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Abstract 

 
Transshipments, monitored movements of material at the same echelon of a supply chain, 
represent an effective pooling mechanism.  With a single exception, research on 
transshipments overlooks replenishment lead times. The only approach for two-location 
inventory systems with non-negligible lead times could not be generalized to a 
multi-location setting, and the proposed heuristic method cannot guarantee to provide 
optimal solutions. This paper uses simulation optimization by combining an LP/network 
flow formulation with infinitesimal perturbation analysis to examine the multi-location 
transshipment problem with positive replenishment lead times, and demonstrates the 
computation of the optimal base stock quantities through sample path optimization. From 
a methodological perspective, this paper deploys an elegant duality-based gradient 
computation method to improve computational efficiency. In test problems, our algorithm 
was also able to achieve better objective values than an existing algorithm. 
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1. Introduction 
Physical pooling of inventories (Eppen 1979) has been widely used in practice to reduce 

cost and improve customer service.  For example, CIBA Vision has consolidated all of its 

country-based warehouses in Europe into a single European Logistics Center near 

Frankfurt, Germany.  On the other hand, the practice of transshipment, the monitored 

movement of material between pairs of locations at the same echelon (e.g., among 

retailers), may entail the sharing of stock through enhanced visibility, but without the need 

to put the stock physically in the same location.  To emphasize the requirement for 

supply chain transparency at the same echelon, this practice is typically referred to as 

information pooling.  Information pooling through transshipments has been less frequent.  

Transshipments provide an effective mechanism for correcting discrepancies between the 

locations’ observed demand and their available inventory.  As a result, transshipments 

may lead to cost reductions and improved service without increasing system-wide 

inventories.   

Although they are often overlooked in the literature, replenishment lead times constitute 

one of the critical factors in a transshipment system. Consider, for example, the Normandy 

landing where we can view the military logistics system as a two-echelon supply chain 

with the main base as a “supplier” in England and five bases on Normandy beaches in 

France. When the Allied Forces landed on Utah Beach, they met much less Nazi 

resistance than those landing on Omaha Beach, which enabled them to move troops and 

material from Utah Beach to Omaha Beach. This flow can simply be viewed as 

transshipment. In this case, ignoring replenishment lead times, i.e., the time to move new 

troops and material across the English Channel, would have disastrous consequences. 

Similarly, ASML, a Dutch manufacturer of photolithography equipment, reports that its 

customers in Japan, which manufacture electronic components, regularly tranship spare 
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parts among themselves in order to avoid downtime –hence, lost throughput– due to 

replenishment lead times from Holland. 

Transshipments have the advantage of improved flexibility and responsiveness without 

increasing total inventories. Replenishment lead times, however, will weaken the 

responsiveness and the flexibility of a supply chain by reducing the attractiveness of 

transshipments. To the best of our knowledge, with the exception of Tagaras and Cohen 

(1992), replenishment lead times have not been incorporated in transshipment models.  

Hence, in terms of positive replenishment lead times, this paper extends Herer et al. 

(2005), who studied the multi-location transshipment without replenishment lead times. In 

terms of a multi-location setting, this paper generalizes Tagaras and Cohen (1992), who 

considered non-negligible replenishment lead times in two-location inventory systems. 

However, their method has not proved to be generalizable to a multi-location setting. 

Furthermore, their heuristic algorithm cannot guarantee optimal solutions. 

In order to compute the optimal values for multi-location system with positive 

replenishment lead times, one of the most efficient methods is simulation optimization, 

which can help the search for an improved policy while allowing for complex features that 

are typically outside of the scope of analytical models. Sample path optimization (SPO), 

also called the stochastic counterpart method, is a simulation optimization method that has 

the significant advantages of high efficiency and convenience. However, SPO requires a 

technique to estimate the gradient.  

There exist a large number of gradient estimation techniques such as Infinitesimal 

Perturbation Analysis (IPA), Likelihood Ratios (LR), Finite Differences (FD), Symmetric 

Difference (SD), and Simultaneous Perturbation (SP) (Fu 2002). IPA is an efficient 

gradient estimation technique (Ho et al. 1979). Applications of perturbation analysis have 

been reported in simulations of Markov chains (Glasserman 1992), inventory models (Fu 

1994), manufacturing systems (Glasserman 1994), finance (Fu and Hu 1997), and control 
 3



charts for statistical process control (Fu and Hu 1999).  IPA-based methods have also 

been introduced to analyze supply chain problems (Glasserman and Tayur 1995). 

To study the multi-location transshipment problem with positive replenishment lead 

times, this paper deploys an LP/network flow model, uses sample path optimization and 

infinitesimal perturbation analysis techniques, and demonstrates the computation of the 

optimal base stock quantities. In contrast with the existing literature, this paper uses an 

elegant duality-based gradient computation method to improve algorithm efficiency.  

The remainder of the paper is organized as follows: In the following section, we 

introduce the multi-location transshipment model with the positive replenishment lead 

times and its network flow and LP representations. Section 3 is devoted to the details of 

the algorithm, its implementation, and its verification and validation. In Section 4, we 

present the results of our extensive numerical experimentation. We conclude with final 

comments in Section 5. 

 

2.  Model  
2.1 The Model Description 
We consider a system with one supplier and N retailers, associated with N distinct 

stocking locations that face customer demand. The retailers may differ in their cost and 

demand parameters.  The demand distribution at each retailer in a period is assumed to 

be known and stationary over time.  The system inventory is reviewed periodically and 

replenishment orders are placed with the supplier. The replenishment order will arrive 

after a positive replenishment lead time L. In the presence of a positive replenishment lead 

time, the system needs a bigger safety inventory, with a significant effect on 

transshipment.  

In each period, the replenishment and transshipment quantities must be determined in 

order to minimize the expected average total cost. The total cost is the sum of the 
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replenishment, transshipment, holding, backlog penalty, and lost sales costs. Herer et al. 

(2005) prove that, in the absence of fixed costs, if transshipments are made to compensate 

for an actual shortage (instead of building up inventory at another stocking location), there 

exists an optimal base stock S = (S1, S2, …, SN) policy for all possible stationary 

transshipment policies.  In our case, since the transshipment policy is stationary, we will 

continue to adhere to the base stock replenishment policy.  

In period t, events occur in the following order, as illustrated in Figure 1: First, 

retailers observe demands. Demand realizations represent the only uncertain event of the 

period. Once demand is observed, decisions about transshipment quantities are made.  

The transshipment transfers are then made immediately; subsequently, demand is 

satisfied. Any unsatisfied demand will be backlogged or lost. At this point, backlogs and 

inventories are observed, and penalty and holding costs, respectively, are incurred.  

Second, replenishment orders placed at the supplier in period t-L arrive.  These orders are 

used to satisfy the backlog in period t-L and, if possible, to increase the inventory level in 

period t. The decision on the replenishment quantity is then made. Any remaining 

inventory is carried to the next period, t+1. 

 

 

Orders placed in 
period t-L arrive 

Backlogged demand of 
period t-L is (or partially) 
satisfied 

Inventory position 
Increase up to SiDemand is 

observed 

Transshipment decision are 
made and executed 

Unsatisfied demand 
is backlogged 

Holding and  penalty 
cost are incurred 

Demand t is (or 
partially) satisfied 

Period t Period t+L 

Replenishment order are 
made at period t 

Period t-L

Replenishment 
order are made 
at period t-L 

Unsatisfied 
demand is 
backlogged Orders placed in 

period t arrive 

Backlogged demand 
of period t is (or 
partially) satisfied 

 

 

 

 

 

 FIGURE 1: Sequence of events in a period 
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To describe the operation of the system, we use the following notation.   

