match precisely the corresponding fixed order ones.
For smaller values of x, the splitting function xPgg shows a significant dip directly in-
herited from xP+ [19]. This dip has important phenomenological consequences in that it
extends the region of validity of the fixed order perturbative LO and NLO evolution. The
onset of the truly asymptotic small x rise, both in the resummed LO and the NLO (in the
Q0MS scheme) curves, is postponed to very small values of x. Note that for xPgg the MS
curves are considerably steeper than in the Q0MS scheme at small x. This is the due to
the singular nature of the scheme change eq. (4.16) which takes to Q0MS, whose effects
are only compensated when the evolved parton densities are combined with the coefficient
functions.
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Figure 1: The gluon splitting functions xPgg and Pgq , plotted with αs = 0.2 and nf = 4.
The curves are (from top to bottom for xPgg at x ∼ 0.2): fixed order perturbation theory
LO (black dashed), NLO (black solid), NNLO (green), resummed LO (red dashed) and

NLO in Q0MS scheme (red solid) and in the MS scheme (blue )
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Figure 2: The quark splitting functions xPqq and xPqg plotted with αs = 0.2 and nf = 4.
The curves are as in fig. 1a (bottom to top for x ∼ 10−6). Note however that here the

resummed LO coincides with unresummed LO, and resummed NLO MS coincides with
resummed NLO Q0MS.
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The splitting function xPgq is also plotted in fig. 1. It inherits most of the features of
xPgg, except that it is very soft at large x. Note that the absolute scale of xPgq is about
4
9 smaller than that of xPgg at small x, which can be directly attributed to the ratio of
colour Casimir factors CF /CA.

The singlet quark splitting functions Pqq and Pqg are shown in fig. 2. Here the re-
summed LO coincides with the unresummed LO: indeed the resummation effects start
at NLO. The NLO resummed curves at not too small values of x are always bracketed
between the LO and NNLO perturbative results. Moreover the singular parts of xPqq are
again 4

9 times those of xPqg so that their resulting behaviour is similar. Recall also that,

as discussed in sect. 4.2, the Q0MS scheme has been defined in such a way that xPqq and
xPqg are the same as in MS.

For the coefficient functions there are four curves in each of the ci
q,g plots in figs. 3-

4. The curves refer to the NLO and NNLO fixed order perturbative results (the LO
coefficients are either zero or, in the case of c2

q, proportional to a delta function at x = 1:

c2
q = 5

18
δ(1−x)) and to the NLO resummed coefficients in the Q0MS and MS schemes. We

see that also for the coefficient functions the MS curves are steeper at small x because in
this scheme the contributions corresponding to the singular term eq. (2.18) are included in
the coefficient function. For this reason, in our previous papers on the theory of resummed
evolution for the singlet structure functions, we always adopted the Q0MS scheme, where
no unphysical singularities appear either in the splitting functions or in the coefficients.
In a different scheme the combination of splitting functions and coefficients leads to a
compensation in the evolution of physical quantities, which end up being different only
through higher order effects, as we shall see later.

In figs. 5-10 we show the separate dependence on nf and αs of the splitting functions
and coefficients. In practice, the relevant effective values of nf and of αs are both functions
of Q2, so that their values move in a correlated way. However, for the sake of illustration,
we show here the variation of one while the other is kept fixed.

The nf dependence of splitting functions and coefficients is displayed in figs 5-7. All
these plots are for αs = 0.2. For clarity we only include the fixed order perturbative results
at NLO and NNLO, and the resummed ones at NLO in the Q0MS scheme. The varying nf

plots have nf = 3, 4, 5, 6 (solid) and nf = 0 (dotted) where relevant, for comparison. The
plotted curves for the gluon splitting functions (xPgg and xPgq) decrease as nf increases,
while the quark splitting functions (xPqq and xPqg) increase. From these plots we see that
varying nf does not make too much difference for xPgg and xPgq, but the addition of more
quarks softens the growth at small x. In the quark sector for splitting functions and for
all the coefficient functions, there is an overall factor of nf in the main logarithmic terms.
Thus the leading effect is an approximately linear rise in modulus with nf at small x; note
that the longitudinal NNLO coefficient functions are negative at small x, and become more
negative as nf increases.

