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Abstract

Transshipments, monitored movements of material at the same echelon of a supply chain,
represent an effective pooling mechanism. With a single exception, research on
transshipments overlooks replenishment lead times. The only approach for two-location
inventory systems with non-negligible lead times could not be generalized to a
multi-location setting, and the proposed heuristic method cannot guarantee to provide
optimal solutions. This paper uses simulation optimization by combining an LP/network
flow formulation with infinitesimal perturbation analysis to examine the multi-location
transshipment problem with positive replenishment lead times, and demonstrates the
computation of the optimal base stock quantities through sample path optimization. From
a methodological perspective, this paper deploys an elegant duality-based gradient
computation method to improve computational efficiency. In test problems, our algorithm
was also able to achieve better objective values than an existing algorithm.

Key words: Transshipment, Simulation Optimization, Infinitesimal Perturbation Analysis
(IPA)



1. Introduction

Physical pooling of inventories (Eppen 1979) has been widely used in practice to reduce
cost and improve customer service. For example, CIBA Vision has consolidated all of its
country-based warehouses in Europe into a single European Logistics Center near
Frankfurt, Germany. On the other hand, the practice of transshipment, the monitored
movement of material between pairs of locations at the same echelon (e.g., among
retailers), may entail the sharing of stock through enhanced visibility, but without the need
to put the stock physically in the same location. To emphasize the requirement for
supply chain transparency at the same echelon, this practice is typically referred to as
information pooling. Information pooling through transshipments has been less frequent.
Transshipments provide an effective mechanism for correcting discrepancies between the
locations” observed demand and their available inventory. As a result, transshipments
may lead to cost reductions and improved service without increasing system-wide
inventories.

Although they are often overlooked in the literature, replenishment lead times constitute
one of the critical factors in a transshipment system. Consider, for example, the Normandy
landing where we can view the military logistics system as a two-echelon supply chain
with the main base as a “supplier” in England and five bases on Normandy beaches in
France. When the Allied Forces landed on Utah Beach, they met much less Nazi
resistance than those landing on Omaha Beach, which enabled them to move troops and
material from Utah Beach to Omaha Beach. This flow can simply be viewed as
transshipment. In this case, ignoring replenishment lead times, i.e., the time to move new
troops and material across the English Channel, would have disastrous consequences.

Similarly, ASML, a Dutch manufacturer of photolithography equipment, reports that its

customers in Japan, which manufacture electronic components, regularly tranship spare



parts among themselves in order to avoid downtime —hence, lost throughput- due to
replenishment lead times from Holland.

Transshipments have the advantage of improved flexibility and responsiveness without
increasing total inventories. Replenishment lead times, however, will weaken the
responsiveness and the flexibility of a supply chain by reducing the attractiveness of
transshipments. To the best of our knowledge, with the exception of Tagaras and Cohen
(1992), replenishment lead times have not been incorporated in transshipment models.
Hence, in terms of positive replenishment lead times, this paper extends Herer et al.
(2005), who studied the multi-location transshipment without replenishment lead times. In
terms of a multi-location setting, this paper generalizes Tagaras and Cohen (1992), who
considered non-negligible replenishment lead times in two-location inventory systems.
However, their method has not proved to be generalizable to a multi-location setting.
Furthermore, their heuristic algorithm cannot guarantee optimal solutions.

In order to compute the optimal values for multi-location system with positive
replenishment lead times, one of the most efficient methods is simulation optimization,
which can help the search for an improved policy while allowing for complex features that
are typically outside of the scope of analytical models. Sample path optimization (SPO),
also called the stochastic counterpart method, is a simulation optimization method that has
the significant advantages of high efficiency and convenience. However, SPO requires a
technique to estimate the gradient.

There exist a large number of gradient estimation techniques such as Infinitesimal
Perturbation Analysis (IPA), Likelihood Ratios (LR), Finite Differences (FD), Symmetric
Difference (SD), and Simultaneous Perturbation (SP) (Fu 2002). IPA is an efficient
gradient estimation technique (Ho et al. 1979). Applications of perturbation analysis have
been reported in simulations of Markov chains (Glasserman 1992), inventory models (Fu

1994), manufacturing systems (Glasserman 1994), finance (Fu and Hu 1997), and control
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charts for statistical process control (Fu and Hu 1999). IPA-based methods have also
been introduced to analyze supply chain problems (Glasserman and Tayur 1995).

To study the multi-location transshipment problem with positive replenishment lead
times, this paper deploys an LP/network flow model, uses sample path optimization and
infinitesimal perturbation analysis techniques, and demonstrates the computation of the
optimal base stock quantities. In contrast with the existing literature, this paper uses an
elegant duality-based gradient computation method to improve algorithm efficiency.

The remainder of the paper is organized as follows: In the following section, we
introduce the multi-location transshipment model with the positive replenishment lead
times and its network flow and LP representations. Section 3 is devoted to the details of
the algorithm, its implementation, and its verification and validation. In Section 4, we
present the results of our extensive numerical experimentation. We conclude with final

comments in Section 5.

2. Model
2.1 The Model Description

We consider a system with one supplier and N retailers, associated with N distinct
stocking locations that face customer demand. The retailers may differ in their cost and
demand parameters. The demand distribution at each retailer in a period is assumed to
be known and stationary over time. The system inventory is reviewed periodically and
replenishment orders are placed with the supplier. The replenishment order will arrive
after a positive replenishment lead time L. In the presence of a positive replenishment lead
time, the system needs a bigger safety inventory, with a significant effect on
transshipment.

In each period, the replenishment and transshipment quantities must be determined in

order to minimize the expected average total cost. The total cost is the sum of the



replenishment, transshipment, holding, backlog penalty, and lost sales costs. Herer et al.
(2005) prove that, in the absence of fixed costs, if transshipments are made to compensate
for an actual shortage (instead of building up inventory at another stocking location), there
exists an optimal base stock S = (S1, Sz ..., Sy) policy for all possible stationary
transshipment policies. In our case, since the transshipment policy is stationary, we will
continue to adhere to the base stock replenishment policy.

In period ¢, events occur in the following order, as illustrated in Figure 1: First,
retailers observe demands. Demand realizations represent the only uncertain event of the
period. Once demand is observed, decisions about transshipment quantities are made.
The transshipment transfers are then made immediately; subsequently, demand is
satisfied. Any unsatisfied demand will be backlogged or lost. At this point, backlogs and
inventories are observed, and penalty and holding costs, respectively, are incurred.
Second, replenishment orders placed at the supplier in period ¢-L arrive. These orders are
used to satisfy the backlog in period #-L and, if possible, to increase the inventory level in
period ¢. The decision on the replenishment quantity is then made. Any remaining

inventory is carried to the next period, #+1.