L   = positive replenishment lead time; 

T   = the time horizon; 

N  = number of retailers; 

)(tDi  = random variable associated with demand at retailer i, i=1,2,…,N, t=1,2,…,T; 

)(tdi  = actual demand at retailer i and an arbitrary period t, i=1,2,…,N, t=1,2,…,T;   

Si   = base stock quantity at the location i, i=1,2,…,N; 

ih  =  holding cost incurred at retailer i per unit held per period, i=1,2,…,N; 

ip  = penalty cost incurred at retailer i per unit backlogged per period in the first T-L 

periods, i=1,2,…,N; 

il  = penalty for lost sales at retailer i per unit of unmet demand per period in the last L 

periods, i=1,2,…,N. During the last L periods, it is impossible for replenishment orders to 

arrive on time. The unmet demand cannot therefore be backordered but is lost; 

ic  = replenishment cost per unit at retailer i, i=1,2,…,N;  

ijc  = effective transshipment cost, or simply the transshipment cost, per unit transshipped 

from retailer i to retailer j, i,j=1,2,…,N; 

We consider base stock policies, where  is inventory on hand at location i 

and the beginning of period t. When t=1,  is , the base stock at retailer i.  

Given , the actual demand at retailer i in period t, the dynamic behavior of the system 

is captured through the following auxiliary variable: 

)(tIOHi

)(tIOHi )(tSi

)(tdi

)(tI i : inventory level at retailer i immediately after transshipments and demand 

satisfaction 

 , for t=1 )()()()()()(
,1 ,1

tdtMtBtMtBtS i

N

ijj

N

ijj
ijjii −+−= ∑ ∑

≠= ≠=

)()()()()()(
,1 ,1

tdtMtBtMtBtIOH i

N

ijj

N

ijj
ijjii −+−= ∑ ∑

≠= ≠=

, for t=2,…T, 
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where represents the transshipment quantity from retailer i to retailer j.  We 

denote: , . Thus, the realized average cost per 

Term ∑ =
N
i ii dc1  fully accounts for rep

)()( tMtB ji

}0),(max{)( tItI ii =+ }0),(max{ tII ii −=−

period of the system over a horizon T is equal to: 

lenishment costs. Since this term is 

indep  our dec

2.2 Modeling Assumptions 

mptions, which are necessary to avoid pathological cases.  

deter

on 2 (Lateral transshipment): Lateral transshipment lead times are 

negl

nd at each retailer is generated by a 

stoch

 4 (Replenishment policy): The base stock quantity is nonnegative, 

whic

ent policy is stationary, that 

is, th

)])()())()()()(([1
1111111 ,11
∑∑∑∑∑∑∑ ∑∑
=

−

+−==

−
−

===

+

= ≠==

++++=
N

i
ii

T

LTt

N

i
ii

LT

t

N

i
ii

N

i
ii

N

i

N

ijj
jiij

T

t
tIltIptdctIhtMtBc

T
AC

endent of ision variables, it is omitted below.  

  

We will make the following assu

Assumption 1 (Lead time): Replenishment lead times are both positive and 

ministic. 

Assumpti

igible between any pair of stocking locations. 

Assumption 3 (Demand): Customer dema

astic process. Demand is backlogged when a retailer is out of stock in t=1,2,…T-L, 

but is lost in the last L periods since the replenishment orders cannot arrive on time within 

the finite horizon. Demand has a continuous CDF, but is not necessarily independent 

across retailers. 

Assumption

h also implies a non-shortage inducing replenishment policy (Herer et al. 2005). A 

replenishment quantity ordered at period t-L arrives at period t and satisfies the backorder 

at period t-L; any remaining units go to the next period, t+1. 

Assumptions 5 (Transshipment policy): The transshipm

e transshipment quantities are independent of the period in which they are made; they 

depend only on the pre-transshipment inventory and the observed demand. As stated 
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earlier, we assume that transshipments are never made to build up inventory at the 

receiving location, and only made to satisfy current actual shortage. 

 

2.3 Model formulation 

low formulation first, and then give stochastic programming and 

rk Flow Representation 

lenishment quantities, the optimal transshipment 

Proposition 1: Let be time index set from 1 to finite horizon T, 

We present the network f

its determinant counterpart, i.e., the LP formulation based on the network flow 

formulation. 

2.3.1  Netwo

Given a base stock policy for the rep

quantities need to be determined each period between every pair of retailers.  We develop 

a linear cost network flow model as follows. In the presence of positive lead times, the 

inventory position will not always be equal to inventory on hand since there exists 

inventory on order in the pipeline. Proposition 1 establishes that, in the presence of 

positive lead times, {IOH(t)} is not a regenerative process; hence, this transshipment 

system cannot be reduced to a one-period problem. We therefore formulate the system as a 

finite horizon system. In Proposition 1, +ℜ denotes the set of non-negative real numbers. 

 

},...,2,1{ T=Ξ

}),({ Ξ∈ttIOH be the stochastic inventory-on-hand process with +ℜ∈)(tIOH . Then in the 

ositive replenishment lead times, }),({presence of p Ξ∈ttIOH

process, and the regenerative epoch 1t  with t always exist in this 

transshipment system. 

Proof   The proof is p

 is not a regenerative 

resented in Appendix A.  

Let us recall the events in a period t; in particular, let us examine the material flows. 

At the beginning of the period, the excess inventory from the previous period is available. 

Ξ∈1t  do no
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Thi

iler i at period t , can be satisfied in one of two different ways: from 

the 

tail

s stock can be used in one of three different ways: satisfy demand at retailer i, satisfy 

demand at retailer j (i.e., transshipment from retailer i to j), and hold in inventory at 

retailer i.  At the end of the period, the material will be used in two ways: to satisfy 

backorder or to build up inventory at a retailer. Note that the stock at the beginning of the 

horizon, and the replenishment made during the first T-L periods are the only two sources 

of material.   

Let us now examine the material flow from the demand side (i.e., the sinks).  The 

demand at reta , )(tdi

inventory at retailer i, or from the inventory at another retailer j (i.e., through a 

transshipment from retailer j to re er i).  Another sink for material is the requirement 

that each retailer i begin the next period with inventory position equal to iS .  These units 

can come from one of two sources: the inventory at retailer i or replenishment arrival 

during the period.   
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Figure 2: Network flow representation for a 5-period horizon and 2-period lead time system 

 

Using the observations above, we model the movement of stock during the planning 

horizon as a network flow problem.  Figure 2 presents a network with a 5-period horizon 

and 2-period replenishment lead time. In each period t we have a source node, , to 

represent the beginning, i.e., initial inventory at retailer i and period t.  The middle sink 

node associated with the demand at retailer i in period t will be denoted by .  

Similarly, we will denote by  the ending inventory at retailer i in period t. Note that 

this is equal to the inventory at the beginning of the next period. Finally, we have a node 

 to represent the replenishment requested in period t to be delivered in period t+L.  

)(tBi

)(tM i

)(tEi

)(tR

The arcs in the network flow problem are exactly those activities described above and 

are summarized (with the associated cost per unit flow) in Table 1.  We use such 

variables as  to denote the flow in the network, indicating the starting and 

ending nodes. For example, is the flow in the network from node  B

)()( tMtB ji

)()( tMtB ji Bi (t) to 

Mj(t). 
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Table 1: Definition of the arcs in the network flow problem 

Arc Variable Unit cost Meaning 

))(),(( tEtB ii  )()( tEtB ii  ih  Inventory held at retailer i at period t. 