The αs dependences of splitting functions and coefficients are displayed in figs 8-
10. The varying αs plots have αs = 0.1, 0.15, 0.2, 0.25, 0.3. All curves have nf =
4. In the plots the splitting functions and coefficients are multiplied by 0.2/αs, so that
the linear dependence on αs is divided out, and the αs = 0.2 curves are the same as
those in figs 1-3. At low enough x, all the resummed splitting functions and coefficients
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Figure 3: The F2 coefficients plotted with αs = 0.2 and nf = 4. The curves are (bottom
to top for x ∼ 10−4): fixed order perturbative: NLO (black solid), NNLO (green)

resummed NLO (red solid) in Q0MS scheme, resummed NLO in the MS scheme (blue).
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Figure 4: The FL coefficients plotted with αs = 0.2 and nf = 4. The curves are (bottom
to top for x ∼ 10−6): fixed order perturbative: NNLO (green), NLO (black), resummed

NLO (red) in Q0MS scheme, resummed NLO in the MS scheme (blue).
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Figure 5: nf dependence of splitting functions for αs = 0.2. The plotted curves are for
nf = 3, 4, 5, 6 (solid), for gg also nf = 0 (dotted) is shown for comparison. The three
sets of splitting functions are: fixed order perturbative: NLO (black), NNLO (green);

resummed NLO (red) in Q0MS scheme. For qq and qg as nf increases the small x value
becomes larger: asymptotically constant at NLO, stronger rise at NNLO and strongest
rise at the resummed level. For gq and gg as nf increases the small x value becomes
smaller: asymptotically constant at NLO, stronger drop at NNLO and deeper dip at
the resummed level.

show a steeper increase as αs increases. This is because the leading singularity in the
N plane moves further to the right making the asymptotic behaviour steeper at small x.
At the same time xPgg/αs and xPgq/αs decrease in the intermediate region (i.e. the dip
gets deeper). The rate of increase at small x and the depth of the dip are related by
a smooth interpolation between small and large x and because of the integral constraint
from momentum conservation (although the delta function terms at x = 1 also depend on
αs). The NNLO results, shown for comparison, as αs increases display a steeper rise at
small x of splitting functions in the quark sector and a steeper drop in the gluon sector,
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Figure 6: The nf dependence of F2 coefficients for αs = 0.2. The plotted curves are for
nf = 3, 4, 5, 6 (solid). The three sets of coefficients are: fixed order perturbative: NLO

(black), NNLO (green); resummed NLO (red) in Q0MS scheme. Note that the fixed
order perturbative NLO result is independent of αs. In all cases, for both q and g, there
is an increase with nf at small x.

Figure 7: As fig. 6, but now the nf dependence of FL coefficients. In all cases, for both
q and g, there is an increase in modulus with nf at small x, the resummed result being
positive while the fixed NNLO is negative.

and coefficient functions which, while remaining asymptotically flat at small x, become
larger in modulus (positive for c2 and negative for cL) Comparing results at the NNLO
fixed order perturbative level with the resummed result at the NLO level, one sees that
the resummation improves the stability of the splitting functions even at rather large αs.

5.2. Parton distributions and structure functions

We now discuss the resulting evolution of parton densities and of structure functions
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Figure 8: αs dependence of splitting functions for nf = 4. All curves are rescaled
by 0.2/αs, in order to eliminate the proportionality to αs. The values of αs are αs =
0.1, 0.15, 0.2, 0.25, 0.3. The three sets of splitting functions are: fixed order perturbative:
NLO (black), NNLO (green); resummed NLO (red) in Q0MS scheme. At the resummed
level, for qq and qg there is an increase with αs at small x, while for gq and gg a decrease
at small x and a deeper dip. At NNLO as αs increases there is a steeper rise for qq and
qg and a steeper drop for gq and gg.