Replerfishment RepleniShment arder are
order gre made Transshipment decision are made at|period ¢
at periopd #-L made and executed

Holding and penalty

. \ventory position
cost are incurred

crease up'to S;

Unsatisfied Demand is

demand is observed . .
Unsatisfied demand i Orders placed in
backlogged is backlogged ggﬂg{f I3 ‘p;?rcﬁ,% n period ¢ arrive
\ 4 A 4

Backlogged demar
of period ¢ is (
partially) satisfied

=%

Backlogged demand  of
period #-L is (or partially)
Demand ¢ iy (o satisfied
partially) satisfied

Period ¢-L Period ¢ Period r+L

FIGURE 1: Sequence of events in a period



To describe the operation of the system, we use the following notation.
L = positive replenishment lead time;
T =the time horizon;
N = number of retailers;
D, (¢) =random variable associated with demand at retailer i, i=1,2,...,.N, t=1,2,...,T,
d.(t) =actual demand at retailer i and an arbitrary period ¢, i=1,2,...,.N, t=1,2,...,T,
S; = base stock quantity at the location i, i=1,2,...,N,
h.

1

holding cost incurred at retailer i per unit held per period, i=1,2,...,N,

D, penalty cost incurred at retailer i per unit backlogged per period in the first 7-L
periods, i=1,2,...,N;

[, = penalty for lost sales at retailer i per unit of unmet demand per period in the last L
periods, i=1,2,...,N. During the last L periods, it is impossible for replenishment orders to

arrive on time. The unmet demand cannot therefore be backordered but is lost;

c, = replenishment cost per unit at retailer 7, i=1,2,...,N;

c,. = effective transshipment cost, or simply the transshipment cost, per unit transshipped

i
from retailer i to retailer j, i,j=1,2,...,N,

We consider base stock policies, where [0H,(r) is inventory on hand at location i
and the beginning of period . When =1, I0H () is S.(¢), the base stock at retailer i.
Givend,(¢), the actual demand at retailer i in period ¢, the dynamic behavior of the system
is captured through the following auxiliary variable:
I.(z) - inventory level at retailer i immediately after transshipments and demand

satisfaction

=5~ i B.(t)M (1) + iBj(t)Mi(t)—di(t),fOI’ =1

J=1 i J=1j#i

=10H (t) - ﬁ B,(t)M (1) + ﬁ:Bj(t)M,.(t)—dl_(z),for t=2,..T,

=L, j#i J=L, j#i



where B (r)M ,(r) represents the transshipment quantity from retailer i to retailer ;.  We

denote: 7'(r) = max{/,(¢),0}, I; =max{-/,(t),0}. Thus, the realized average cost per

period of the system over a horizon T is equal to:

T-L

AC=21Y (3 SeBOM,O0+ T OrYed )Y Yol O Y SO

=1 j=1,j#i i=1 =1 =l (=T—L+1 i=1

Term Y c.d, fully accounts for replenishment costs. Since this term is

independent of our decision variables, it is omitted below.

2.2 Modeling Assumptions
We will make the following assumptions, which are necessary to avoid pathological cases.

Assumption 1 (Lead time): Replenishment lead times are both positive and
deterministic.

Assumption 2 (Lateral transshipment): Lateral transshipment lead times are
negligible between any pair of stocking locations.

Assumption 3 (Demand): Customer demand at each retailer is generated by a
stochastic process. Demand is backlogged when a retailer is out of stock in =1,2,...T-L,
but is lost in the last L periods since the replenishment orders cannot arrive on time within
the finite horizon. Demand has a continuous CDF, but is not necessarily independent
across retailers.

Assumption 4 (Replenishment policy): The base stock quantity is nonnegative,
which also implies a non-shortage inducing replenishment policy (Herer et al. 2005). A
replenishment quantity ordered at period ¢-L arrives at period ¢ and satisfies the backorder
at period ¢-L; any remaining units go to the next period, ¢+1.

Assumptions 5 (Transshipment policy): The transshipment policy is stationary, that
is, the transshipment quantities are independent of the period in which they are made; they

depend only on the pre-transshipment inventory and the observed demand. As stated
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earlier, we assume that transshipments are never made to build up inventory at the

receiving location, and only made to satisfy current actual shortage.

2.3 Model formulation

We present the network flow formulation first, and then give stochastic programming and
its determinant counterpart, i.e., the LP formulation based on the network flow
formulation.

2.3.1 Network Flow Representation

Given a base stock policy for the replenishment quantities, the optimal transshipment
quantities need to be determined each period between every pair of retailers. We develop
a linear cost network flow model as follows. In the presence of positive lead times, the
inventory position will not always be equal to inventory on hand since there exists
inventory on order in the pipeline. Proposition 1 establishes that, in the presence of
positive lead times, {IOH(¢)} is not a regenerative process; hence, this transshipment
system cannot be reduced to a one-period problem. We therefore formulate the system as a

finite horizon system. In Proposition 1, %R * denotes the set of non-negative real numbers.

Proposition 1: Let =={,2,..T} be time index set from 1 to finite horizon T,
{IOH (t),t € E} be the stochastic inventory-on-hand process with I0H(t) e R*. Then in the
presence of positive replenishment lead times, {IOH (t),t €E} is not a regenerative
process, and the regenerative epoch t, with t €= do not always exist in this
transshipment system.

Proof  The proof is presented in Appendix A.

Let us recall the events in a period z; in particular, let us examine the material flows.

At the beginning of the period, the excess inventory from the previous period is available.
8



This stock can be used in one of three different ways: satisfy demand at retailer i, satisfy
demand at retailer ;j (i.e., transshipment from retailer i to j), and hold in inventory at
retailer i. At the end of the period, the material will be used in two ways: to satisfy
backorder or to build up inventory at a retailer. Note that the stock at the beginning of the
horizon, and the replenishment made during the first 7-L periods are the only two sources
of material.

Let us now examine the material flow from the demand side (i.e., the sinks). The
demand at retailer ; at period ¢, d,(¢), can be satisfied in one of two different ways: from
the inventory at retailer i, or from the inventory at another retailer j (i.e., through a
transshipment from retailer ; to retailer 7). Another sink for material is the requirement
that each retailer i begin the next period with inventory position equal toS;. These units
can come from one of two sources: the inventory at retailer i or replenishment arrival

during the period.
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Figure 2: Network flow representation for a 5-period horizon and 2-period lead time system

Using the observations above, we model the movement of stock during the planning

horizon as a network flow problem. Figure 2 presents a network with a 5-period horizon

and 2-period replenishment lead time. In each period ¢ we have a source node, B.(¢), to

represent the beginning, i.e., initial inventory at retailer ; and period r. The middle sink
node associated with the demand at retailer i in period 7 will be denoted by ar,(¢).

Similarly, we will denote by E, (r) the ending inventory at retailer i in period ¢. Note that

this is equal to the inventory at the beginning of the next period. Finally, we have a node

R(r) torepresent the replenishment requested in period ¢ to be delivered in period z+L.
The arcs in the network flow problem are exactly those activities described above and

are summarized (with the associated cost per unit flow) in Table 1. We use such

variables as B, ()M ,(r) to denote the flow in the network, indicating the starting and

ending nodes. For example, B, (/)M ,(s)is the flow in the network from node B; () to

M;(@).
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Table 1: Definition of the arcs in the network flow problem

Arc Variable Unit cost Meaning
(B,(1),E, (1) B,(t)E,(2) h, Inventory held at retailer i at period +.
(B,(t), M, (1)) B,(t)M (1) 0 Stock at retailer i used to satisfy demand at retailer 7 in period .
(B, (), M ; (1)) B,(OM (2) ¢, (¢; =0) Transshipment from retailer i to retailer ; in period ¢.
(E(t+L),M, @) E@+L)M() p, In the first H-L periods, shortages backlogged at retailer ;.
l; In the last L periods, lost demand at retailer i.
(E,(1),B,(t+1)) E@®B(+) 0 Inventory on hand at the end of period # carried to the next period #+1.
(R(0),E(t+L)) R@OE(+L) 0 Inventory at retailer i increased through replenishment at period 7+L.

