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PREFACE 

Sensitivity analysis is both theoretically and practically useful in optimiza- 
tion. However, only a few resul ts in this direction have been obtained fo r  multiob- 
jective optimization. In this paper ,  the &sue of sensitivity analysis in multiobjec- 
Live optimization is dealt with. Given a family of parametrized multiobjective optim- 
ization problems, the  perturbation map is defined as the  set-valued map which as- 
sociates t o  each parameter value the  set of minimal points of the  perturbed feasi- 
ble set with respec t  to  a fixed ordering convex cone. The behavior of the pertur-  
bation map is analyzed quantitatively by using the  concept of contingent derivative 
f o r  set-valued maps. Part icularly i t  is  shown that. t he  contingent derivative of the 
perturbation map fo r  multiobjective programming problems with parametrized ine- 
quality constraints is closely related t o  the corresponding Lagrange multipliers. 

Alexander B. Kurzhanski 
Chairman 
System and Decision Sciences Program 



SENSITIVITY ANALYSIS IN MULTIOBJECITVE 
OPTIMIZATION 

Te tsuzo  T a n i n o  

1. INTRODUCTION 

Stability and sensitivity analysis is not only theoretically interesting but also 

practically important in optimization theory. A number of useful resul ts have been 

obtained in usual sca lar  optimization (see, f o r  example, Fiacco [3] and Rockafellar 

[4]). Here, by stabil ity w e  mean the quantitative analysis, tha t  is, the study of 

various continuity propert ies of the perturbation (or  marginal) function (or map) 

of a family of parametrized optimization problems. On the o ther  hand, by sensitivi- 

ty w e  mean the quantitative analysis, that  is, the study of derivatives of the  per-  

turbation function. 

For multiobjective optimization, the "optimal" value of a problem is not unique 

and hence w e  must consider not a function but a set-valued perturbation map. The 

author  and Sawaragi [7] investigated some sufficient conditions fo r  the  semicon- 

tinuity of the perturbation map. However, the i r  resul ts are qualitative and there- 

fo re  provide no quantitative information. In this paper ,  the behavior of the per-  

turbation map will be studied quantitatively via the concept of contingent deriva- 

tive introduced by Aubin [I]. Though several  o ther  concepts of derivatives of 

set-valued maps were proposed (see Aubin and Ekeland [2]. p. 493), the concept of 

the  contingent derivative is the most adequate f o r  our purpose. Because i t  

depends on the point in the graph of a set-valued map and when w e  discuss the sen- 

sitivity of the perturbation map, w e  fix some point in i ts graph. 

The contents of this paper  are as follows. In Section 2, w e  introduce the con- 

cept  of the contingent derivative of set-valued maps along with some basic proper-  

t ies which are necessary in the  la te r  sections. Section 3 is devoted t o  the analysis 

of the contingent derivative of the  perturbation map, which is defined from a feasi- 

ble se t  map by taking the  set of minimal points with respect  t o  a given closed con- 

vex cone. In Section 4, w e  analyze the  sensitivity in general multiobjective optimi- 

zation problems specified by feasible decision sets and objective functions which 



depend on a parameter vector. In Section 5, we concentrate on multiobjective pro- 

gramming problems in which only the right-hand side of inequality constraints is 

perturbed. I t  is shown that  the  sensitivity of the  perturbation map is closely re- 

lated with the  Lagrange multipliers of the  nominal problem. 

2. CONTINGENT DERIVATJYES OF SET-VALUED MAPS 

In this section w e  introduce the concept of the contingent derivative of set- 

valued maps. Throughout th is section V and Z a r e  two Banach spaces and F is a 

set-valued map f r o m  V t o  2. 

Depin i t ion 2.2. (Aubin and Ekeland [2]). Let C be a nonempty subset of a 

Banach space V and f E V. The se t  TC(f)  c V defined by 

is called the contingent cone to  C at 6 ,  where B is  t he  unit ball in V. In o ther  

words, u E TC(6) if and only if t he re  exist sequences f h k  I ck+ and f u k  { C V such 

that  hk + O+, u k  + u and 

v^ + h k u k  E c for V k  , 

0 

where R+ is the set of positive real numbers. 

I t  is  well known that  TC(f)  is  a closed (but not always convex) cone. 

The graph of a set-valued map F from V t o  Z is defined and denoted by 

The contingent derivative of F is defined by considering the  contingent cone to 

g r a p h F .  