and compare the resummed curves with the corresponding fixed order perturbative ones. In
these plots αs is running with Q2 with αs(mZ) = 0.118. The value of nf is varied according
to the zero–mass variable variable flavour number scheme: contributions from heavy quarks
vanish below threshold and are generated dynamically by perturbative evolution above
threshold. In figs. 11-12 we show the gluon and singlet quark parton densities as a function
of x, down to x = 10−6, at different values of Q = 2, 4, 10, 100, 1000 GeV. The initial
parton densities at Q0 = 2 GeV are chosen to have a typical simple semi-realistic shape,
adequate for our present purposes. Namely, we take [10]:

xg(x, t0) = rsxqsea(x, t0) = kgx
−0.18(1 − x)5, (5.1)

32



Figure 9: The αs dependence of F2 coefficients. All curves are rescaled by 0.2/αs,
in order to eliminate the proportionality to αs. The values of αs are αs =
0.1, 0.15, 0.2, 0.25, 0.3. The three sets of coefficients are: fixed order perturbative: NLO
(black: note that the result only depends on nf for cg

2
), NNLO (green); resummed NLO

(red) in Q0MS scheme. For both coefficients there is in all cases an increase with αs

at small x. The resummed curves rise at small x while the NLO and NNLO ones are
asymptotically constant.

Figure 10: As in fig. 9, but now the αs dependence of the FL coefficients. For both
coefficients at small x there is an increases with αs in the resummed case (steeper
growth) and a decrease with αs at NNLO (smaller negative asymptotic constant).

xqv(x, t0) = kqx
0.5(1 − x)4, (5.2)

where t0 = lnQ2
0/µ2. The constants kg and kq are fixed in such a way that the valence

and momentum sum rules are satisfied. We choose rs = 3, so the fractions of momentum
at Q = Q0 are 28% for valence quarks, 18% for sea quarks and 54% for gluons.

The plots show, separately for the gluon and the total singlet quark densities, the
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Figure 11: The small x behaviour of the gluon distribution as a function of 1/x at
different values of Q = 4, 10, 100, 1000 GeV (for αs = 0.2 and nf = 4). Also
shown (purple) the initial parametrization at Q = 2 GeV . The curves are: fixed order
perturbation theory LO (black dashed), NLO (black solid), NNLO (green); resummed

LO (red dashed) and NLO (red solid) in Q0MS scheme resummed NLO (blue solid) in

the MS scheme. At all scales the fixed NLO curve is highest (fixed LO slightly lower), the
NNLO is lower, and the resummed NLO is lowest (resummed LO yet slightly lower).
Note that the blue and red curves (resummed NLO in the two schemes) are almost
indistinguishable.
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Figure 12: The small x behaviour of the total (valence plus sea) singlet quark distribution
as function of 1/x at different values of Q = 4, 10, 100, 1000 GeV (for αs = 0.2 and
nf = 4). Also shown (purple) the initial parametrization at Q = 2 GeV. The curves are:
fixed order perturbation theory LO (black dashed), NLO (black solid), NNLO (green);

resummed LO (red dashed) and NLO (red solid) in Q0MS scheme resummed NLO

(blue solid) in the MS scheme. At all scales, the LO curves are lowest (resummed below
fixed order), resummed NLO higher, fixed NLO yet higher and fixed NNLO highest.
Note that the blue and red curves (resummed NLO in the two schemes are almost
indistinguishable.
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initial distributions at Q0 = 2 GeV, and then, for each higher value of Q, the resulting
evolved distributions in the fixed order perturbative case, at LO, NLO and NNLO accuracy,
and in the resummed case at LO and NLO (the latter both in the Q0MS and MS schemes).
At small x there is less evolution in the resummed cases than in fixed order perturbation
theory. This is a consequence of the dip in the splitting functions. In all cases the scheme
dependence in the resummed NLO case is not very important.