Replenishment order quantities can be computed as indicated in Lemma 1. Based on

Lemma 1, Proposition 2 reformulates the flow balance equations at nodes R(r), which

significantly simplifies our network flow representation.

Lemma 1: For a base stock policy, replenishment orders at location i in period t can be

computed by the formula below:

ROE,(t+L) =[S, - (E,())B,(t +1) + Zl R.(m)E (m+L)—E (t+ L)M, ()] ,when t>L

m=t-L

=[S, —(Ei(t)Bl.(t+1)+t§: R.(m)E,(m+L)—E, (t+ L)M ()], when 1<t<L

m=1

Proof  The proof is presented in Appendix B.

Proposition 2:  In a base stock policy following the above assumptions, the sum of the
replenishment orders at all the locations is equal to the sum of the demands in the period.

This relationship can be expressed as the formula below:
N N
Y ROE@+L)=) d,()
i=1 i=1
Proof  The proof is presented in Appendix B.
We can observe that the system states in the first L periods, the last L periods, and the
middle [L+1,7-L] periods are different. We present the characteristics of four different

stages below.
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i) The first period: z=1. There are no replenishment order arrivals. For the period 1,
inventory on hand at the beginning of period 70H (1) is just equal to the base stockss..

i) The first L-1 periods: r=2,...,L. There are no replenishment order arrivals. Inventory
on hand at the beginning of period /0H.(r) is the inventory from the previous
period £, (r —1) B, (z) -

iii) The middle periods: r=L+1,...,7T-L. This is the typical period; inventory on hand at
the beginning of period 10H,(r) is just the inventory from the last period E,(: -1)B,(z) .
Unmet demand is backlogged, and replenishment ordered at the period 7 will arrive at the
period ¢t+L.

iv) The last L periods: t=7-L+1,...,T. Different from the middle period, the unmet

demand is lost because the replenishment orders R(¢)E,(z+ L) in the last L periods cannot

arrive in time within the finite horizon.

2.3.2 SP and LP Representations
We are now ready to introduce a stochastic programming model. When demand is

generated, we give its determinant counterpart, i.e., a linear programming model. The
reason for building two models here is that we will use a stochastic counterpart algorithm
to compute the optimal base stock value. In this algorithm, we need to know the
determinant counterpart of stochastic programming model.

Since demand is stochastic, our problem is built as a stochastic programming model.
We formulate this stochastic programming model in problem (S). The objective is to

minimize the expected average cost per period in the system.

Problem (S)

min  EACE.D=SEY Y YeBOM0+Y ShLO+Y Yol 0+ Y YL 0)]

T t=1 =l j=l, =1 =l t=1 =l t=T—-L+1 =1

Subject to

12



1,() =S,(0)- i B.()M (1) + ﬁ:B‘/(t)M[(t)— D.(t) , When =1

Jj=Lj=#i Jj=lj=i

1,(t) = IOH (1) - i B(t)M ,(t) + iBj(t)Mi(t)— D,(), when 1=2,...T

J=Lj#i J=Lj#
B(t)M;()>0 i,j=1.,N, t=1..T

I7()=0,1;,(t)>0,i=1..,N, t=1..T

Based on the stochastic programming problem (S), and the network flow model
presented in Figure 3, we construct an LP formulation (D). When demand is realized,
problem (D) is a determinant counterpart of problem (S). Through this LP formulation, we
compute the derivative using duality —hence, avoiding cumbersome derivative recursions
and decision tree methods found in current literature, simplifying the computation, and
improving algorithm efficiency. In addition, highly efficient LP packages exist to solve
large-scale LP problems to support our sample-path-based algorithm.

Recall that the system states in the first L periods, the last L periods, and in the middle
[L+1,7-L] periods are different. This is reflected in the formulation below:

Problem (D)
1 7 N N T N T-L N T N
min4 (s, d) =?(ZZ D GBOM @O+ Y hBOEWO+Y, Y pEC+DM O+ Y. Y LE{E+LM,()
=1 i1 A, t=1 i =1 4 (=T-L+ i<l
Subject to

BOM©+ Y BOMO+BOED=S, i=1..N, (=1

B(@)M. (t)+ iBi(t)Mj(t)+l~3,.(t)Ei(t)—Ei(t—l)Bi(t)=O i=1.,N, t=2,..,.T ...... (A-1)
J=Lj#

B.(t)M,(t) + iBj(t)A/Ii(t)+Ei(t+L)A/1i(t)=di(t) i=1.,N,t=1..T ... (A-2)

ﬁ:R(t)Ei(tJrL):idi(t) i=1,..N, t=1...T—-L ... (A-3)

BME @)-E.()B(t+1)=0 i=1..,N,t=1..L
B,()E, () + R(t - L)E, () - E, ()M, (¢ — L) - E,()) B,(t +1) =0 i =

|
=
=
Il
N
+
=
&
~
P
SN
N—r

B,()E, (1), B.()M (1), B.()M ,(2), E.()M (1), RO)E, ()20 i,j=1..,N, t=1..,T
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Equations (A-1), (A-2), (A-3), and (A-4) represent the physical inventory balance
constraints at the B, (t), M, (), R (t), and E, (t) nodes, respectively. There are
(N*+4N)T decision variables, (N?+4N)T components in cost vector c,
(3N +1)7 components in right hand column b, and the parameter matrix is a
(N? +4N)T x (3N +1)T matrix.

This LP formulation will be at the heart of our algorithm, so its feasibility is a
necessary condition for successful implementation. If all cost parameters, demand, and
base stock levels are finite, then problem (D) is feasible and has a finite optimum. This is

established by Proposition 3.

Proposition 3: Let the location index be I ={1,2,..,N}. If demand D,VieI has a
density on (0,:0) and E[D,]<w Vi€ I, unit cost h,c; p,l,eR" and h,c,,p; 1, <o

y

Vi, j e I, base stock S, e R* and S, <o VieI, then problem (D) is feasible, and has a
finite optimum with probability 1.

Proof  The proof is presented in Appendix C.

It should be pointed out that our formulation can be easily generalized to solve
variants of our current problem, including most models such as two-location
transshipment, two-location transshipment with positive lead times, multiple location
transshipment with negligible lead times, and no-transshipment problem. Furthermore, our
formulation can also be generalized to solve problems with different system

configurations and pooling policies.

3 Algorithms and Implementation
3.1 Algorithms

14



To compute the optimal base stock values, we adopt a sample-path-based optimization
algorithm, where we use IPA to compute the gradient value. In particular, we start with an
arbitrary base stock level, S;, for each stocking location. After randomly generating an
instance of the demand for each location, we construct and solve problem (D) in a
deterministic fashion. Then, we can compute the gradient values by invoking duality.
In other words, the LP is used not only to compute the optimal transshipment quantities,
but also to help accumulate IPA gradients (64C/oS,). The latter are used in the path
search algorithm to determine the optimal base stock levels.