Depin i t ion 2.2. (Aubin and Ekeland [2]) Let (c , ; )  be  a point in g r a p h F .  W e  

denote by ~ ~ ( 6 , s )  the set-valued map f r o m  V t o  Z whose graph is the contingent 

cone ~ ~ ~ ~ ~ ~ ( f , g )  t o  the graph of F a t  (6 ,;), and cal l  i t  the contingent derivative 

of F a t  ( 6 , ) .  In o ther  words, 2 E L F  (6,;) ( v )  if and only if 

(U , z )  E TgTaphF(f,;). 



DF(6,Z) is a positively homogeneous set-valued map with closed graph. Due to  

Definition 2.1, z E DF(6,z^) ( v )  if and only if there  exist sequences 

ihkj c d + , l v k j  c Vand i z k j  c Z  such that hk + 0+, v k  -t v .zk  + z  and 

z^ + h k z k  EF(G + h k v k )  fo r  V k  . 

t Now w e  consider a nonempty pointed closed convex cone P in Z.  This cone P 

induces a part ial o rde r  on Z. W e  use the  following notations: For z ,z ' E P 

Y SPY' iff y'-y E P  (2.3) 

y s p y 1  iff y O - y  EP\  toj . (2.4) 

W e  consider the set-valued map F + P from V to  Z defined by 

( F + P ) ( v ) = F ( v ) + P  f o r  V v  EV . 

The graph of F + P is often called the P-epigraph of F (Sawaragi et al. [6], p. 23). 

The following resul t ,  which shows a relationship between the contingent derivatives 

of F + P and F ,  is useful. 

Proposition 2.1. Let ( f  ,;) belong to  graphF. Then 

~ ( 6 , ; )  ( v )  + P C D(F + P )  ( f  ,%) (v )  fo r  V V E  V . (2.5) 

(Proof). Let z ~ m ( f  ,%) ( v )  and ci E P .  Then there  exist sequences 

t h k  1 C R+1 * lvk j  c v a n d  i r k ]  C Z s u c h t h a t h ,  + O + , v k  + v , z k  + z  and 

% + h k z k  E F ( ~  + h k v k )  f o r  v k  . 

~ e t  zk = z k  + ci f o r  al l  k .  Then zk + z + d and 

% + h k z k = f  + h k z k + h k c i ~ ~ ( G + h k v k ) + ~  fo r  V k  , 

Hence z + ci E D (F + P )  (6 ,%) ( v )  and the proof is complete. 

The converse inclusion relation of this proposition 

D(F + P )  (6,s) ( v )  C f f  (G,z^)  ( v )  + P 

does not generally hold. (See Proposition 3.1 and Examples 3.3 and 3.4). 

A cone  P is s a i d  t o  be po in ted  i f  P n ( -P)  = I O j .  



Since we deal  with multiobjective optimization, we must introduce the  concept 

of minimal points with r espec t  t o  t he  cone P. 

Depinition 2.3. Given a subset  S of 2 ,  a point z^ E S  is said t o  be a P-minimal 

point of S if t h e r e  exists no z  E S  such tha t  z  Sp2.  W e  denote t he  set of a l l  P- 

minimal points of S  by MinpS, i.e. 

Mi* E IP E S  ! t h e r e  exists no z  E S such tha t  z  S p2 j (2.6) 

The following theorem is fundamental. 

meorem 2.1. Let ( f  ,;) belong t o  graphF and suppose t ha t  Z is  f ini te dimen- 

sional. Then, f o r  any v  E V. 

MinpD(F + P )  ( f  ,;) ( v )  c DF ( f  ,;) ( v )  

(Proof) Let z EMinpD(F + P ) ( f , g ) ( v ) .  Since z  E D ( F + P ) ( f , ; ) ( v )  

t h e r e  exist  sequences ihk j c d,. i vk  j c V and l z k  j C Z such that  

hk + O+, v k  + V ,  z k  + z and 

z^ + h k z k  E F ( ~  + h k v k )  + P  f o r  v k  . 