))(),(( tMtB ii  )()( tMtB ii  0 Stock at retailer i used to satisfy demand at retailer i in period t. 
))(),(( tMtB ji

 )()( tMtB ji
 )0( =iiij cc Transshipment from retailer i to retailer j in period t. 

ip  In the first H-L periods, shortages backlogged at retailer i. ))(),(( tMLtE ii +  )()( tMLtE ii +  

il  In the last L periods, lost demand at retailer i. 

))1(),(( +tBtE ii  )1()( +tBtE ii  0 Inventory on hand at the end of period t carried to the next period t+1. 

))(),(( EtR Lti + Lt + )()( EtR i  0 Inventory at retailer i increased through replenishment at period t+L. 

 

Replenishment order quantities can be computed as indicated in Lemma 1. Based on 

Lemma 1, Proposition 2 reformulates the flow balance equations at nodes , which 

significantly simplifies our network flow representation. 

)(tR

 

Lemma 1: For a base stock policy, replenishment orders at location i in period t can be 
computed by the formula below: 

LtwhentMLtELmEmRtBtESLtEtR iiii

t

Ltm
iiiii >+−+++−=+ +

−

−=
∑ ,))]()()()()1()(([)()(

1

LtwhentMLtELmEmRtBtES iiii

t

m
iii ≤≤+−+++−= +

−

=
∑ 1,))]()()()()1()(([

1

1

  

Proof   The proof is presented in Appendix B. 

 

Proposition 2:  In a base stock policy following the above assumptions, the sum of the 
replenishment orders at all the locations is equal to the sum of the demands in the period. 
This relationship can be expressed as the formula below: 

)()()(
11

tdLtEtR i

N

i
ii

N

i
∑∑
==

=+  

Proof   The proof is presented in Appendix B. 

We can observe that the system states in the first L periods, the last L periods, and the 

middle [L+1,T-L] periods are different. We present the characteristics of four different 

stages below. 
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i) The first period: t=1. There are no replenishment order arrivals. For the period 1, 

inventory on hand at the beginning of period  is just equal to the base stocks . )1(iIOH iS

ii) The first L-1 periods: t=2,…,L. There are no replenishment order arrivals. Inventory 

on hand at the beginning of period  is the inventory from the previous 

period . 

)(tIOH i

)()1( tBtE ii −

iii) The middle periods: t=L+1,…,T-L. This is the typical period; inventory on hand at 

the beginning of period  is just the inventory from the last period . 

Unmet demand is backlogged, and replenishment ordered at the period t will arrive at the 

period t+L. 

)(tIOH i )()1( tBtE ii −

iv) The last L periods: t=T-L+1,…,T. Different from the middle period, the unmet 

demand is lost because the replenishment orders )()( LtEtR i +  in the last L periods cannot 

arrive in time within the finite horizon. 

 

2.3.2  SP and LP Representations  

We are now ready to introduce a stochastic programming model. When demand is 

generated, we give its determinant counterpart, i.e., a linear programming model. The 

reason for building two models here is that we will use a stochastic counterpart algorithm 

to compute the optimal base stock value. In this algorithm, we need to know the 

determinant counterpart of stochastic programming model. 

Since demand is stochastic, our problem is built as a stochastic programming model. 

We formulate this stochastic programming model in problem (S). The objective is to 

minimize the expected average cost per period in the system.  

 

 

Problem (S) 

)])()()()()([1)],([min
1111111 ,11
∑∑∑∑∑∑∑ ∑∑
=

−

+−==

−
−

==

+

== ≠==

+++=
N

i
ii

T

LTt

N

i
ii

LT

t

N

i
ii

T

t

N

i

N

ijj
jiij

T

t
tIltIptIhtMtBcE

T
DSACE

Subject to  
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     , when t=1 )(tI i )()()()()()(
,1 ,1

tDtMtBtMtBtS i

N

ijj

N

ijj
ijjii −+−= ∑ ∑

≠= ≠=

)(tI i )()()()()()(
,1 ,1

tDtMtBtMtBtIOH i

N

ijj

N

ijj
ijjii −+−= ∑ ∑

≠= ≠=

, when t=2,…T 

0)()( ≥tMtB ji  , Nji ,...,1, = Tt ,...,1=    

0)( ≥+ tI i , , , 0)( ≥− tI i Ni ,...,1= Tt ,...,1=  

 

Based on the stochastic programming problem (S), and the network flow model 

presented in Figure 3, we construct an LP formulation (D). When demand is realized, 

problem (D) is a determinant counterpart of problem (S). Through this LP formulation, we 

compute the derivative using duality –hence, avoiding cumbersome derivative recursions 

and decision tree methods found in current literature, simplifying the computation, and 

improving algorithm efficiency. In addition, highly efficient LP packages exist to solve 

large-scale LP problems to support our sample-path-based algorithm.  

Recall that the system states in the first L periods, the last L periods, and in the middle 

[L+1,T-L] periods are different. This is reflected in the formulation below: 

 

Problem (D) 

))()()()()()()()((1),(min
1111

N

1i

T

1t1 1 ,1
∑∑∑∑∑∑∑∑∑
=+−==

−

==== = ≠=

+++++=
N

i
iii

T

LTt

N

i
iii

LT

t
iii

T

t
jiij

N

i

N

ijj
tMLtEltMLtEptEtBhtMtBc

T
dSAC

 Subject to  

iii

N

ijj
jiii StEtBtMtBtMtB =++ ∑

≠=

)()()()()()(
,1

  Ni ,...,1= , 1=t     

0)()1()()()()()()(
,1

=−−++ ∑
≠=

tBtEtEtBtMtBtMtB iiii

N

ijj
jiii

 Ni ,...,1= , Tt ,...,2=    ……(A-1) 

∑
≠=

=+++
N

ijj
iiiijii tdtMLtEtMtBtMtB

,1
)()()()()()()(  Ni ,...,1= , Tt ,...,1=          ……(A-2) 

∑∑
==

=+
N

i
i

N

i
i tdLtEtR

11

)()()(   , Ni ,...,1= LTt −= ,...,1                     ……(A-3)     

0)1()()()( =+− tBtEtEtB iiii   Ni ,...,1= , Lt ,...,1=   

0)1()()()()()()()( =+−−−−+ tBtELtMtEtELtRtEtB iiiiiii Ni ,...,1= , TLt ,...,1+= ……(A-4)             
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Equations (A-1), (A-2), (A-3), and (A-4) represent the physical inventory balance 

constraints at the (t), (t), iB iM R (t), and (t) nodes, respectively. There are 

 decision variables,  components in cost vector c, 

components in right hand column b, and the parameter matrix is a 

matrix.  

iE

TNN )4( 2 + TNN )4( 2 +

TN )13( +

TNTNN )13()4( 2 +×+

This LP formulation will be at the heart of our algorithm, so its feasibility is a 

necessary condition for successful implementation. If all cost parameters, demand, and 

base stock levels are finite, then problem (D) is feasible and has a finite optimum. This is 

established by Proposition 3.  

 

Proposition 3: Let the location index be I },...,2,1{ N= . If demand I has a 

density on and

iD ∈∀i

),0( ∞ ∞<][ iDE ∈∀i I, unit cost  and +ℜ∈iiiji lpch ,,, ∞<iiiji lpch ,,,  

I, base stock  and ∈∀ ji, +ℜ∈iS ∞<iS ∈∀i I, then problem (D) is feasible, and has a 
finite optimum with probability 1. 
 