The procedure is summarized in a pseudo-code format in Figure 3, where K denotes
the total number of steps taken in a path search, U represents the total number of inner

cycles, a; represents the step size at the each iteration &, and s* represents the base stock

level for retailer i at the £™ step.

3.2 Explanation and Justification of the algorithm
I) Initialization
The algorithm starts with an arbitrary value for the base stock levels, s?. K and U should
also be specified by the experimenter and can be determined, for instance, by a pilot study
to mitigate the following trade-off: with a small K, the experiment cannot provide
sufficient data, and output will have a big variance. A K that is too big is inefficient in
improving the optimal value.
I1) Outer loop
The outer loop includes the inner loop computations, the desired gradient calculation, and
the updating of order-up-to-levels.

(11.11)4. The demand is generated at each retailer. Note that any covariance

structure is allowed in £(D).

15



(I1.1)B. Once the demand is observed, problem (D) is solved in a deterministic
fashion to compute the optimal transshipment quantities and the minimum-cost flow.

(I.1)C. The gradient of the average cost (derivatives with respect to the base stock
levels) is computed. Our LP formulation greatly simplifies these computations. The
implementation of the derivative computation in this step is very efficient, as established

in Theorem 1.

(DInitialization
(I.1) Initialize K
(1.2) Initialize U
(1.3) For each retailer i, set initial base stock levels, Sl.0
(II) Repeat
Set k1
(11.1) Repeat
Set u—1
(I.1)A. Generate the demand at each location from f(D)
(IL.1)B. Solve problem (D) to determine optimal transshipment quantities
(I1.1)C. Compute/Accumulate the desired gradients of the average cost, dAC,
u—u+1, until u=U

U
(I1.2) Calculate the desired gradient(s), iz dAC
U u

u=1
U
(I.3)  Update the order-up-to-levels, §* « S** — ¢, EZdAC
1 1 U ~ u
ke—k+1, until k=K

(III)Return the S; and objective function value.

FIGURE 3: Description of the sample-path-based optimization procedure

Theorem 1: Based on the special LP structure in our problem and infinitesimal

perturbation assumption of base stock, the gradient of average cost with respect to base
stock 0AC/aS, is just the corresponding dual optimal solution p*,  where w is

determined by the position of S; in the LP formulation. For an N-location problem,
w=N+i.

Proof  The proof is presented in Appendix D.
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The fact that, for a linear program, the dual value of a constraint is the derivative of
the objective function with respect to the right-hand side of that constraint was first used
by Swaminathan and Tayur (1999). From Proposition 3 and Theorem 1, we have the

Corollary 1. This corollary will subsequently support Proposition 4.

Corollary 1 If demand D,VieI has a density on(0,0)and E[D,]< o Vie I, unit cost
h.c;,p;,,l €eR’ and h.,c;,p;.l, <o Viel, base stock S, e R and S, <o Vi, jeI, then

the gradient of average cost with respect to base stock 0AC/aS, exists and is bounded.

Proof  The proof is presented in Appendix D.

(11.2) We estimate the desired gradient(s) by the formulalljidAcu , Which is just the

u=1

IPA technique. With IPA, we need to establish the unbiasedness of the gradient estimator.
Recall that the implicit assumption of IPA is that the average of the changes represents the
change in expectations, which yields an unbiased estimator. This assumption is true only
under a commuting condition (Glasserman 1991). For our setting, in order to prove
Proposition 4 below, we need to first prove several basic properties of the average cost
function. Lemmas 2 and 3 provide one of the basic conditions directly required by

Proposition 4.

Lemma 2 4C(S,) is a convex function.

Proof  The proof is presented in Appendix E.

Lemma 3 If demand D,Viel has a density on(0,)and E[D,]<o Vie I, unit cost
hi,c,,p.,,l, eR* and h,c,, p,l <oVie I, base stock S,eR" and S, <o Vi, jeI,

7 i

then 4c(s,) is a proper convex function.
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Proof  The proof is presented in Appendix E.

In order to show that 4C(S,) is smooth, we need to show that 4cC(s,) is continuously
differentiable everywhere w.p.1. If 4c(s,) is a proper convex function and CDF of
demand F(D) is continuous, from Theorem 25.2 and Corollary 25.5.2 of Rockafellar

(1970), we have Lemma 4.

Lemma 4 If CDF of demand F(D) is continuous, AC(S,) is continuously differentiable

every where w.p. 1.

Proof  The proof is presented in Appendix E.

As shown by Glasserman (1991), provided that the objective function 4C(S,) is

convex and smooth with respect to the base stock levels, IPA estimators will be unbiased.

We can now establish Proposition 4.

Proposition 4: If demand D,Vie I has a density on(0,0)and E[D,]<o Vie I, then

U
the gradient estimator iszCu is unbiased in the transshipment system with positive
u=1

replenishment lead times. That is, we can interchange the integral and the derivative as
the equation EIV sAC(S)1=V sE[AC(S)]

Proof  The proof is presented in Appendix E.

Here the term on the left-hand side E[V,4C(S)]is what we obtain by averaging 11D
copies of the stochastic gradient and the term on the right-hand side Vv E[4C(S)] is what
we want.

(11.3) The base stock level S; is updated through s* « s _ak(]}idAC” . Also note

that since the algorithm stops at k=K, we do not need an extra stopping rule. A key issue in
this step is the selection of a suitable step size «,, for which we have Condition 1 below:

18



Condition 1: A4 criterion for choosing a, is to let step size go to zero fast enough so that

the algorithm actually converges to a value of S, but not so fast that it will induce a wrong

00 00
value. One condition to meet that criterionis > a, =o and % a <.
k=1 k=1

For instance, a; =a/k for some fixed a>0 satisfies Condition 1. The first part of this
condition facilitates convergence by ensuring that the steps do not become too small too
quickly. However, if the algorithm is to converge, the step sizes must eventually become
small, as ensured by the second part of the condition. When the gradient estimator is
unbiased (as is the case here), this step yields a Robbins-Monro algorithm (1951) for
stochastic search. Although, theoretically, we can use any step size satisfying Condition 1,
the practical implementation is more complicated. Section 3.3.2 addresses this problem to
identify a suitable step size.

(1) Return the S; and objective function value at each step. Then we can conduct the

output analysis which will be investigated in section 3.3.

3.3 Implementation

We implement the algorithm in Matlab, as depicted in Figure 4, together with an LP
solver. We have written the main program to implement the algorithm shown in Figure
3, two subroutines “tran_initial.m” and “trans_LP.m” to specify the LP problem, and input
LP characteristic information to the LP solver. The LP solver returns the optimal base
stock and optimal average cost at each step to the main program. Some subroutines like
“drawbase.m”, “drawcost.m”, “hwmean.m” conduct the output analysis. In the
implementation, we also need to note the three problems: setting the initial value for base

stock levels, choosing the step size, and handling the initial transient.
3.3.1 Initial value

In order to explore the impact of initial values, we experimented with a 4-period lead time

setting. With the same cost and simulation parameters, we tested different initial values.
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The results were consistent in the sense that initial values do not affect the final result,

which shows the robustness of our algorithm.