We have also studied the renormalization scale dependence of the gluon and singlet
quark evolution at fixed x and t, by letting

f(x, t; k) = f(x, t + ln k) − ln k
d

dt
f(x, t + ln k) + 1

2 ln2 k
d2

dt2
f(x, t + ln k), (5.3)

where f(x, t) is the quark or gluon distribution. At LO (fixed–order or resummed) only
the first contribution on the right–hand side is included; at NLO we include the first term
evaluated at NLO, and the second evaluated at LO, while at NNLO we keep the first term
evaluated at NNLO, the second evaluated at NLO and the third evaluated at LO. It is easy
to show that this is equivalent to the usual formulation of renormalisation scale variation
where the argument of the running coupling in the evolution equations is changed from
Q2 to kQ2.

The scale variation eq. (5.3) provides an estimate of the size of the theoretical uncer-
tainty related to higher order contributions to evolution equations, provided the expansion
itself is uniform in x. Hence, we expect it to provide a reliable estimate at the resummed
level, and to underestimate uncertainties at NLO and NNLO fixed order, where scale vari-
ation cannot include the effect of higher–order logarithmic terms. For example, in a NNLO
fixed order calculation, scale variation explores the effect of subleading contributions to
xPgg of the form α4

s lnx, but fails to see the (known) α4
s ln3 x contribution, which at small

x is of course much larger.
In fig. 13 we plot the evolved gluon density (starting from Q0 = 2 GeV as de-

scribed above) with k eq. (5.3) varied between 0.1 and 10 at fixed Q = 10 GeV and
x = 10−2, 10−4 or 10−6. The scale dependence is larger at smaller values of x where the
Q2 dependence is also steeper. The NLO approximations are much more stable against
scale change than the LO counterparts, both for resummed and fixed order evolution,
in agreement with expectations. The fixed order NNLO shows comparatively little scale
dependence, but as already mentioned this does not include the effect of higher–order logs.

Figures 11-12 explore the effects of various treatments of perturbative evolution when
the input parton distribution is kept fixed. However, when higher–order corrections and
resummation are consistently included, the input physical observables are fixed and the
parton distributions are refitted. Hence, a more realistic estimate of the physical impact of
the corrections can be obtained by assuming that some physical observables are kept fixed
(for example, the structure functions F2 and FL) at a given scale, parton distributions
are determined from them, and then these parton distributions are used to compute new
physical observables (for example, structure functions or hadronic cross-sections at a higher
scale).

In practice, we proceed as follows. We write the structure functions F (N, t) eq. (3.1)
as the product eq. (3.2) of a matrix coefficient function c(x, αs(t)) eq. (3.3) and an evolution
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Figure 13: The renormalization scale dependence eq. (5.3) of the singlet quark and of
the gluon parton densities at fixed Q = 10 GeV and x = 10−2 or 10−4 or 10−6 (with
nf = 4). The curves are: fixed order perturbation theory LO (black dashed), NLO

(black solid), NNLO ( green); resummed LO (red dashed); resummed NLO in Q0MS

scheme (red solid) and in MS scheme (blue solid).
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factor Γ(N, t, t0) eq. (3.11), times some initial parton distribution f(N, t0):

F (N, t) = c(N, αs(t))Γ(N, t, t0)f(N, t0). (5.4)

We then determine the structure functions at Q0 = 2 GeV using the parton distributions
eq. (5.1)-(5.2) and the fixed order NLO expressions of the coefficient functions:

FNLO(N, t0) = cNLO(N, αs(t0))f(N, t0). (5.5)

Finally, we compute structure functions with various fixed–order and resummed choices
form the coefficient functions and anomalous dimensions (and thus evolution factor), and
with the input redefined in such a way that at Q2

0 all the structure functions are the same.
So for instance at the resummed level we used resummed expressions of the coefficient
function and evolution factor, and take as redefined input

fres(N, t0) = C−1
res (N, αs(t0))FNLO(N, t0). (5.6)

so that since
Fres(N, t) = Cres(N, t)fres(N, t0), (5.7)