Proof   The proof is presented in Appendix C. 

 

It should be pointed out that our formulation can be easily generalized to solve 

variants of our current problem, including most models such as two-location 

transshipment, two-location transshipment with positive lead times, multiple location 

transshipment with negligible lead times, and no-transshipment problem. Furthermore, our 

formulation can also be generalized to solve problems with different system 

configurations and pooling policies. 

 

 

3 Algorithms and Implementation 

3.1 Algorithms 

 14



To compute the optimal base stock values, we adopt a sample-path-based optimization 

algorithm, where we use IPA to compute the gradient value. In particular, we start with an 

arbitrary base stock level, Si, for each stocking location.  After randomly generating an 

instance of the demand for each location, we construct and solve problem (D) in a 

deterministic fashion.  Then, we can compute the gradient values by invoking duality.  

In other words, the LP is used not only to compute the optimal transshipment quantities, 

but also to help accumulate IPA gradients ( iSAC ∂∂ / ).  The latter are used in the path 

search algorithm to determine the optimal base stock levels.     

The procedure is summarized in a pseudo-code format in Figure 3, where K denotes 

the total number of steps taken in a path search, U represents the total number of inner 

cycles, ak represents the step size at the each iteration k, and  represents the base stock 

level for retailer i at the k

k
iS

th step. 

 

3.2 Explanation and Justification of the algorithm 

I) Initialization 

The algorithm starts with an arbitrary value for the base stock levels, . K and U should 

also be specified by the experimenter and can be determined, for instance, by a pilot study 

to mitigate the following trade-off: with a small K, the experiment cannot provide 

sufficient data, and output will have a big variance. A K that is too big is inefficient in 

improving the optimal value. 

0
iS

II) Outer loop 

The outer loop includes the inner loop computations, the desired gradient calculation, and 

the updating of order-up-to-levels. 

 (II.1)A.  The demand is generated at each retailer.  Note that any covariance 

structure is allowed in . )(Df
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 (II.1)B. Once the demand is observed, problem (D) is solved in a deterministic 

fashion to compute the optimal transshipment quantities and the minimum-cost flow.  

 (II.1)C. The gradient of the average cost (derivatives with respect to the base stock 

levels) is computed. Our LP formulation greatly simplifies these computations. The 

implementation of the derivative computation in this step is very efficient, as established 

in Theorem 1.   

 

 (I)Initialization 

(I.1)  Initialize K 
 

(I.2)  Initialize U  

(I.3)  For each retailer i, set initial base stock levels,  0
iS 

(II) Repeat 
 

Set  k←1 

 (II.1) Repeat 

Set  u←1  
 

(II.1)A. Generate the demand at each location from f(D) 

 (II.1)B. Solve problem (D) to determine optimal transshipment quantities 

(II.1)C. Compute/Accumulate the desired gradients of the average cost, dACu

u←u+1, until u=U 
 

 (II.2) Calculate the desired gradient(s), ∑
=

U

u
udAC

U 1

1  

 
(II.3)  Update the order-up-to-levels, ∑

=

− −←
U

u
uk

k
i

k
i dAC

U
SS

1

1 1α  
 

    k←k+1, until k=K 
 

(III)Return the Si and objective function value. 

 
FIGURE 3: Description of the sample-path-based optimization procedure 

 

Theorem 1: Based on the special LP structure in our problem and infinitesimal 
perturbation assumption of base stock, the gradient of average cost with respect to base 
stock iSAC ∂∂  is just the corresponding dual optimal solution p*w, , where w is 
determined by the position of Si in the LP formulation. For an N-location problem, 
w=N+i. 

Proof   The proof is presented in Appendix D. 
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The fact that, for a linear program, the dual value of a constraint is the derivative of 

the objective function with respect to the right-hand side of that constraint was first used 

by Swaminathan and Tayur (1999).  From Proposition 3 and Theorem 1, we have the 

Corollary 1. This corollary will subsequently support Proposition 4. 

 

Corollary 1 If demand I has a density oniD ∈∀i ),0( ∞ and ∞<][ iDE ∈∀i I, unit cost 

 and +ℜ∈iiiji lpch ,,, ∞<iiiji lpch ,,, ∈∀i I, base stock  and I, then 

the gradient of average cost with respect to base stock 

+ℜ∈iS ∞<iS ∈∀ ji,

iSAC ∂∂  exists and is bounded. 
 

Proof   The proof is presented in Appendix D. 

 

 (II.2) We estimate the desired gradient(s) by the formula ∑
=

U

u
udAC

U 1

1 , which is just the 

IPA technique. With IPA, we need to establish the unbiasedness of the gradient estimator. 

Recall that the implicit assumption of IPA is that the average of the changes represents the 

change in expectations, which yields an unbiased estimator. This assumption is true only 

under a commuting condition (Glasserman 1991). For our setting, in order to prove 

Proposition 4 below, we need to first prove several basic properties of the average cost 

function. Lemmas 2 and 3 provide one of the basic conditions directly required by 

Proposition 4. 

 

Lemma 2  is a convex function.  )( iSAC

Proof   The proof is presented in Appendix E. 

 

Lemma 3 If demand I has a density oniD ∈∀i ),0( ∞ and ∞<][ iDE ∈∀i  I, unit cost 

 and +ℜ∈iiiji lpch ,,, ∞<iiiji lpch ,,, ∈∀i  I, base stock  and +ℜ∈iS ∞<iS ∈∀ ji, I, 

then  is a proper convex function.  )( iSAC
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Proof   The proof is presented in Appendix E. 

 

   In order to show that is smooth, we need to show that  is continuously 

differentiable everywhere w.p.1. If  is a proper convex function and CDF of 

demand F(D) is continuous, from Theorem 25.2 and Corollary 25.5.2 of Rockafellar 

(1970), we have Lemma 4. 

)( iSAC )( iSAC

)( iSAC

 

Lemma 4  If CDF of demand F(D) is continuous,  is continuously differentiable 
every where w.p.1. 

)( iSAC

Proof   The proof is presented in Appendix E. 

 

As shown by Glasserman (1991), provided that the objective function  is 

convex and smooth with respect to the base stock levels, IPA estimators will be unbiased. 

We can now establish Proposition 4. 

)( iSAC

 

Proposition 4: If demand  I  has a density oniD ∈∀i ),0( ∞ and  I, then 

the gradient estimator  

∞<][ iDE ∈∀i

∑
=

U

u
udAC

U 1

1  is unbiased in the transshipment system with positive 

replenishment lead times. That is, we can interchange the integral and the derivative as 
the equation  )]([)]([ SACESACE SS ∇=∇

Proof   The proof is presented in Appendix E. 

 

Here the term on the left-hand side )]([ SACE S∇ is what we obtain by averaging IID 

copies of the stochastic gradient and the term on the right-hand side )]([ SACES∇  is what 

we want. 

 (II.3) The base stock level Si is updated through ∑
=

− −←
U

u
uk

k
i

k
i dAC

U
SS

1

1 1α . Also note 

that since the algorithm stops at k=K, we do not need an extra stopping rule. A key issue in 
this step is the selection of a suitable step size , for which we have Condition 1 below: ka
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Condition 1: A criterion for choosing  is to let step size go to zero fast enough so that 
the algorithm actually converges to a value of S, but not so fast that it will induce a wrong 

value. One condition to meet that criterion is  and  .                          

ka

∑
∞

=

∞=
1k

ka ∑
∞

=

∞<
1

2

k
ka

For instance, ak =a/k  for some fixed a>0 satisfies Condition 1.  The first part of this 

condition facilitates convergence by ensuring that the steps do not become too small too 

quickly.  However, if the algorithm is to converge, the step sizes must eventually become 

small, as ensured by the second part of the condition.  When the gradient estimator is 

unbiased (as is the case here), this step yields a Robbins-Monro algorithm (1951) for 

stochastic search. Although, theoretically, we can use any step size satisfying Condition 1, 

the practical implementation is more complicated. Section 3.3.2 addresses this problem to 

identify a suitable step size. 