There also exists a sequence i dk  j C P  such tha t  

2 + h k z k  - d k  E F ( ~  + h k v k )  f o r  v k  . 

d k  
W e  shal l  p rove that  - -, 0.  I f  th is  were not t he  case, then f o r  some E > 0, we can 

h k  

choose a subsequence of t h e  natura l  numbers Ilk j satisfying 

I dLk 6 > E f o r  V k  . 
hlk 

- 

Taking and renumbering th is subsequence, w e  may assume from the  f i r s t  tha t  

~ h k  I d k  ' ? & f o r a l l  k .  Se t  zk =- d k  E P .  Then Zk S p d k  and 
h k  - B dkl 

I z k  ! 
Since - = E f o r  a l l  k ,  w e  may assume without loss of general i ty tha t  t he  se- 

h k  

Zk 
quence converges t o  some vector  d  E 2. Since P  is  closed, d  E P  and 



Zk 
I d  1 = E > 0. Thus, zk- -, z - d and hence z - ti E D ( F  + P )  (b ,z^) (v ). How- 

hk 

ever ,  this contradicts the  assumption z E Minp D ( F  + P )  (6  ,;) (v ), since 

tik 
z - t i  s z .  Therefore w e  can conclude that - -, 0. This implies that  

hk 

and 

Therefore z E D F ( 6 , ; ) ( v )  and this completes the proof of the 

theorem. 

The converse inclusion of this theorem is not valid generally. (See Example 

3.2.) 

3. CONTINGENT DERIVATIYE OF THE PERTURBATION MAP 

In this section we consider a family of parametrized multiobjective optimiza- 

tion problems. Let Y be a set-valued map from U t o  RP, where U is the Banach 

space of a perturbation parameter vector, RP i s  the objective space and Y is con- 

sidered as the feasible set map. Let P be a nonempty pointed closed convex cone 

in RP. In the optimization problem corresponding t o  each parameter value u ,  w e  

aim to  find the set of P-minimal points of the feasible set Y(u ). Hence w e  define 

another  set-valued map W from U t o  RP by 

W(u ) = MinpY(u ) f o r  Vu E U (3.1) 

and call i t  the perturbat ion map. The purpose of th is section i s  t o  investigate re- 

lationships between the  contingent derivative of W and that of Y. Hereafter in this 

paper ,  w e  fix a nominal value of u as û  and consider a point y^ E W(u^). 

In view of Theorem 2.1, w e  have the following relationship: 

MnpD(W + P )  ( 6 , c )  ( u )  c ~ ~ ( 6 . c )  ( u )  f o r  V u  E U  . (3.2) 

Depinition 3.1. We say that  Y is P-minicomplete near  6 if 

Y(u)  c W(u) + P  fo r  Vu E N  



where N i s  some neighborhood of G .  

Since W(u ) c Y(u ), the  P-minicompleteness of Y nea r  G implies that  

W ( u ) . + P  = Y ( u )  + P  f o r  Vu E N  . (3.4) 

Hence, if Y is P-minicomplete nea r  6 ,  then D(Y + P )  ( 6  , y ^ )  = D(W + P )  ( f  , y ^ )  f o r  

a l l  y^ E W(G ). Thus w e  obtain the following theorem from (3.2j. 

meorem 3.1. If Y is  P-minicomplete nea r  6 ,  then 

MinpD(Y + P )  (G,y^) ( u )  C D W ( ~ , < )  ( u )  f o r  Vu E U . (3.5) 

The following example i l lustrates tha t  the  P-minicompleteness of Y is essential 

f o r  the  above theorem. 

Ezample 3.1. (Y is not P-minicomplete near  6 ) .  Let U = R,  p = 1, P = R+ 

and Y be defined by 

Then 

f O j  if u = O  
W(u) = # i f u  $ 0  ' 

Let 6 = 0. Then 

~ ( ~ + ~ ) ( - ; i , y ^ ) ( u ) = ~ ~ ( - ; i , < ) ( u ) = ! y I ~  >=Iu I {  f o r  vu E R  

On the o the r  hand 

1 0 1  i f u  = O  
~ ( - ; i . y ^ ) ( u ) =  # i f U + O  * 

Hence 

MinpD(Y + P )  ( 7 2 , ~ )  ( u )  k DW(C,~^ )  ( u )  f o r  u # O  . 

The converse inclusion of t he  theorem does not generally hold as is shown in 

the  following example. 



Ezample 3.2. Let U = R ,  p = 2 and Y  be defined by 

Let P = R : ,  C  = 0  and = (0,O). Then W(u) = Y(u) fo r  every u  and 

and 

In o rde r  t o  obtain a relationship between DW and DY, w e  shall introduce the 

following property of Y. 