Fres(N, t0) = FNLO(N, t0).
In fig. 14 we show the K-factors defined as the ratio of the NNLO fixed order or NLO

resummed to the NLO fixed order results for the singlet F2 and FL structure functions,
computed as a function of x by Mellin inversion of the expression eq. (5.4) with the input
parton distribution eq. (5.6). We show results at fixed x = 10−2, 10−4 or 10−6 as function
of Q in the range Q = 2−1000 GeV, with αs running and nf varied in a zero–mass variable
flavour number scheme as discussed above. The breaks in the curves correspond to the
b and t quark thresholds and are a consequence of the zero–mass approximation; in a
more refined treatment they would be replaced by a suitable matching at the heavy quark
thresholds. For each x value we present three curves: the resummed case in the Q0MS
scheme, the corresponding plot in the MS scheme, and the NNLO fixed order perturbative.
The residual moderate scheme dependence between the Q0MS and the MS results, which is
left after combining coefficients and parton densities, is only visible because of the expanded
linear scale of these plots, and is much smaller than the scheme dependence of coefficients
and parton densities, as was shown in figs. 2 and 3. It is interesting to observe that for F2

the effect of resummation, at sufficiently small x values, goes in the opposite direction to
the NNLO perturbative evolution: the resummed K-factor is less than 1, corresponding
to a smaller structure function at higher scales than with fixed order perturbative NLO
evolution.

We have determined the factorization scale dependence of the structure functions
computed in this way, defined as

F (x, t; k) = F (x, t + ln k) − ln k
d

dt
F (x, t + ln k) + 1

2
ln2 k

d2

dt2
F (x, t + ln k), (5.8)

where F (x, t) is the structure function F2 or FL. Just as in eq. (5.3), at LO only the
first contribution on the right–hand side is included; at NLO we include the first term
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Figure 14: The K-factors, defined as the ratio of the fixed order NNLO or resummed
to the NLO fixed order for the singlet F2 and FL structure functions, with F2 and FL

kept fixed for all x at Q0 = 2 GeV. Results are shown at fixed x = 10−2, 10−4 or 10−6

as function of Q in the range Q = 2 − 1000 GeV with αs running and nf varied in
a zero–mass variable flavour number scheme. The breaks in the curves correspond to
the b and t quark thresholds. The curves are: fixed order perturbation theory NNLO
(green, dashed); resummed NLO in Q0MS scheme (red, solid), resummed NLO in the

MS scheme (blue, dotdashed). 39



Figure 15: The factorisation scale dependence eq. (5.7) of the singlet F2 and FL structure
functions at fixed Q = 10 GeV and x = 10−2, 10−4 or 10−6 (with nf = 4). The curves
are: fixed order perturbation theory LO (black dashed, only F2), NLO (black solid),

NNLO ( green); resummed LO (red dashed, only F2) and NLO (red solid) in Q0MS

scheme resummed NLO (blue solid) in the MS scheme.
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evaluated at NLO, and the second evaluated at LO, while at NNLO we keep the first term
evaluated at NNLO, the second evaluated at NLO and the third evaluated at LO. It is
easy to show that this procedure is equivalent to the usual one in which the factorization
scale is changed from Q2 to kQ2. Results are shown in fig. 15. The general behaviour is
similar as that of renormalization scale variation in particular of for singlet quark densi-
ties. However, F2 displays less scale dependence than for quarks, thereby demonstrating
the cancellation of scheme dependence between coefficient function and evolution factor.
The scheme dependence observed in the difference between the Q0MS and MS curves is
consistent with the uncertainty obtained from the corresponding scale dependence.

Finally, in order to assess the variation in parton distributions when structure func-
tions are kept fixed, we have computed K-factors for xq and xg when these are determined
by evolving up an input determined using eq. (5.6). The K factors are always defined as the
ratio of fixed order NNLO or resummed to the NLO fixed order result. In fig. 16 we display
these K-factors at fixed x = 10−4 or 10−6 as function of Q in the range Q = 2−1000 GeV,
with αs running and nf varied, when F2 and FL are fixed at three different reference scales:
Q0 = 2, 5, 10 GeV (the corresponding curves can be identified by the point where the
plot starts). These plots compare the effects of evolution with and without resummation
when the quark and gluon parton densities extracted at HERA, for example, at x = 10−4

and Q0 = 5 GeV, are evolved at the same x value up to, for example, Q = 100 GeV for
application to LHC phenomenology.