(III) Return the Si and objective function value at each step. Then we can conduct the 

output analysis which will be investigated in section 3.3. 

 

3.3 Implementation 

We implement the algorithm in Matlab, as depicted in Figure 4, together with an LP 

solver.  We have written the main program to implement the algorithm shown in Figure 

3, two subroutines “tran_initial.m” and “trans_LP.m” to specify the LP problem, and input 

LP characteristic information to the LP solver. The LP solver returns the optimal base 

stock and optimal average cost at each step to the main program. Some subroutines like 

“drawbase.m”, “drawcost.m”, “hwmean.m” conduct the output analysis. In the 

implementation, we also need to note the three problems: setting the initial value for base 

stock levels, choosing the step size, and handling the initial transient. 

3.3.1 Initial value 

In order to explore the impact of initial values, we experimented with a 4-period lead time 

setting. With the same cost and simulation parameters, we tested different initial values. 
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The results were consistent in the sense that initial values do not affect the final result, 

which shows the robustness of our algorithm.  

 
Matlab LPsolver

transmain.m

tran_initial.m
trans_LP.m

main   
START
EXIT

init Generate demand for 
different periods

Update d in LP(L)

Solve LP(L)

Compute Si
k+1

Gradient in one run

Estimate gradient

Read parameters

Solve LP and 
return the result

inner loop
outer loop

Update S inLP(L)

Specify LP

Output

drawbase.m
drawcost.m
hwmean.m

 

 

 

 

 

 

 

 FIGURE 4: Implementation framework 

3.3.2 Step size 

Although all step sizes, which satisfy Condition 1, will theoretically lead to a correct 

result, different step sizes do affect the convergence rate of the implemented algorithm. In 

order to explore the impact of different step sizes, we considered a case with 12-period 

lead time. With the same unit cost and system parameters, we ran the simulation with 

K=2000 and an arbitrary initial value. Then we changed step size αk from 

0.003/k,0.03/k,0.3/k,1.5/k,3/k,6/k, 15/k, to 1000/k. The first 500 steps are presented in 

Figure 5.  Based on this experiment, we have adopted αk=3/k as our step size in 

subsequent analysis. 
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Figure 5   Search paths with different step sizes



 

3.3.3 Initial Transient Deletion 

We use one case (Figure 6) to illustrate the output analysis. For a setting with 6 locations 

and a 2-period lead time along with the same simulation and unit cost parameters used in 

section 4.1.2, we have a main output: base stock in each step, from which we statistically 

compute the estimators for base stocks. 
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FIGURE 6 Initial transient in the output 

 

Since the variance is too large during the transient stage, we use the transient deletion 

technique to eliminate the bias in the estimator. For all the experiments we conducted, we 

observed convergence within the first 1000 steps. We therefore delete the first 1000 data 

points and only use the remaining data in our algorithm.  

 
4  Results 
We present our solution and main experiments in section 4.1. In section 4.2, we conduct 

comparison studies. In order to validate our algorithm, we compare our results with the 
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results from an existing algorithm, and the results from a system without transshipments. 

In section 4.3, we explore the impact of correlated demand on transshipment with positive 

replenishment lead times.  

 

4.1. Experimental Setting 

4.1.1 Varying the lead times 

We consider a three-location problem with , , and 

 over a horizon of T=50, and with unit holding cost h=2, unit penalty 

cost p=12, unit transshipment cost c

+)1,10(~1 NormD +)5.0,5(~2 NormD

+)5.0,5(~3 NormD

ij=5, and unit cost for lost demand in the last L periods 

l=20. We implement the simulation experiments with different lead times varying from 2 

periods to 14 periods. After comprehensive pre-testing, we set the algorithm parameters to 

K=2000, αk=3/k, and initial base stock values (0,0,0).  

Experiments are conducted by a computer with Pentium 4 CPU 2.6GHz and 516MB 

of RAM. For each simulation run (the complete optimization process for each lead time 

case), the elapsed time ranges from 9 minutes to 12 minutes of wall clock time.  

 

 

 

 

 

 

 

 

Figure 7.1 Search paths of base stock  

We present the search paths for the base stock and for the average cost in Figure 7: 

Figure 7.1 illustrates the search for the optimal base stock levels. Figure 7.2 illustrates the 
 22



paths for average cost. From the figures, we observe that, at the beginning, the step size is 

big, but all experiments rapidly converge before k=500. In order to get a more reliable 

estimator, we only use the last 1000 values to estimate the optimal base stock and the 

optimal average cost. We present our optimal base stock, optimal average cost in Table 2. 

Each estimator includes the mean and the half width for a 95% confidence interval.  

 

Table 2  Optimal base stock and average cost for each lead time 

 Location 1  

Norm (10,1)+

Location 2  

Norm (5,0.5) +

Location 3 

 Norm (5,0.5) +

Average cost Average 

IOH 

SL=2:  30.6526(±0.0041) 15.3704 (±0.0037) 15.3822(±0.0040) 8.2573(±0.0359) 22.1264(±0.0189) 

SL=4:  50.4545 (±0.0051) 25.2040 (±0.0049) 25.2452(±0.0048) 14.6677(±0.0446) 24.1594(±0.0298) 

SL=6:  70.0971 (±0.0049) 35.0081 (±0.0045) 35.0046(±0.0046) 23.8139(±0.0538) 27.6196(±0.0387) 

SL=8:  89.6009 (±0.0055) 44.7821 (±0.0055) 44.7901(±0.0054) 35.9557(±0.0598) 32.5638(±0.0432) 

SL=10:  108.9562 (±0.0060) 54.5304 (±0.0060) 54.5610(±0.0061) 50.9456(±0.0633) 39.0392(±0.0506) 

SL=12:  128.0369 (±0.0069) 64.2505 (±0.0066) 64.2461(±0.0068) 69.0652(±0.0703) 46.9169(±0.0497) 

SL=14:  146.8914 (±0.0141) 74.0360 (±0.0058) 74.0231(±0.0066) 90.1047(±0.0742) 56.2553(±0.0539) 

HW: Half Width  CI: Confidence Interval 

 

 

 

 

 

 

 

 Figure 7.2  Paths of average cost 

 

4.1.2 Varying the number of locations 
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For a setting with a 2-period lead time and 50-period horizon, and the same cost 

parameters as in Section 4.1.1, we experiment with the number of locations varying from 



2 to 12.  We present the search paths for the base stock with a 12-location scenario in 

Figure 8, which illustrates the search process for the optimal base stock levels in those 12 

locations.  

We present the optimal base stock and average cost estimates for scenarios with 

different number of locations in Table 3. Each estimator includes the mean and the half 

widt

 

h for a 95% confidence interval. The first row also shows the demand distribution in 

those 12 locations.  
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Figure 8  Search paths of base stock in a 12-location scenario 
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Table 3  The optimal base stock and average cost for the scenarios with different locations 

Location 
Scenario 

No.1 
N (5,1)  

No.2 
N (10,1) 

No.3 
N (15,1) 

No.4 
N (20,1) 

No.5 
N (25,1) 

No.6 
N (30,1) 

No.7 
N (35,1) 

No.8 
N (40,1) 

No.9 
N (45,1) 

No.10 
N (50,1) 

No.11 
N(55,1) 

No.12 
N (60,1) 

Ave cost 

N=2 16.
±

 9.6973 
±0.0525 

2371 
0.0056 

31.1909 
±0.0056 

         

N=3 16.0321 
±0.0054 

30.9516 4 
±0.0610 ±0.0053 

45.993
±0.0054 

         13.3020 

N=4 15.8764 
±0.0078 

30.8455 
±0.0079 

4
±0.

