101,631 research outputs found

    Singular perturbation analysis of AOTV-related trajectory optimization problems

    Get PDF
    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality constraint was imposed on the full order AOTV point mass equations of motion, using a simple aerodynamic heating rate model

    Scaling and Universality in Continuous Length Combinatorial Optimization

    Full text link
    We consider combinatorial optimization problems defined over random ensembles, and study how solution cost increases when the optimal solution undergoes a small perturbation delta. For the minimum spanning tree, the increase in cost scales as delta^2; for the mean-field and Euclidean minimum matching and traveling salesman problems in dimension d>=2, the increase scales as delta^3; this is observed in Monte Carlo simulations in d=2,3,4 and in theoretical analysis of a mean-field model. We speculate that the scaling exponent could serve to classify combinatorial optimization problems into a small number of distinct categories, similar to universality classes in statistical physics.Comment: 5 pages; 3 figure

    Sensitivity Analysis in Multiobjective Optimization

    Get PDF
    Sensitivity analysis is both theoretically and practically useful in optimization. However, only a few results in this direction have been obtained for multiobjective optimization. In this paper, the issue of sensitivity analysis in multiobjective optimization is dealt with. Given a family of parametrized multiobjective optimization problems, the perturbation map is defined as the set-valued map which associates to each parameter value the set of minimal points of the perturbed feasible set with respect to a fixed ordering convex cone. The behavior of the perturbation map is analyzed quantitatively by using the concept of contingent derivative for set-valued maps. Particularly it is shown that the contingent derivative of the perturbation map for multiobjective programming problems with parametrized inequality Constraints is closely related to the corresponding Lagrange multipliers

    The Multi-Location Transshipment Problem with Positive Replenishment Lead Times

    Get PDF
    Transshipments, monitored movements of material at the same echelon of a supply chain, represent an effective pooling mechanism. With a single exception, research on transshipments overlooks replenishment lead times. The only approach for two-location inventory systems with non-negligible lead times could not be generalized to a multi-location setting, and the proposed heuristic method cannot guarantee to provide optimal solutions. This paper uses simulation optimization by combining an LP/network flow formulation with infinitesimal perturbation analysis to examine the multi-location transshipment problem with positive replenishment lead times, and demonstrates the computation of the optimal base stock quantities through sample path optimization. From a methodological perspective, this paper deploys an elegant duality-based gradient computation method to improve computational efficiency. In test problems, our algorithm was also able to achieve better objective values than an existing algorithm.Transshipment;Infinitesimal Perturbation Analysis (IPA);Simulation Optimization

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control
    corecore