Definit ion 3.2. (Aubin and Ekeland [2]) Y  i s  said to  be  upper locally 

Lipschitz at u  ̂ if t he re  exist  a neighborhood N  of C and a positive constant M such 

that  

Y ( ~ ) C Y ( C ) + M ! U  - C I B  f o r  w u  E N  (3.6) 

Remark 3.1. If Y  is  upper locally Lipschitz at C, then i t  is  upper semicontinu- 

ous at 6 ,  i.e., fo r  any & > 0, t he re  exists a positive number 6 such tha t  

Y ( u ) c Y ( C ) + & B  for  V U , ! U A  116 . 

Depinition 3.3. Let S b e  a set in RP and P be a nonempty closed convex cone 

in R P .  A point < E S is  said t o  be  a properly P-minimal point of S if 

Of course, every properly P-minimal point of S is  P-minimal, since 



Proposition 3.1. If y^ is a properly P-minimal point of Y ( 6 )  and if Y  is upper 

locally Lipschitz at f  , then 

D(Y+P)(f,y^)(u)=DY(f,y^)(u)+P f o r  V u  E U  . (3.8) 

(Proof) In view of Proposition 2.1, 

D Y ( f , y ^ )  ( u )  + P  C D ( Y  + P )  ( f  ,y^)(u) for V u  E U  . 

Hence w e  prove the  converse inclusion. Let y  E D  (Y  + P )  (6 ,y^ ) (u ). From the 

definition there  exist sequences lhk j C d,, fuk 1 c U  and f y k  1 c R p  such that 

hk +O+, uk + u ,  y k  + y  .and 

5 + h k y  E Y ( C  +hkuk )  + P  f o r  V k  . 

Therefore there  exists a sequence f d k  1 E P such that 

37 + h k y  k - d k ~ y ( f + h k u k )  f o r  V k  , 

t i  y ^ + h k ( y k - - ) c Y ( f + h k u k )  f o r  V k  . 
h k  

d k  
Suppose that the sequence 1-1 has a convergent subsequence. In this case, w e  

h k  

a 
may assume without loss of generality that  - + d  f o r  some (1.  Since P is a closed 

h k  

d k  
set ,  d  E P .  Moreover, the convergence y k  -- + y  - d  implies that  

h k  

y  - d  E DY(c ,g ) (u ), namely that  y  E D Y ( 6 ,  < ) (u ) + P. Hence w e  have the con- 

clusion of the proposition. Therefore i t  completes the proof of the proposition to  

d k  
show that 1-1 necessarily has a convergent subsequence. If this were not the 

h k  

Idkl 
case, then - + + a. Since Y  is  upper locally Lipschitz at 6 , there  exist  a 

h k  

neighborhood N of f  and a positive number M satisfying (3.6). Since 

f  + hkuk + 6 ,  C  + hk u E N f o r  al l  k sufficiently large. Hence the re  exists a 

sequence f y ^ k  1 in Y ( f  ) such tha t  



f o r  a l l  k sufficiently la rge.  Since uk  -+ u ,  the right-hand s ide of the  above ine- 

1 quality converges t o  M I  u I. Therefore,  the  sequence f-6 - y k )  + yk  - - 
h k  

dk  I 
h k  

1 dkl 
i s  bounded. Since - -, + 00, t he  sequence 

h k  

converges t o  t he  ze ro  vec to r  in RP. Since y k  -, y, t he  second term converges t o  

dk t h e  ze ro  vector .  We may assume t ha t  - -, f o r  some 2 E P with [zl = 1. Hence 
Bdkl 

-k 
-, d .  However, th is  implies t ha t  d E [ d y a(Y(O) - y^)] n ( -P) ,  which 

l dk !  a>O 

contradicts t h e  assumption of the  p rope r  P-minimality of y^. This completes t he  

proof of t he  proposition. I 

CoroLLary 3.1. If y^ i s  a proper ly P-minimal point of Y(f  ) and if Y i s  upper  lo- 

cally Lipschitz at 6 ,  then 

M i n p ~ y ( f , y ^ )  ( u )  = MinpD(Y + P )  (6 ,y^ ) (u )  f o r  Vu E U . (3.9) 

(Proof) In view of Proposit ion 3.1, by using Proposit ion 3.1.2 of Sawaragi et 

al. [6], we can prove t ha t  

MinpDY(O,y^) ( u )  =Mznp(M(G,y^) (u)  + P )  =MinpD(Y + P )  (^u,y^) ( u )  . 