Different important aspects can be observed from these plots. First, one can see the
importance of resummation in extracting the parton densities from a given set of data at
a given Q. It is well known that the data at smallest x are obtained at smallest Q on
the average. Thus, for example, for x = 10−6 the most relevant curves would be those
at Q0 = 2 GeV. We see that, of course, from the same data on structure functions one
extracts different values of the parton densities at the reference scale, depending on the
perturbative order and whether or not one resums. Also, these different initial parton
densities evolve in different ways. We can study this evolution, using the appropriate
splitting functions, up to the LHC domain, e.g at Q = 100 GeV. We see that the evolution
acts in the direction of decreasing the initial differences. In fact, if we had the data at the
LHC and we could extract the parton densities directly at Q = 100 GeV, the spread would
necessarily be much smaller, because αs(t) is smaller, and the resummation effects would
be less important. Thus the evolution, in a consistent way, tends to reduce the differences
obtained at smaller values of Q. The general conclusion is that, if resummation effects
are disregarded, the associated error in evolving the parton densities from HERA to the
LHC is of the order of 5− 20%. Note that the NNLO corrections and the resummed ones
go in opposite directions, thus amplifying their difference. Of course, for the computation
of physical quantities then also the hard partonic cross-section must be resummed and
this would lead to an enhancement which partially compensates for the parton density
suppression. Finally, fig. 16 clearly shows that the scheme dependence is moderate, while
the resummation effects are rapidly becoming large at small x.
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Figure 16: The K-factors, defined as the ratio of the fixed order NNLO or resummed
to the NLO fixed order result, for xq and xg at fixed x = 10−4 or 10−6 as function
of Q in the range Q = 2 − 1000 GeV , with αs running and nf varied, when F2 and
FL are fixed, eq. (5.6), at three different reference scales: Q0 = 2, 5, 10 GeV . The
starting scale can be identified by the point where the curves start. The curves are:
fixed order perturbation theory NNLO (green, K > 1 at low scale); resummed NLO in

Q0MS scheme (red), resummed NLO in the MS scheme (blue dashed).
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6. Conclusion

We have by now achieved a good understanding of the behaviour of singlet structure
functions and of their evolution at small x well beyond the domain explored at HERA and
down to very small values of x, for all values of Q2 where the leading twist approximation
is applicable.

The failure of the BFKL expansion on the one side and the remarkably accurate
description of the HERA data by fixed order perturbation theory on the other, demanded
a theoretical explanation. The calculation of three loop splitting functions (NNLO) has
made the problem more acute along the way, by showing that at higher orders the fixed
order expansion does indeed start to diverge. The solution of the problem is by now
well established: important formally subleading terms cannot be ignored and must also
be resummed. Their effect is to push the onset of the truly asymptotic regime down to
smaller values of x, while in an intermediate region, relevant for HERA data, the evolution
shows a shallow dip, somewhat lower than the NLO perturbative result. The resummation
procedure is determined by solid guiding principles from duality, momentum conservation,
symmetry under gluon exchange of the BFKL kernel and accurate implementation of
running coupling effects.

In the present paper, after a summary of the general theoretical principles and meth-
ods, we have developed the formalism to the level needed for a direct application to the
calculation of physical observables. Resummed splitting functions and coefficients have
been evaluated at general values of nf and αs and their scheme dependence has been
studied in detail, together with a check that this dependence is drastically reduced when
the different ingredients are collected together to form physically measurable quantities.
Finally we have studied the size of the resulting effects for predictions in the LHC region,
showing that their importance while not dramatic is however certainly sizeable, and as big
as that of fixed order NNLO terms.
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