5.8418 
0084 

0.8674 
0088 

 6
±0.

        17.2347
±0.0723 

N=5 15.8045 
±0.0082 

30.7582 
±0.0083 

45.7621 
±0.0080 

60.7869 
±0.0079 

5.7599 
±0.0085 
7        21.6681 

±0.0811 
N=6 15.7853 

±0.0077 
30.7162 
±0.0075 

45.6681 
±0.0081 

60.7256 
±0.0075 

75.6719  
±0.0077 

0.6910  
±0.0086 
 9        26.5204 

±0.0876 

N=7 15.6355 
±0.0117 

30.6917 
±0.0109 

45.6773 
±0.0117 

60.6268 
±0.0114 

75.7098 
±0.0118 

90.6132 
±0.0116 

05.6723 
±0.0114 
1      31.9601 

±0.0999 
N=8 15.6723 

±0.0127 
30.6057 
±0.0120 

45.5512 
±0.0113 

60.5967 
±0.0119 

75.6334 
±0.0116 

90.6355 
±0.0115 

01 5.5818 
±0.0125 

20.6668 
±0.0121 
1     37.8780 

±0.1096 
N=9 15.5979 

±0.0142 
30.6593 
±0.0113 

45.5733 
±0.0110 

60.6261 
±0.0111 

75.5330 
±0.0126 

90.5500 
±0.0112 

105.5398 
±0.0117 

120.5954 
±0.0118 

35.5155 
±0.0110 
1    44.3246 

±0.1139 

N=10 15.5503 
±0.0198 

30.5756 
±0.0204 

45.5659 
±0.0201 

60.5293 
±0.0195 

75.6409 
±0.0200 

90.6401 
±0.0202 

105.5278 
±0.0208 

120.5751 
±0.0195 

135.6223 
±0.0199 

50.5850 
±0.0201 
1   52.2959 

±0.2097 
N=11 50.4535 

±0.0220 
65.5541 

±0.0214 
15.6799 
±0.0244 

30.5843 
±0.0211 

45.5969 
±0.0212 

60.5603 
±0.0220 

75.5368 
±0.0215 

90.5650 
±0.0220 

105.5320 
±0.0219 

120.5652 
±0.0208 

135.6044 
±0.0212 

1 1  60.1490 
±0.2527 

N=12 15.6812 
±0.0383 

30.5948 
±0.0213 

45.5296 
±0.0213 

60.5509 
±0.0217 

75.4698 
±0.0218 

90.5736 
±0.0220 

105.5786 
±0.0217 

120.4727 
 ±0.0213 

65.5468 
±0.0217 

80.5179 
±0.0213 

135.5397 
±0.0224 

150.5619 
±0.0213 

1 1 68.5667 
±0.2723 

 

Sectio w t g es

different number of locations. Although not reported here, we have experimented with 

diff

arison studies 

al base stock value with that from the algorithm of 

2). In section 4.2.2, we compare the performance of two 

n 4.1 has sho n tha  the al orithm works well with different lead tim  and 

erent demand distributions, different horizons, and different cost structure. In all these 

cases, the algorithm does converge fast, and provides a reliable estimate with a small 

variance. 

 

4.2 Comp

In section 4.2.1, we compare our optim

Tagaras and Cohen (199

algorithms through their objective function value. To ensure “fairness” in comparison, we 

use common random numbers across the two algorithms, and finally show that the 
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performance of our algorithm is better. In section 4.2.3, we also compare our result with 

that from a system without transshipment. 

 

4.2.1 Comparison of optimal base stock values 

pare the optimal base stock values from our algorithm with those from Tagaras We com

and Cohen (1992), which uses 1+iii Lk σ  as base stock values, where )1( ++= iil LS μ

iμ =E(D ) is the mean and 2σ  is the variance of the single-period demand at location i, k  

is computed by iii Sk σμ /)( 0 −=  value for the zero-lead-time 

blem. Since the Tagaras and Cohen algorithm is conceived for a two-location setting, 

we also apply our  two-location setting. 

 

 

i

 and  is the optimal

pro

algorithm to the

 

From heuristic tends to 

overestimate the optimal base stock values. All of their base stock quantities are 

con

4.2.2 Comparison of optimal objective function value: average cost 
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Figure 9    Comparison of base stock values 

 

 

 

 

 

 

 Figure 9, we observe that: i) the Tagaras and Cohen (1992) 

sistently higher than ours. ii) With increasing lead times, the overestimation by the 

Tagaras and Cohen algorithm becomes even more significant. 
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A lower base stock level does not always imply lower cost.  We therefore need to 

e, the 

perform

Table 4  Comparison of objective function values of the two algorithms 

Lead time Tagaras and Cohen algorithm  SPO and IPA algorithm  

compare the objective function values from both algorithms. To ensure fairness, we use 

common random numbers across the two algorithms and conduct the experiments as 

follows: i) For the Tagaras and Cohen algorithm, we input optimal base stock values given 

by the heuristic algorithm and run 1000 independent replications, and then estimate the 

average cost; ii) Similarly, for SPO and IPA algorithm, we also input the optimal base 

stock value given by SPO and IPA algorithm and run 1000 independent replications, and 

then compute the average cost. 

We present the results in Table 4, and conclude that: i) for each lead tim

ance of our algorithm is better, consistently achieving lower average cost; ii) with 

increasing lead times, the relative performance of our algorithm becomes even more 

pronounced. 

 

2 8.6007 (±0.0553) 8.2603(±0.0580) 

4 15.8146(±0.0911) 14.5940(±0.0778) 

6 25.9708 (±0.1179)  

 

 

23.8311(±0.0896)

8 38.4691(±0.1535) 35.8688(±0.1021) 

10 54.7811(±0.1846) 50.9376(±0.1164) 

12 73.8404(± 0.2117) 68.9879(±0.1228) 

14 96.2429(±0.2405) 90.0336(±0.1217) 

The estimators in  for a 95% CI. 

 

4.2.3 Com ithout transshipment 

 by a 

clude mean and HW

paring a system with transshipment and w

We also compare our results with the results from a no-transshipment system

two-stage experiment. i) We first eliminate all transshipment flows in the network flow 

formulation (Figure 2), and compute the optimal base stock quantities for the system 
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without transshipment. ii) For both systems, we then run 1000 independent replications 

under common random numbers and estimate the average cost. 

From Figure 10, we conclude that: i) for each lead time, the performance of the 

system with transshipments is always better than that of the system with no 

transshipments. The average costs of system with no transshipments are always higher; ii) 

when the lead times are lower, the result from the Tagaras and Cohen algorithm is closer 

to that from our algorithm. But when lead times are longer, the result from the Tagaras 

and Cohen algorithm is closer to that from a system with no transshipments, failing to 

reflect the added value of information pooling. 
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Figure 10  Comparing three settings  
 
4.3 The Effect of Demand Correlation  

To study the impact of correlated demand across retailers, we experiment with scenarios 

of different demand correlations (ρ=±0.5, ±0.25), and different lead times (L=2,5,8,11,14 

periods). A case with zero correlation is also added for reference. Unlike the previous 

section, demand faced by the retailers is modeled as a multivariate normal random 

variable with a mean of 100 and a standard deviation of 20.  The (i,j)th entry of the 
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variance-covariance matrix is given by σiσjρij, where ρij denotes the level of demand 

correlation being investigated when i ≠ j and one when i = j.   