By combining Theorem 2.1 and Corollary 3.1, w e  have t h e  following theorem. 

h e o r e m  3.2. If Y i s  P-minicomplete nea r  f and upper  locally Lipschitz at 6 ,  

and if y^ i s  a proper ly P-minimal point of Y( f  ), then 

MinpDY(6,y^) ( u )  c D W ( f , c )  ( u )  f o r  Vu E U  . 

Example 3.1 shows t ha t  t h e  minicompleteness of Y is  essential  f o r  t h e  above 

theorem. The following two examples i l lustrate t he  importance of t h e  o t h e r  two 

conditions in Theorem 3.1, namely t h e  Lipschitz p roper ty  of Y and t h e  p rope r  

minimality of y^ . 



Example 3.3. (Y is  not upper locally Lipschitz at ii). Let 

U = R ,  p = 1 ,  P = R + a n d  Ybedef ined by 

Then 

Let = 0 and < = 0 .  Then 

10j if u # O  
MinpDY(O.0) ( u )  = (b if u = O  

Hence 

l o ]  = M i n p M ( O , O )  (u ) k DW(O.0) ( u )  = 4 fo r  u > 0 . 

Example 3.4. (y^ is  not proper ly P-minimal). Let U = R, p = 2,  P = R: and Y 

be defined by 

~ ( u ) = l y l ~ ~ + y ~ = O , Y ~ j U  j u ~ y l y l + ~ 2 + l = 0 . ~ l > O j  . 

Then 

Let C = 0 and y^ = (0,O). Then 



DW(C ,y^)(u) = I Y  I Y + y 2  = 0,  Y <= min(0,u ) j  . 

Hence 

(1, -1) % DW(C , c ) ( l ) ,  while (1, -1) E M ~ ~ ~ D Y ( C  ,<)(l) . 

4. SENSITIVITY ANALYSIS IET GENERAL MULTIOBJECTJYE OPTIMIZATION 

In th is sect ion w e  deal  with a general  multiobjective optimization problem in 

which the  feasible s e t  Y ( u )  i s  given by t he  composition of t h e  feasible decision set 

X ( u  ) and the  object ive function J' ( z  , u  ). Namely, l e t  X b e  a set-valued map from 

Rm t o  Rn , J' b e  a continuously dif ferentiable function from Rn x Rm into RP and 

Y be  defined by 

Y ( u ) = J ' ( X ( u ) , u )  = t y  l y  = J ' ( z , u ) , z  ~ X ( u ) j  f o r  VU € R m  . (4.1) 

First ,  w e  investigate a relat ionship between t he  contingent der ivat ives of X and Y. 

L e t 6  € R m ,  z  ̂ E X ( G ) a n d y ^  =J ' ( z ^ ,C )  c Y ( 6 ) .  

R o p o s i t i o n  4.1. For any u E Rm . 

where V,p (2 , G )  ( o r  V,J ( 2 , s  )) i s  t he  p x n (o r  p x m ) matrix whose (i , j ) com- 

a ~ ' ,  (z^,G a ~ ' ,  (2 ,C 1 
ponent is  (o r  ). Moreover, l e t  

If f is  upper  locally Lipschitz at (C ,y^)  and T ( C  , y ^ )  = lz^ 1, then t he  converse inclu- 

sion of (4.2) is  a lso valid, i.e., 

V,J ' (z^,C).DY (G,?) ( u )  + V U J ' ( z ^ , C ) .  u =DY(C,y^ )  ( u )  f o r  V u  € R m ( 4 . 4 )  

(Proof).  First w e  prove (4.2). Let z E DX(G ,z^) (u) ;  Then t h e r e  exist  sequences 



lhk ( c k+,luk I c R m  and lzk ( c Rn such tha t  hk + O+, uk -+ u .  zk -, z and 

2 + h k z k   EX(^ + h k )  f o r  V k  . 

Then 

f ( 2  + h k z k , f  + h k u k )  E Y ( f  + h k u k )  f o r  V k  

f ( 2  + h k Z k , f  + h k u k )  - f ( f  , f )  
$ + h k  E Y ( C  + h k u k )  f o r  V k  . 

h k  

Since hk + 0+, uk  -, u and zk -, z ,  

Hence 

V,f(z^.G) . z  + V u f ( 2 , . i i ) .  u E m(.ii ,y') ( u )  . 