Matlab . LPsolver
. =="inner loop
tran_initial.m —.—outer loop
trans_LP.m
transmain.m TN RN
— . init \ (" Generate demand for;
/ ma'”g T N \(ifferent periods
| START! (Update SinLP(L)
\ ] —
B
| — CUpdate din LP(LY
T
drawbase.m | T
drawcost.m I (_Specify LP ) ———————Read parameters
hwmean.m i : L
;f?utpuf:; i I '/So!ve LPL—— bsolve LPand
o L e return the result
— ~(Gradient in one run >
| e
i ( Estimate gradient)
L Compute )

FIGURE 4: Implementation framework
3.3.2 Step size

Although all step sizes, which satisfy Condition 1, will theoretically lead to a correct
result, different step sizes do affect the convergence rate of the implemented algorithm. In
order to explore the impact of different step sizes, we considered a case with 12-period
lead time. With the same unit cost and system parameters, we ran the simulation with
K=2000 and an arbitrary initial value. Then we changed step size a; from
0.003/k,0.03/k,0.3/k,1.5/k,3/k,6/k, 15/k, to 1000/k. The first 500 steps are presented in
Figure 5. Based on this experiment, we have adopted «,=3/k as our step size in

subsequent analysis.
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Figure 5  Search paths with different step sizes



3.3.3 Initial Transient Deletion

We use one case (Figure 6) to illustrate the output analysis. For a setting with 6 locations
and a 2-period lead time along with the same simulation and unit cost parameters used in
section 4.1.2, we have a main output: base stock in each step, from which we statistically

compute the estimators for base stocks.

150

100 - S6

S5
S4
S3 |
S2
S1

Base Stocks in 6 Locations

0 500 1000 1500 2000
Steps in Sample-path-based Optimization

FIGURE 6 Initial transient in the output

Since the variance is too large during the transient stage, we use the transient deletion
technique to eliminate the bias in the estimator. For all the experiments we conducted, we
observed convergence within the first 1000 steps. We therefore delete the first 1000 data

points and only use the remaining data in our algorithm.

4 Results

We present our solution and main experiments in section 4.1. In section 4.2, we conduct

comparison studies. In order to validate our algorithm, we compare our results with the
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results from an existing algorithm, and the results from a system without transshipments.
In section 4.3, we explore the impact of correlated demand on transshipment with positive

replenishment lead times.

4.1. Experimental Setting
4.1.1 Varying the lead times
We consider a three-location problem with D, ~ Norm(101)*, D, ~ Norm(5,0.5)" , and
D, ~ Norm(5,0.5)" over a horizon of 7=50, and with unit holding cost #=2, unit penalty
cost p=12, unit transshipment cost ¢;=5, and unit cost for lost demand in the last L periods
[=20. We implement the simulation experiments with different lead times varying from 2
periods to 14 periods. After comprehensive pre-testing, we set the algorithm parameters to
K=2000, o,=3/k, and initial base stock values (0,0,0).

Experiments are conducted by a computer with Pentium 4 CPU 2.6GHz and 516 MB
of RAM. For each simulation run (the complete optimization process for each lead time

case), the elapsed time ranges from 9 minutes to 12 minutes of wall clock time.

Too
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400+

Base Stock 51
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200+
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Figure 7.1 Search paths of base stock

We present the search paths for the base stock and for the average cost in Figure 7:

Figure 7.1 illustrates the search for the optimal base stock levels. Figure 7.2 illustrates the
22



paths for average cost. From the figures, we observe that, at the beginning, the step size is
big, but all experiments rapidly converge before £=500. In order to get a more reliable
estimator, we only use the last 1000 values to estimate the optimal base stock and the
optimal average cost. We present our optimal base stock, optimal average cost in Table 2.

Each estimator includes the mean and the half width for a 95% confidence interval.

Table 2 Optimal base stock and average cost for each lead time

Location 1 Location 2 Location 3 Average cost Average
Norm (10,1)* Norm (5,0.5) Norm (5,0.5) IOH

S“%  30.6526(+0.0041)  15.3704 (+0.0037) 15.3822(+0.0040) 8.2573(x0.0359)  22.1264(+0.0189)
S 50.4545 (+0.0051)  25.2040 (+0.0049) 25.2452(+0.0048) 14.6677(x0.0446) 24.1594(+0.0298)
S“%  70.0971 (0.0049)  35.0081 (+0.0045) 35.0046(+0.0046) 23.8139(+0.0538) 27.6196(+0.0387)
S“8:  89.6009 (+0.0055)  44.7821 (+0.0055) 44.7901(+0.0054) 35.9557(+0.0598) 32.5638(+0.0432)
S“1% 108.9562 (+0.0060) 54.5304 (+0.0060) 54.5610(0.0061) 50.9456(+0.0633) 39.0392(+0.0506)
S“12: 128.0369 (+0.0069) 64.2505 (+0.0066) 64.2461(+0.0068) 69.0652(+0.0703) 46.9169(+0.0497)
S 146.8914 (+0.0141) 74.0360 (+0.0058) 74.0231(+0.0066) 90.1047(+0.0742) 56.2553(+0.0539)

HW: Half Width CI: Confidence Interval
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Figure 7.2 Paths of average cost

4.1.2 Varying the number of locations
For a setting with a 2-period lead time and 50-period horizon, and the same cost

parameters as in Section 4.1.1, we experiment with the number of locations varying from
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2 to 12. We present the search paths for the base stock with a 12-location scenario in
Figure 8, which illustrates the search process for the optimal base stock levels in those 12
locations.

We present the optimal base stock and average cost estimates for scenarios with
different number of locations in Table 3. Each estimator includes the mean and the half
width for a 95% confidence interval. The first row also shows the demand distribution in

those 12 locations.
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Figure 8 Search paths of base stock in a 12-location scenario
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Table 3 The optimal base stock and average cost for the scenarios with different locations

Location —No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 Ave cost
Scenlrio N (5,1) N (10,1) N (15,1) N(20,1) N(25,1) N(30,1) N(351) N(40,1) N(451) N(50,1) N(55,1) N (60,1)
N=2 16.2371 31.1909 9.6973
+0.0056 +0.0056 +0.0525
N=3 16.0321 30.9516 45.9934 13.3020
+0.0054 +0.0053 +0.0054 +0.0610
N=4 15.8764 30.8455 45.8418 60.8674 17.2347
+0.0078 +0.0079 +0.0084 +0.0088 +0.0723
N=5 15.8045 30.7582 45.7621 60.7869 75.7599 21.6681
+0.0082 +0.0083 +0.0080 +0.0079 +0.0085 +0.0811
N=6 15.7853 30.7162 45.6681 60.7256 75.6719 90.6910 26.5204
+0.0077 +0.0075 +0.0081 +0.0075 +0.0077 +0.0086 +0.0876
N=7 15.6355 30.6917 45.6773 60.6268 75.7098 90.6132 105.6723 31.9601
+0.0117 +0.0109 +0.0117 +0.0114 +0.0118 +0.0116 +0.0114 +0.0999
N=8 15.6723 30.6057 45.5512 60.5967 75.6334 90.6355 105.5818 120.6668 37.8780
+0.0127 +0.0120 +0.0113 +0.0119 +0.0116 +0.0115 +0.0125 +0.0121 +0.1096
N=9 15.5979 30.6593 45.5733 60.6261 75.5330 90.5500 105.5398 120.5954 135.5155 44.3246
+0.0142 +0.0113 +0.0110 +0.0111 +0.0126 +0.0112 +0.0117 +0.0118 +0.0110 +0.1139
N=10 15.5503 30.5756 45.5659 60.5293 75.6409 90.6401 105.5278 120.5751 135.6223 150.5850 52.2959
+0.0198 +0.0204 +0.0201 +0.0195 +0.0200 +0.0202 +0.0208 +0.0195 +0.0199 +0.0201 +0.2097
N=11 15.6799 30.5843 45.5969 60.5603 75.5368 90.5650 105.5320 120.5652 135.6044 150.4535 165.5541 60.1490
+0.0244 +0.0211 +0.0212 +0.0220 +0.0215 +0.0220 +0.0219 +0.0208 +0.0212 +0.0220  +0.0214 +0.2527
N=12 15.6812 30.5948 45.5296 60.5509 75.4698 90.5736 105.5786 120.4727 135.5397 150.5619 165.5468  180.5179  68.5667
+0.0383 +0.0213 +0.0213 +0.0217 +0.0218 +0.0220 +0.0217 +0.0213 +0.0224 +0.0213  +0.0217 +0.0213 +0.2723