We adopt the system configuration 5 (Herer et al. 2005), where transshipments are 

possible between any pair of locations, with unit holding cost h=1, unit penalty cost p=4, 

and unit transhipment cost cij=0.5; we set the unit loss cost l=10. 

We examine the impact of demand correlation on the average cost per period. Figure 

11 depicts the impact of demand correlation on the average total cost for a 3-retailer 

configuration for different lead times; Table 5 shows the estimated average costs. We 

observe that, for each lead time, when demand correlation gets smaller (or negative), the 

average cost always decreases, which implies that the effectiveness of transshipments in 

matching demand and supply is enhanced. In general, from the observation that smaller 

correlation significantly lowers average total cost, we can conclude that positive 

correlation reduces the effectiveness of transshipments while negative correlation 

enhances it. 
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Figure 11 Average cost with different lead times L and correlation coefficients ρ 
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      Table 5  Average cost with different lead times L and correlation coefficients ρ 

L            ρ -0.5 -0.25 0 0.25 0.5 

2 23.9439 68.3064 88.8866 104.3708 117.2655 

5 93.7007 146.867 171.6306 188.9192 205.2476 

8 217.5912 273.9231 298.1574 315.9017 331.671 

11 397.9785 450.5808 472.6436 490.1562 503.9456 

14 631.4524 677.1012 697.7432 712.8785 719.9255 

 

 

We also explore the impact of demand correlation on the base stock levels. The 

optimal base stock levels  with different lead times L and correlation coefficients ρ are 

presented in Table 6.  We conclude that: i) When lead time is low (e.g., L=2), base stock 

is lower when correlation gets smaller (or negative). This is similar to the 0-lead-time case 

reported by Herer et al (2005); ii) When lead time is high, base stocks will possibly 

increase when correlation gets smaller (or negative). Recall that our objective function is 

not inventory but average cost. A higher base stock may still possibly reduce the average 

cost. In settings with longer lead times, in order to meet the demand from other locations, 

when correlation gets smaller (or negative), base stocks may slightly increase to reduce 

the cost from backorders and lost demand. 

iS

 

Table 6  Base stock  with different lead time L and correlation coefficient ρ   1S

L         ρ -0.5 -0.25 0 0.25 0.5 

2 300.773 305.8798 307.806 308.7214 310.0512 

5 599.7815 596.0419 595.5098 594.3899 594.3217 

8 899.7037 885.132 879.3808 873.9785 869.6306 

11 1198.9 1171 1158.1 1147.4 1140.2 

14 1498.3 1452.4 1433.8 1419.6 1405.6 
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5  Summary 

In this paper, we consider the multi-location transshipment problem with positive 

replenishment lead times. The main contributions of this paper include the following: 1) 

using simulation optimization combined with an LP/network flow formulation and IPA, 

we provide a flexible and efficient algorithm to compute the optimal base stock quantities 

for the multi-location transshipment problem with positive replenishment lead times; 2) 

experimenting with scenarios of high and low levels of demand correlation along with 

different lead times, we show the negative relationship between the benefits of 

transshipments and demand correlation at different lead time settings; 3) our algorithm is 

also shown to be able to provide better objective function value than an existing 

algorithm; 4) we introduce an elegant duality-based gradient computation method to 

significantly improve computational efficiency. 
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Proof of Proposition 1  For a regenerative process (Definition 1.3.1, Tijms 1994), there 

exists a regenerative epoch with 1t Ξ∈1t  such that  

(a) is independent of  }),({ 1 Ξ∈+ tttIOH }0),({ 1tttIOH <≤

(b) has the same distribution as }),({ 1 Ξ∈+ tttIOH }),({ Ξ∈ttIOH  

Now we argue that condition (a) can not always be satisfied in the presence of positive 

lead times. Let  be the inventory on order,  be the 

backorder, and  be the inventory on hand. Under a base stock policy, we can 

express the replenishment order quantity 

)()(
1

LmEmR ii

t

Ltm

+∑
−

−=

)()( tMLtE ii +

)1()( +tBtE ii

)()( LtEtR ii + as below. From our formulation, 

 is just , then we have )1()( +tBtE ii )(tIOHi

LtwhenLtEtRtMLtELmEmRStIOH iiiiii

t

Ltm
ii >+−+++−= ∑

−

−=

),()()()()()()(
1

LtwhenLtEtRtMLtELmEmRtBtES iiiiii

t

m
iii ≤≤+−+++−+−= ∑
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1

1

    

From the above expression, we know that each  is dependent on  in 

the former L periods, which are dependent on 

)(tIOHi )()( tELtR ii −

)( LtIOH i −  in the former L periods. The 

dependence of  here is transitive .Then for any epoch  with , we have )(tIOHi 1 1t Ξ∈t

}),({ 1 Ξ∈+ tttIOH is dependent of ;  is dependent 

of ,…, is dependent of . 

}),({ 1 Ξ∈−+ tLttIOH }),({ 1 Ξ∈−+ tLttIOH

}),2({ 1 Ξ∈−+ tLttIOH },),({ 1 Ξ∈ℵ∈−+ tkkLttIOH

With the increasing of k, when 0≤− kLt , we have  w.p.1, which means 

is dependent of w.p.1. Therefore, the condition (a) 

always can not hold. In the presence of the positive replenishment lead times, 

 is not a regenerative process. 

11 tkLtt ≤−+

}),({ 1 Ξ∈+ tttIOH }0),({ 1tttIOH <≤

}),({ Ξ∈ttIOH

 

Appendix B: Replenishment Order Quantity 

Proof of Lemma 1 If the base stock is bigger than the inventory position, then this 

formula can be reduced to the form as below. 
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))()()()()1()(()()(
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t
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.It is easy to 

implementing this in linear programming, we can set the 0)()( ≥+ LtEtR ii . 

   From our assumption on the sequence of events (refer to fig 2), we make the 
replenishment order decision after we have observed the inventory on hand )1()( +tBtE ii , 

the inventory on order , and the backorder . So 

when , we have 
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By the same logic we can get the proof when Lt ≤≤1 , and the only difference is the 
expression of the inventory on order. 

 

Proof of Proposition 2 

(i)  When t=1, Proposition 2 holds. 

From Lemma 1, with a nonnegative )()( LtEtR ii +  assumption, we have  

))()()1()(()()( tMLtEtBtESLtEtR iiiiiii +−+−=+  for  i=1,..,N              (B-1) 

We have )1()( +tBtE ii =  from the network flow balance at points . At 

points , we denote the backorder 
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Substitute the and )1()( +tBtE ii )()( tMLtE ii +  into the formula (B-1), we have  
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Summing the replenishment orders quantities in the different locations, we have 
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network flow balance at points .So we have ,when t=1. 
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 (ii) If t=m, the Proposition 2 holds, it will also hold when t=m+1. 
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If t=m, the Proposition 2 holds, then the inventory position at the beginning of the 

period t=m+1 are the base stock levels, NiSi ,...,1, = . Then we examine the decreasing 

of the inventory position after the demands Nidi ,...,1, =  have been observed. 

