research

Scaling and Universality in Continuous Length Combinatorial Optimization

Abstract

We consider combinatorial optimization problems defined over random ensembles, and study how solution cost increases when the optimal solution undergoes a small perturbation delta. For the minimum spanning tree, the increase in cost scales as delta^2; for the mean-field and Euclidean minimum matching and traveling salesman problems in dimension d>=2, the increase scales as delta^3; this is observed in Monte Carlo simulations in d=2,3,4 and in theoretical analysis of a mean-field model. We speculate that the scaling exponent could serve to classify combinatorial optimization problems into a small number of distinct categories, similar to universality classes in statistical physics.Comment: 5 pages; 3 figure

    Similar works