Section 4.1 has shown that the algorithm works well with different lead times and

different number of locations. Although not reported here, we have experimented with

different demand distributions, different horizons, and different cost structure. In all these

cases, the algorithm does converge fast, and provides a reliable estimate with a small

variance.

4.2 Comparison studies

In section 4.2.1, we compare our optimal base stock value with that from the algorithm of

Tagaras and Cohen (1992). In section 4.2.2, we compare the performance of two

algorithms through their objective function value. To ensure “fairness” in comparison, we

use common random numbers across the two algorithms, and finally show that the
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performance of our algorithm is better. In section 4.2.3, we also compare our result with

that from a system without transshipment.

4.2.1 Comparison of optimal base stock values

We compare the optimal base stock values from our algorithm with those from Tagaras
and Cohen (1992), which uses S, =y, (L, +1)+k,0,4/L, +1 as base stock values, where

u;=E(D) is the mean and &7 is the variance of the single-period demand at location i, &,
is computed by &, =(S? -y,)/o, and S is the optimal value for the zero-lead-time
problem. Since the Tagaras and Cohen algorithm is conceived for a two-location setting,

we also apply our algorithm to the two-location setting.

S1Tagaras & Cohen ~ —6——S1, IPA & SPO
140 [ —¥—sS2,Tagaras & Cohen ~ —&—— S2, IPA & SPO
120 |

Base Stock
8

20-/K

0

2 4 6 8 10 12 14 Lead Time

Figure 9 Comparison of base stock values

From Figure 9, we observe that: i) the Tagaras and Cohen (1992) heuristic tends to
overestimate the optimal base stock values. All of their base stock quantities are
consistently higher than ours. ii) With increasing lead times, the overestimation by the

Tagaras and Cohen algorithm becomes even more significant.

4.2.2 Comparison of optimal objective function value: average cost
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A lower base stock level does not always imply lower cost. We therefore need to
compare the objective function values from both algorithms. To ensure fairness, we use
common random numbers across the two algorithms and conduct the experiments as
follows: i) For the Tagaras and Cohen algorithm, we input optimal base stock values given
by the heuristic algorithm and run 1000 independent replications, and then estimate the
average cost; ii) Similarly, for SPO and IPA algorithm, we also input the optimal base
stock value given by SPO and IPA algorithm and run 1000 independent replications, and
then compute the average cost.

We present the results in Table 4, and conclude that: i) for each lead time, the
performance of our algorithm is better, consistently achieving lower average cost; ii) with

increasing lead times, the relative performance of our algorithm becomes even more

pronounced.
Table 4 Comparison of objective function values of the two algorithms

Lead time Tagaras and Cohen algorithm SPO and IPA algorithm

2 8.6007 (+0.0553) 8.2603(+0.0580)

4 15.8146(+0.0911) 14.5940(+0.0778)

6 25.9708 (+0.1179) 23.8311(+0.0896)

8 38.4691(+0.1535) 35.8688(+0.1021)

10 54.7811(+0.1846) 50.9376(+0.1164)

12 73.8404(+ 0.2117) 68.9879(+0.1228)

14 96.2429(+0.2405) 90.0336(+0.1217)

The estimators include mean and HW for a 95% CI.

4.2.3 Comparing a system with transshipment and without transshipment
We also compare our results with the results from a no-transshipment system by a
two-stage experiment. i) We first eliminate all transshipment flows in the network flow

formulation (Figure 2), and compute the optimal base stock quantities for the system
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without transshipment. ii) For both systems, we then run 1000 independent replications
under common random numbers and estimate the average cost.

From Figure 10, we conclude that: i) for each lead time, the performance of the
system with transshipments is always better than that of the system with no
transshipments. The average costs of system with no transshipments are always higher; ii)
when the lead times are lower, the result from the Tagaras and Cohen algorithm is closer
to that from our algorithm. But when lead times are longer, the result from the Tagaras
and Cohen algorithm is closer to that from a system with no transshipments, failing to

reflect the added value of information pooling.

120
—X— System without transshipment

—0— Tagaras&Cohen Algorithm
100 1
—X—— SPO&IPA Algorithm

80

60 I

Average cost

40

2r

2 4 6 8 10 12 14 Lead Time

Figure 10 Comparing three settings

4.3 The Effect of Demand Correlation

To study the impact of correlated demand across retailers, we experiment with scenarios
of different demand correlations (p=+0.5, £0.25), and different lead times (2=2,5,8,11,14
periods). A case with zero correlation is also added for reference. Unlike the previous
section, demand faced by the retailers is modeled as a multivariate normal random

variable with a mean of 100 and a standard deviation of 20. The (i/)th entry of the
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variance-covariance matrix is given by o,c;0;, where p; denotes the level of demand
correlation being investigated when i =; and one when i =.

We adopt the system configuration 5 (Herer et al. 2005), where transshipments are
possible between any pair of locations, with unit holding cost #=1, unit penalty cost p=4,
and unit transhipment cost ¢;=0.5; we set the unit loss cost /=10.

We examine the impact of demand correlation on the average cost per period. Figure
11 depicts the impact of demand correlation on the average total cost for a 3-retailer
configuration for different lead times; Table 5 shows the estimated average costs. We
observe that, for each lead time, when demand correlation gets smaller (or negative), the
average cost always decreases, which implies that the effectiveness of transshipments in
matching demand and supply is enhanced. In general, from the observation that smaller
correlation significantly lowers average total cost, we can conclude that positive
correlation reduces the effectiveness of transshipments while negative correlation

enhances it.
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Figure 11 Average cost with different lead times L and correlation coefficients p
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Table 5 Average cost with different lead times L and correlation coefficients p

L T p 05 0.25 0 0.25 05

2 239439 683064  88.8866  104.3708  117.2655
5 037007  146.867  171.6306  188.9192 2052476
8 2175912 2739231  208.1574 3159017 331671
11 397.0785 4505808  472.6436  490.1562  503.9456
14 6314524  677.1012  697.7432 7128785  719.9255

We also explore the impact of demand correlation on the base stock levels. The

optimal base stock levels S, with different lead times L and correlation coefficients p are

presented in Table 6. We conclude that: i) When lead time is low (e.g., L=2), base stock
is lower when correlation gets smaller (or negative). This is similar to the 0-lead-time case
reported by Herer et al (2005); ii) When lead time is high, base stocks will possibly
increase when correlation gets smaller (or negative). Recall that our objective function is

not inventory but average cost. A higher base stock may still possibly reduce the average

cost. In settings with longer lead times, in order to meet the demand from other locations,

when correlation gets smaller (or negative), base stocks may slightly increase to reduce

the cost from backorders and lost demand.