(A) Suppose that there are no backorders, the sum of decreasing physical inventory 

 is equal to the sum of demands:  . ∑
=

Δ
N

i

IOH
i

1
∑∑
==

=Δ
N

i
i

N

i

IOH
i d

11

(B) Suppose that there are backorders, the sum of decreasing physical inventory  

and backorder  is equal to the sum of demands:  . 
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In any case, the decrease of the inventory position is , and at the end of period, 

when the replenishment orders quantities are determined, the sum of inventory positions is 

. In order to restore the inventory position to 
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NiSi ,...,1, = , one must order 

enough units so that  . )()()(
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Appendix C: Problem (D) has a finite optimum. 

Proof of Proposition 3 

1)  Problem (D) is feasible. We can always find a feasible solution. Let 

)()()()()( tdtMLtELtEtR iiiii =+=+  for the first T-L periods and  

for the last L periods. 

)()()( tdtMLtE iii =+

∈∀+===== iTBTETETBEBBEEBS iiiiiiiiiii ),1()()()(,...,)2()2()2()1()1()1(  I. 

All transshipment quantities =0 with )()( tMtB ji ∈∀ ji,  I. This set of values can always 

satisfy all constraints in problem (D), so problem (D) is always feasible. 

2) The optimum of the problem (D) is finite. Since cost vector  and 

, and all decision variables are nonnegative, the objective value . 

Since it is a minimum problem, the problem (D) has finite optimum. 

+ℜ∈iiiji lpch ,,,

∞<iiiji lpch ,,, 0≥xcT
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Appendix D: Computation of Gradients 

Proof of Theorem 1  From the Proposition 3, we have shown that problem (D) always 

has a finite optimum, and the optimal objective total cost value  

AC*=cT
B b* .                         (D-1) BB-1

   Here B is a basis matrix, b* is the right-hand side column associated with the basis. 

Let b be the right-hand side column. bT=(b1T,b2T,…b4T). From the structure of our 

problem there are components in right-hand side column b. Then from the 

structure, for the parameter matrix, we have rank(A)= 

TN )13( +

TN )13( + , which is full rank. Since 

A is full rank, every component in right-hand side column is also in the b* associated with 

the basis B, that is b*=b. We have  AC*= cT
B b.                           (D-2) BB-1

So b1 is also in the right hand column. b1 is right-hand side column for the first period 

problem. Its (N+1)th, (N+2) th,…(2N) th components are respectively the base stock values 

S1 ,S2 ,..,SN. So S1 ,S2 ,..,SN are in the optimal right hand column b associated with the basis 

B. Besides, S1 ,S2 ,..,SN only appear at these positions. 

We also note that  cT
B =p, and p is the dual optimal solution. So we obtain  BB-1

AC*=p*Tb = p*T
1b1+ p* T

 2b2+ p* T
 3b3 +p* T

 4b4+…+p* T
 (3N+1)Tb(3N+1)T           (D-3)  

   By checking LP formulation, we have bN+1=S1, bN+2=S2,…,bN+N=SN.

Giving Si an infinitesimal perturbation, b is perturbed to b~ , because the difference 

bb ~
−  is sufficiently small, B-1b remains positive and we still have a basic feasible 

solution. The reduced costs c  are not affected and remain nonnegative. Thus, the optimal 

basis B will not change, and the formula (D-2) still holds. Then we take the derivatives on 

both sides of formula (D-2) to obtain  
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Therefore, the gradient iSAC ∂∂  is just the corresponding dual optimal solution p*w, 

where w is determined by the position of Si in the LP formulation. For N-location problem, 

w=N+i. 

 

Proof of Corollary 1  From the Proposition 3 and Proposition 4, we have known that 

both problem (D) and its dual has finite optimum, gradient of average cost with respect to 

base stock iSAC ∂∂  exists, and is just the corresponding dual optimal solution p*w. Note 

our demand is both continuous and bounded, iSAC ∂∂  are differentiable up to period T 

with probability 1. From the Proposition 3, we also know problem (D) has finite optimum, 

and so its dual problem also has the finite optimum. So its dual solution p*w is bounded, 

and gradient of average cost with respect to base stock iSAC ∂∂  is bounded. 

Appendix E: Unbiasedness of IPA gradient estimation 

Proof of Lemma 2: Convexity of  )(SAC

Let  be the feasible set, , and for any 

, we define , which is the optimal cost as a function b. Bertsimas 

and Tsitsiklis (1997) have shown that the objective functions  of linear programs 

are convex functions of their right-hand-sides b. In our LP formulation, all S

}0,|{)( ≥== xbAxxbP })(|{ nonemptyisbPbS =

Sb∈ xcbAC T

bPx )(
min)(
∈

=

)(bAC

i variables 

appear on the right-hand-side of the linear program. The convexity of the average cost in 

base stock levels S follows this property. 

 

Proof of Lemma 3  In order to prove that  is a proper convex function, we need 

to prove two points below: 1)

)(SAC

−∞>)(SAC for all . If demand is finite and 

nonnegative, unit cost  are finite and nonnegative, we have  for 

all . 2)  for some . (By contradiction) If it does not hold, 

problem (D) will have not finite optimum, which contradicts Corollary 1. 

+ℜ∈S

lpch iiji ,,, 0)( ≥SAC

+ℜ∈iS +∞<)(SAC +ℜ∈S
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Proof of Lemma 4  We use Theorem 25.2 and Corollary 25.5.1 of Rockafellar (1970) to 

prove this lemma. We need two conditions: 1) is a proper convex function, which 

has already been proven by Lemma 3. 2) Partial derivatives 

)(SAC

iSAC ∂⋅∂ )(  exist and are 

finite everywhere, which will be proven in the following. Recall that 
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Let  be term inside of the integral, we have  .              

Then, we have its partial derivatives:  
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Now we will show that the term inside the brackets has bounds in order to prove the 

integral in (E-3) is absolutely convergent. From Corollary 1, we know that the gradient of 

the average cost with respect to base stock exists and is equal to a finite  for any .  *
wp iS

We have 

∞<
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ε )()( iii
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Since the term inside the brackets has bounds, the integral in (E-3) is absolutely 

convergent. We can put the limit inside the integral in (E-3). Also note that )(⋅H  is 

convex and its partials must exist everywhere except at a countable number of points 

(Theorem 25.3, Rockafellar 1970). Since )(⋅F   is continuous, these points will have 

measure zero. Then we have )(
),()(

i
i

ii

i

i DdF
S

DSH
S

SAC
N∫ ∂

∂
=

∂
∂

Θ−ℜ+

                  (E-5) 

Where  is the countable points set at which the partials Θ )(⋅H  does not exist, and the 

measure of this set is zero. Then the partial derivatives exist everywhere outside of this 
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zero-measure set ,i.e., partial derivatives exist everywhere w.p.1. For a proper convex 

function , if the partial derivatives 

Θ

)(SAC iSAC ∂⋅∂ )(  exist and are finite everywhere 

w.p.1, then  will be continuously differentiable everywhere w.p.1 from Theorem 

25.2 and Corollary 25.5.1 of Rockafellar (1970).  

)(SAC

 

Proof of Proposition 4  1) Lemma 2 has shown that  is convex. 2) Lemma 4 has 

shown that the gradient of the average cost with respect to the base stock,

)(SAC

SAC ∂⋅∂ )( , is 

continuous w.p. 1. 3) Corollary 1 has shown that SAC ∂⋅∂ )(  is finite. As shown by 

Glasserman (1991), IPA estimators will be unbiased provided that the objective function 

 is convex and smooth (gradient is both continuous and finite) with respect to the 

base stock levels. 

)(SAC
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