Thus (4.2) has  been establ ished. Next w e  prove (4.4). Let y  € DY(% ,y ' ) (u )  along 

with sequences !Ak I C d,. luk C Rm and l y k  C RP such t ha t  

hk +O+, u -, u , y  + y  and y' + hk y  E ~ ( 6  + hku ). Then t h e r e  exists anoth- 

er sequence lzk j C R~ such t ha t  

Since 2 is  upper  locally Lipszhitz at ( 6 ,  y^ ) and f ( 6 ,  y' ) = [G (, t h e r e  exists a posi- 

t ive number M  such tha t  

h + hkzk -z^!  5 ~ l ( 6  + hkuk ,y '  + h k y k )  - ( 6 , c ) I  

f o r  all k sufficiently large.  Since t h e  right-hand s ide of t h e  above inequality con- 

verges to  Ml(u ,y )( as k -, -, we may assume without loss of general i ty t ha t  z k  con- 

verges t o  some z . Then c lear ly  z € D X ( ~  ,Z) ( u  ). Moreover, 

f ( z ^  + h k z k , c  + h k u k )  - f ( z . e )  
y  = lim y k  = lim 

k +- k +- h k  



Therefore 

Y E V,J(Z1,&). LX(U^,Z) ( u )  + V, j ( z^ ,& )  - u 

and the proof of the proposition is completed. I 

The following two examples show that the additional conditions in Proposition 

4.1 are essential f o r  (4.4). 

Ezample  4.1. ( f ( 6  ,y^ ) + iz^ 1 ) .  Let 

X ( u ) = i z  E R I O  <=z s m a x ( l . 1  +u) j  fo r  u E R ,  

1 Hence, by taking hk = - uk = 1 and y k  = 1 ,  w e  can prove that  
k ' 

On the other  hand, D X ( 6 , C )  (1) = R+, V , f ( z ^ , c )  = -1 and V,  f  ( z ^ , 6 )  = 0 .  There- 

fo re  

and (4.4) is  not t rue.  

Ezample  4.2. (2 is  not upper locally Lipschitz at ( 6 ,  y^ )). Replace X ( u  ) by 

in Example 4.1. In this case X ( 6  ,y^ ) = IOj, but 2 is  not upper locally Lipschitz at 

(6 , y^ ). W e  can analogously prove that  

1 E DY(6 , y ^ ) ( l )  but 

Ezample  4.3. (2 i s  not upper locally Lipschitz at (6 ,y^)) .  Let 

X ( u )  = [0,1] c R  f o r  every u E R ,  j ( z , u )  =z2 ,  f = 0 ,  z^ = O  and y^ = O .  Then 

Y ( u  ) = [ O , l ]  and 

A ' ( ~ , ~ ^ ) ( u ) = R +  fo r  V u  E R  . 



However, V, f (z^ ,u^ )  DX(C , S ) ( u )  + V,f (z^ , i i ) .  u = to].  In this case 

R(u , y )  = d y  fo r  y 2 0 and any u , which is not upper locally Lipschitz at (0,O). 

Finally w e  should note sufficient conditions f o r  the Lipschitz continuity of Y at 

c .  
Lemma 4.1. If X is upper locally Lipschitz at 6 and if X ( 6 )  is  bounded, then Y 

is  upper locally Lipschitz at 6 .  

(Proof). Since X is upper locally Lipschitz at 6 ,  t he re  exist some neighbor- 

hood N of 6 and a positive number M l  such that  

X ( U )  C X ( ~ )  + M 1 I u - - u ^ b  f o r  V u  E N  

Since f  is continuously differentiable, 

For any u E N and y E Y ( u  ), there  exists z E .Y(u ) such that  f  (z  ,u ) = y . Then 

the re  exists f E X ( 6  ) such that  kc z'! <= M l h  1? 1. Hence 

Putting M = (1 + M 1 ) M 2 ,  w e  have 

Namely Y is upper locally Lipschitz at 6 .  This completes the proof of the 

lemma. I 

The following example shows tha t  the condition of the  boundedness of X ( 6 )  is  

essential in Lemma 4.1. 

Ezample 4.4. ( X ( 6 )  is  not bounded). Let 

X ( u ) = l z  E R ~ Z ~ = U ]  f o r  u E R  

and f (z  ,u ) = zlz2. Then 

Y ( u ) = t y  E R ! ~  =uz2j for u ER . 

Clearly Y is not upper locally Lipschitz at 6 = 0. 