Table 6 Base stock S with different lead time L and correlation coefficient p

L~ p 05 0.25 0 0.25 05

2 300773 3058798  307.806  308.7214  310.0512
5 5907815  596.0419 5055008  504.3899  594.3217
8 8907037 885132  879.3808  873.9785  869.6306
11 11089 1171 11581 11474 11402
14 14983 14524 14338 14196 14056

30



5 Summary

In this paper, we consider the multi-location transshipment problem with positive
replenishment lead times. The main contributions of this paper include the following: 1)
using simulation optimization combined with an LP/network flow formulation and IPA,
we provide a flexible and efficient algorithm to compute the optimal base stock quantities
for the multi-location transshipment problem with positive replenishment lead times; 2)
experimenting with scenarios of high and low levels of demand correlation along with
different lead times, we show the negative relationship between the benefits of
transshipments and demand correlation at different lead time settings; 3) our algorithm is
also shown to be able to provide better objective function value than an existing
algorithm; 4) we introduce an elegant duality-based gradient computation method to

significantly improve computational efficiency.
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Proof of Proposition 1  For a regenerative process (Definition 1.3.1, Tijms 1994), there
exists a regenerative epoch ¢ with 7 € = such that

(@) {I0H(t+1,),t € =}is independent of {IOH (r),0<t <1t}

(b) {1oH(t +1,),t e =}has the same distribution as {/0H (¢),t € =}
Now we argue that condition (a) can not always be satisfied in the presence of positive

lead times. Let tzl: R.(m)E,(m+L) be the inventory on order, E (r+L)M,(r) be the

m=t—L

backorder, and E,(¢)B,(t+1) be the inventory on hand. Under a base stock policy, we can
express the replenishment order quantity R (¢r)E,(t+L)as below. From our formulation,

E,(t)B,(t+1) isjust IOH,(t), then we have

IOH (t)=S, — i R,(m)E,(m+ L)+ E,(t+L)M,(t)— R, (t)E,(t + L), when t>L

m=t-L

=S, -E.(t)B,(t+1) —i R (m)E,(m+L)+E (t+L)M,(t)-R,(t)E,(t+L),when 1<t<L

m=1

From the above expression, we know that each [0H,(r) is dependenton R, (t—L)E,(¢) in

the former L periods, which are dependent on /OH (¢t - L) in the former L periods. The
dependence of JOH.(¢) here is transitive .Then for any epoch #, with ¢ €=, we have

{IOH (t +1,),t € =}is dependent of {/OH (¢t +t, — L),t € E};{IOH (¢ +t, — L),t € £} s dependent
of {IOH(¢t+t,—-2L),t € E},..., is dependent of {IOH(¢t+1, —kL),k eN, teZ=}.

With the increasing of k, when ¢—kL <0, we have ¢+¢ —kL <z, W.p.1, which means
{IOH (t +1,),t € £} is dependent of {I0H(r),0<¢<¢}w.p.1. Therefore, the condition (a)
always can not hold. In the presence of the positive replenishment lead times,

{IOH (¢),t € =} is not a regenerative process.

Appendix B: Replenishment Order Quantity
Proof of Lemma 1 If the base stock is bigger than the inventory position, then this

formula can be reduced to the form as below.
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R(E,(t+L)=S,—(E.()B,(t+1)+ ti R.(m)E.(m+L)—E.(t+L)M,(r)) It is easy to

m=t—L

implementing this in linear programming, we can set the R, (1)E, (¢t + 1) > 0.

From our assumption on the sequence of events (refer to fig 2), we make the
replenishment order decision after we have observed the inventory on hand £,(z)B,(t +1) ,

the inventory on order i R.(m)E.(m+L) , and the backorder £ (r+L)M (1) . So

m=t—L
when¢ > L, we have
Ri (t)Ei (t+L) = Si _IR (t) = Si _(]OH,' (t) +IOR[ (t) _BOi (t))

:Si _(Ei (t)Bi(Z+1)+ i Ri (m)Ez (m+L)_Ei (t+L)Mi (t))

m=t—L
By the same logic we can get the proof wheni1<¢< L, and the only difference is the
expression of the inventory on order.

Proof of Proposition 2
(i) When t=1, Proposition 2 holds.

From Lemma 1, with a nonnegative R,(t)E,(z+ L) assumption, we have
R(E,(t+L)=S, —(E,()B,t+)—E,(t+L)M,(¢)) for i=1..,N (B-1)

We have E,(t)B,(t+1)=B,(¢)E,(t) from the network flow balance at points E,(¢). At

points M, (¢), we denote the backorder Ei(t+L)M,(t)=di(t)_§: B, ()M, (1) -
=
Substitute the E,(¢)B,(r+1)and E,(t+L)M,(¢r) into the formula (B-1), we have
R.(NE (1 +L)=S5, —B,-(t)El-(t)—i B, ()M, (t)+d (1)

Summing the replenishment orders quantities in the different locations, we have

N

> ROEGD=3 IS, -BOEO -3 B,0M01+Y 4,0

i i j=1 i

Note that i

i=l

B, ()M, (¢) =§: i B.(OM ,(¢) then we have

=l j=1

.MZ

1]
N

i S, —B,.(t)E,.(t)—i BF/.(t)Ml.(z)]=i S, —B,-(t)Ei(t)—i B,(nM (] =0, which is from the
i=1 J= i=1 j=1
network flow balance at points B, (r).So we have ﬁ: R(OE,(t+1L)= ﬁ: d (r),when =1,

i=1 i=1

(it) If t=m, the Proposition 2 holds, it will also hold when t=m+1.
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If r=m, the Proposition 2 holds, then the inventory position at the beginning of the
period r=m+1 are the base stock levels, S, i=1..,N. Then we examine the decreasing

of the inventory position after the demands &,, i=1..,N have been observed.
(A) Suppose that there are no backorders, the sum of decreasing physical inventory

N . N N
> Ao is equal to the sum of demands: > A =34,

i=1 i=1 i=1

(B) Suppose that there are backorders, the sum of decreasing physical inventory ﬁ A

i=1

N . N N N
and backorder > s equal to the sum of demands: DALY AP =34,
i=1 i=1

i=1 i=1

In any case, the decrease of the inventory position is idl- , and at the end of period,

i=1

when the replenishment orders quantities are determined, the sum of inventory positions is

S, —ﬁ:d,- . In order to restore the inventory position to S, i=1,..,N, one must order

i=1

M-

1]
N

i

enough units so that ﬁ: R()E,(t+L)= ﬁ: d.(1)-
i=1 i=1

Appendix C: Problem (D) has a finite optimum.
Proof of Proposition 3

1) Problem (D) is feasible. We can always find a feasible solution. Let
R.()E,(t+L)=E,(t+L)M,(t)=d, (¢r) forthe first 7-L periods and E,(z+ L)M,(¢t) =d,(t)
for the last L periods.
S =B,()E,(1) =E,(1)B,(2) = B,(2)E,(2) =,...B.(T)E,(T) = E,(T)B (T +1),Vie I.

