5,409 research outputs found

    Artificial Intelligence as a Means to Moral Enhancement

    Get PDF
    This paper critically assesses the possibility of moral enhancement with ambient intelligence technologies and artificial intelligence presented in Savulescu and Maslen (2015). The main problem with their proposal is that it is not robust enough to play a normative role in users’ behavior. A more promising approach, and the one presented in the paper, relies on an artifi-cial moral reasoning engine, which is designed to present its users with moral arguments grounded in first-order normative theories, such as Kantianism or utilitarianism, that reason-responsive people can be persuaded by. This proposal can play a normative role and it is also a more promising avenue towards moral enhancement. It is more promising because such a system can be designed to take advantage of the sometimes undue trust that people put in automated technologies. We could therefore expect a well-designed moral reasoner system to be able to persuade people that may not be persuaded by similar arguments from other people. So, all things considered, there is hope in artificial intelli-gence for moral enhancement, but not in artificial intelligence that relies solely on ambient intelligence technologies

    Social Intelligence Design in Ambient Intelligence

    Get PDF
    This Special Issue of AI and Society contains a selection of papers presented at the 6th Social Intelligence Design Workshop held at ITC-irst, Povo (Trento, Italy) in July 2007. Being the 6th in a series means that there now is a well-established and also a growing research area. The interest in this research area is growing because, among other things, current computing technology allows other than the traditional efficiency-oriented applications associated with computer science and interface technology. For example, in Ambient Intelligence (AmI) applications we look at sensor-equipped environments and devices (robots, smart furniture, virtual humans and pets) that support their human inhabitants during their everyday activities. These everyday activities also include computer-mediated communication, collaboration and community activities

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications

    Making the user more efficient: Design for sustainable behaviour

    Get PDF
    User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’. Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energyor other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed

    Toward a model of computational attention based on expressive behavior: applications to cultural heritage scenarios

    Get PDF
    Our project goals consisted in the development of attention-based analysis of human expressive behavior and the implementation of real-time algorithm in EyesWeb XMI in order to improve naturalness of human-computer interaction and context-based monitoring of human behavior. To this aim, perceptual-model that mimic human attentional processes was developed for expressivity analysis and modeled by entropy. Museum scenarios were selected as an ecological test-bed to elaborate three experiments that focus on visitor profiling and visitors flow regulation

    Argumentation Schemes for Events Suggestion in an e-Health Platform

    Get PDF
    In this work, we propose the introduction of persuasion techniques that guide the users into interacting with the Ambient Assisted Living framework iGenda. It is a cognitive assistant that manages active daily living activities, monitors user's health condition, and creates a social network between users via mobile devices. The objective is to be inserted in a healthcare environment and to provide features like adaptive interfaces, user profiling and machine learning processes that enhance the usage experience. The inclusion of a persuasive architecture (based on argumentation schemes) enables the system to provide recommendations to the users that fit their profile and interests, thus increases the chance of a positive interaction.A. Costa thanks the Fundacao para a Ciencia e a Tecnologia (FCT) the Post-Doc scholarship with the Ref. SFRH/BPD/102696/2014. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e a Tecnologia within the Project Scope: UID/CEC/00319/2013. It was also supported by the by the projects TIN2015-65515-C4-1-R and TIN2014-55206-R of the Spanish government and by the grant program for the recruitment of doctors for the Spanish system of science and technology (PAID-10-14) of the Universitat Politecnica de Valencia.info:eu-repo/semantics/publishedVersio

    Socio-digital experiences

    Get PDF
    The experiences emerging from interacting with digital technology need to be understood, designed and engineered. This is quintessential for ensuring that related systems and services have a purpose and value for their users, helping them achieve their aspirations and desires. Rooted in this human-experience centered perspective, we explore ambient intelligence technologies, where computation and communication are embedded in our physical and social environment, adapting to users and their context. The overarching motivation is to create novel socio-digital experiences that address societal needs, like staying connected with dear ones, children’s outdoor play, achieving desirable behavior change, supporting independent living, and rehabilitation. Looking to the future, two grand challenges concern us. First is to design technologies that people can shape to meet idiosyncratic and dynamically emerging requirements, known as meta-design. Second is endowing ambient intelligence technologies with aspects of social intelligence
    corecore