Finally, w e  have t h e  following theorem. Note t ha t  Y is P-minicomplete nea r  f 

if X (u  ) is compact f o r  each u n e a r  f . 
7'heotem 4.1. Assume t he  following conditions: 

(i) X is  upper  locally Lipschitz at c ; 
(ii) X is compact f o r  each u nea r  6 ; 

(iii) y^ is  a proper ly P-minimal point of Y (c ) ;  

(iv) f ( C  ,yl) = IS{; 

(v) 2 is  upper  locally Lipschitz at ( f  ,$). 

Then, f o r  any u E Rm , 

5. SENSITIVITY ANALYSIS IN MULTIOBJECTIVE PROGRAIBUNG 

In th is sect ion w e  apply t h e  resu l ts  obtained in t h e  preceding sect ion t o  a usu- 

a l  multiobjective programming problem: 

P-minimize j' ( z )  = U1(z )  ,...,fp (2 ) )  (5.1) 

subject  t o  g ( z )  = (g l ( z )  ,..., gm(z ) )  <= 0 , z E R n  

and discuss t he  sensitivity in connection with t he  Lagrange multipliers. Recall tha t  

in usual nonlinear programming, t he  sensitivity of t h e  perturbat ion function with 

respec t  t o  t he  parameter  on t h e  right-hand side of each inequality constra int  is  

given by -Aj(j = 1 ,  ..., m),  where A j  i s  t h e  corresponding Lagrange multiplier. Our 

final resu l t  will be  a n  extension of th is fact .  Throughout th is  sect ion, each func- 

t ion pi (i = I, ...,p) and g j  ( j  = I, ..., m )  i s  assumed t o  be  continuously dif ferentiable. 

Let X be  the  set-valued map from Rm t o  Rn  defined by 

Hence, in th is case,  t h e  feasible set-map Y from Rm t o  RP i s  defined by 

Of course,  t he  nominal value of t he  parameter  vec to r  u is 0 in R m .  Take a point 



2 E X(0) and denote t he  index set of t he  ac t ive  constra ints at 2 by J ( Z ) ,  i.e. 

First ,  we consider t he  contingent der ivat ive of the set-valued map X.  

Lemma 5.1. The contingent der ivat ive of X at ( 0 , s )  i s  given as follows: 

I DX(O,Z)(u)  = tx ! < V g j ( 2 ) , x  > <=uj f o r  Vj  E J ( 2 ) {  (5 .5)  

where < a ,  > denotes t he  inner  product  in the  Euclidean space.  

(Proof) Note tha t  

i s  specified by m  inequality constraints. The gradient  vec to r  of t h e  j t h  constra int  

at ( 0 . 2 )  with r espec t  t o  (u . x )  i s  ( - e l .  Vgj (2 ) ) .  where e f  i s  the  j th basic unit vec- 

t o r  in Rm . i .e. e l  = 0  if k + j and e l  = 1. Hence these gradient  vec to rs  are 

l inearly independent and s o  t he  tangent cone t o  graph X i s  given by 

= ~ ( u , x ) !  <Vg j ( 8 ) , x  > <uj f o r  j E J ( B ) {  

This completes the  proof of t he  lemma. I 

In th is case X ( u )  i s  a closed set f o r  every  u , since g  is continuous. The next  

lemma provides suff ic ient conditions f o r  the  Lipschitz continuity of X around 

u = o .  
Lemma 5.2. If t h e r e  ex is ts  a vec to r  > 0  such tha t  X ( c )  i s  bounded, 

X(0)  + (b and if t he  Cottle constra int  qualification i s  sat isf ied at every  5 E X(O), 

i.e., 

A j V g j ( z )  = 0  and X j  2 0  f o r  j E J ( z )  
f 

imply t ha t  X j  = 0  f o r  Vj  E J ( z )  , 

then X  i s  compact-valued and Lipschitz in a neighborhood of 6 = 0. 

(Proof) This lemma i s  due t o  Rockafel lar [ 5 ]  (combine Theorem 2.1 and Corol- 

l a r y  3.3 in [ 5 ] ) .  

Of course,  if X i s  Lipschitz in a neighborhood of 6 ,  then it is upper  locally 

Lipschitz at c .  Analogously w e  have t he  following lemma concerning the  set-valued 

map 



Lemma 5.3. If 2 i s  locally bounded around (O,y^), 2(0,y^) + $ and t h e  

Mangasarian-Fromovitz const ra in t  qualif ication is  sat is f ied at every  9 E f ( 0 , 3 ) ,  

i.e. 

f & v f , ( i )  + XjVgj(9)=0 and 
j =I J 

X j  2 0 f o r  j E J(9)  

imply t h a t  

& = O  f o r  all i =1, . . . ,p  and X j  = O  f o r  all j E J(3)  , (5.8) 

then f is compact-valued and Lipschitz in a neighborhood of (O,y^). 