All transshipment quantities B, (r)M (1) =0 with i, j e 1. This set of values can always

satisfy all constraints in problem (D), so problem (D) is always feasible.

2) The optimum of the problem (D) is finite. Since cost vector #,,c,,p,,/, e " and

h.,c.,p;,,l. <o, and all decision variables are nonnegative, the objective value ¢"x>0.

g

Since it is a minimum problem, the problem (D) has finite optimum.
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Appendix D: Computation of Gradients
Proof of Theorem 1 From the Proposition 3, we have shown that problem (D) always
has a finite optimum, and the optimal objective total cost value

AC*=c’;B'b* . (D-1)

Here B is a basis matrix, b* is the right-hand side column associated with the basis.
Let b be the right-hand side column. b'=(b1’ b2’ ...b47). From the structure of our
problem there are (3N +1)7 components in right-hand side column b. Then from the
structure, for the parameter matrix, we have rank(4)= (3N +1)T, which is full rank. Since
A is full rank, every component in right-hand side column is also in the b* associated with
the basis B, that is b*=b. We have AC*=c¢;Bb. (D-2)

So bl is also in the right hand column. b1 is right-hand side column for the first period
problem. Its (N+1)", (N+2)",...(2N) " components are respectively the base stock values
$1,82,..,8v. S0 81,52 ,..,8n are in the optimal right hand column b associated with the basis
B. Besides, 51,5 ,..,Sy only appear at these positions.

We also note that c’;B~=p, and p is the dual optimal solution. So we obtain
AC*=p*'b = p*1b1+ p* byt p* T 3bs +p* T sbat ... 4p* " gyiyrbaniyr (D-3)

By checking LP formulation, we have by+1=S1, bx+2=S2, ...,by+ny=Sk.

Giving S; an infinitesimal perturbation, b is perturbed to 5, because the difference
b—b is sufficiently small, B”b remains positive and we still have a basic feasible
solution. The reduced costs ¢ are not affected and remain nonnegative. Thus, the optimal
basis B will not change, and the formula (D-2) still holds. Then we take the derivatives on

both sides of formula (D-2) to obtain

0AC _ 0AC . 9AC _24C _ . 0AC _o4C _ .

:pN+2’...'

os, ob,, I™'as, aw,., s, by, T
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Therefore, the gradient s4c/as, is just the corresponding dual optimal solution p*,,

where w is determined by the position of S; in the LP formulation. For N-location problem,

w=N+i.

Proof of Corollary 1 From the Proposition 3 and Proposition 4, we have known that

both problem (D) and its dual has finite optimum, gradient of average cost with respect to

base stock 04C/as, exists, and is just the corresponding dual optimal solution p*,. Note
our demand is both continuous and bounded, 84C/as, are differentiable up to period T
with probability 1. From the Proposition 3, we also know problem (D) has finite optimum,

and so its dual problem also has the finite optimum. So its dual solution p*, is bounded,

and gradient of average cost with respect to base stock 24C/as, is bounded.

Appendix E: Unbiasedness of IPA gradient estimation

Proof of Lemma 2: Convexity of 4C(S)
Let P(b)={x|Ax =b,x >0} be the feasible set, S={»|P()is nonempty}, and for any

beS, we define 4C(b) = min ¢’ x, which is the optimal cost as a function b. Bertsimas
xeP(b)

and Tsitsiklis (1997) have shown that the objective functions 4c(») of linear programs
are convex functions of their right-hand-sides b. In our LP formulation, all S; variables
appear on the right-hand-side of the linear program. The convexity of the average cost in

base stock levels S follows this property.

Proof of Lemma 3 In order to prove that 4C(S) is a proper convex function, we need

to prove two points below: 1) 4C(S)> - for all SeR*. If demand is finite and
nonnegative, unit cost #,,c,,p,,/ are finite and nonnegative, we have 4cC(s)=0 for

all s, e R*. 2) 4C(S) <+ for some SeR*. (By contradiction) If it does not hold,

problem (D) will have not finite optimum, which contradicts Corollary 1.

37



Proof of Lemma 4 We use Theorem 25.2 and Corollary 25.5.1 of Rockafellar (1970) to
prove this lemma. We need two conditions: 1) 4C(S)is a proper convex function, which

has already been proven by Lemma 3. 2) Partial derivatives 04C()/aS, exist and are

finite everywhere, which will be proven in the following. Recall that

AQS) =;E[z ZLZCB (r)z%(z)é ghlf(t,D,«(t)Hz gnl,-'(t,l),-(t))+l_§§41{(t,Q(t)] (E-1)

With1,(1,D,(0) = 10H,()— Y. B,OM,(0)+ YB,()M,()-D,) and IOH, ()=, . We have

J=Li# J=Lj#i

AQ9=], TX Y SHAOMO+E YWD Y Sl D0 3 S CDOWAD) (E)

=1 0=l = =1 il =1 =l (=T-L+i=1

Let H(S,D) be term inside of the integral, we have AC(S):J.W,H(S,D)dF(D)

Then, we have its partial derivatives:

LC(_SI') ~tim [, [/5: +gei’D;) —HE. D)y p)) (E-3)

oS >0 T

i

Now we will show that the term inside the brackets has bounds in order to prove the

integral in (E-3) is absolutely convergent. From Corollary 1, we know that the gradient of

*

the average cost with respect to base stock exists and is equal to a finite p° forany s,.

We have

H(Si+gei_Di)_H(Si_Di)<oo. (E_4)
: |
Since the term inside the brackets has bounds, the integral in (E-3) is absolutely

convergent. We can put the limit inside the integral in (E-3). Also note that H() is

convex and its partials must exist everywhere except at a countable number of points

(Theorem 25.3, Rockafellar 1970). Since F(-) is continuous, these points will have

measure zero. Then we have 4€(5)) - j Mdp( D)) (E-5)

oS n-e a8

i i

Where © is the countable points set at which the partials /() does not exist, and the

measure of this set is zero. Then the partial derivatives exist everywhere outside of this
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zero-measure set @ ,i.e., partial derivatives exist everywhere w.p.1. For a proper convex

function 4C(s) , if the partial derivatives 64C(-)/oS, exist and are finite everywhere
w.p.1, then 4c(s) will be continuously differentiable everywhere w.p.1 from Theorem

25.2 and Corollary 25.5.1 of Rockafellar (1970).

Proof of Proposition 4 1) Lemma 2 has shown that 4C(S) is convex. 2) Lemma 4 has
shown that the gradient of the average cost with respect to the base stock,o4C(-)/as, is
continuous w.p. 1. 3) Corollary 1 has shown that o4c()/as is finite. As shown by

Glasserman (1991), IPA estimators will be unbiased provided that the objective function

AC(S) is convex and smooth (gradient is both continuous and finite) with respect to the

base stock levels.
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