W e  will p roceed with t h e  discussion under t h e  following assumptions: 

Assumption 5.1. 

(i) There  ex is ts  > 0 such t h a t  X(u) i s  bounded. 

(ii) The Cottle constra int  qualif ication (5.6) i s  sat isf ied at each  E X(0). 

(iii) Z(O,<) = Iz I f ( z )  = <, g(z )  SO]  = 13j. 

(iv) The Mangasarian-Fromovitz constra int  qualif ication (5.8) i s  sat isf ied at 9. 

In addition to Assumption 5.1, w e  also assume t h a t  y^ i s  a proper l y  P-minimal 

point of ~ ( 0 ) ~ .  Then w e  can  apply Theorem 4.1 t o  obtain t h e  relat ionship 

MinpVf (9) DX(O,Z)(u) c DW(O,y^)(u) f o r  V u  E Rm . (5.9) 

In view of (5.5) 

Vf(9) .DX(O,Z)(u) = ty l y t  = < Vf,(f),z > f o r  i = 1 ,..., p ; 

<Vgj(z),z > s u j  f o r  V j  € J ( i ) j  . 

Hence t h e  left-hand s ide of (5.9) consists of all t h e  P-minimal values of t h e  l inear  

multiobjective programming problem: 

P -minimize < V f I  ( 3 ) J  > s  I i = 1, . . . ,p  

sub jec t  to < Vgj(9),z > u j ,  j E J(2) . 

'ln t h i s  case  we  ca l l  3 a properly P-minimal  solut ion t o  t he  problem (5.1). 



The necessary and sufficient P-minimality conditions fo r  the above problems are 

that  there exist a multiplier vector ( p , A )  E RP X R m  such that 

f: & v f i ( l ^ ) f  z A j V g j ( 5 ) = 0  (5 .10)  
i = I  j  

p € i n t ~ + = ~ v € ~ ~ I < v , d  > > o  f o r  ~d # O E P ]  (5 .11)  

Aj 2 0 f o r  j E J ( % )  (5 .12)  

A j ( <  Vgj (%), z > - u j )  = 0 fo r  j E J ( % )  . (5 .13)  

Since % is a proper ly P-minimal solution to  the problem (5 .1 ) ,  there  exists a vec- 

t o r  ( p ,  A) E R m  X RP satisfying (5 .10)  - (5 .12) .  Hence, if z E Rn satisfies 

I < V g j ( % ) . z  > 5 uj  f o r  Vj E J ( % )  such that Aj = 0 

< V g j ( % ) , z  > = u j  f o r  bj E J ( % )  such that Aj > 0 , (5 .14)  

then Vf (2) . z E FdinpDY(O,c) (u) .  Moreover 

Thus we have proved the  following theorem. 

Theorem 5.1. Suppose that  5 is a proper ly P-minimal solution to  the  multiob- 

jective programming problem ( 5 . 1 )  and Assumption 5 . 1  is satisfied. Let @,A)  be 

the corresponding multiplier vector. Then, fo r  each z E R n  satisfying (5.14) ,  

Moreover, 

6. CONCLUSION 

In this paper  w e  have studied sensitivity analysis in multiobjective optimiza- 

tion. The essential result w e  have proved is that  every cone minimal vector of the 

contingent derivative of the feasible set map in a direction is also the element of 

the contingent derivative of the  perturbation map in that  direction under some 



conditions (Theorem 3.2). W e  have also obtained the relationship between the con- 

tingent derivative of the perturbation map and the Lagrange multipliers f o r  mul- 

tiobjective programming problems (Theorem 5.1). 

However, there  remain several  open problems which should be solved in the 

future. Some of them a r e  the following. First,  the contingent derivative of the 

perturbation map is not completely characterized. In o ther  words, sufficient con- 

ditions f o r  the converse inclusion of Theorem 3.2 have not been obtained yet. 

Secondly, the Lipschitz continuity of the perturbation map is not studied here.  

Thirdly, some more refined resul ts may be obtained in the case of multiobjective 

programming. Finally, w e  should clarify effects of the convexity o r  l inearity as- 

sumption. 
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