72 research outputs found

    Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay

    Get PDF
    summary:By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper

    Permanence of a Discrete Periodic Volterra Model with Mutual Interference

    Get PDF
    This paper discusses a discrete periodic Volterra model with mutual interference and Holling II type functional response. Firstly, sufficient conditions are obtained for the permanence of the system. After that, we give an example to show the feasibility of our main results

    A nonautonomous predator–prey system with stage structure and double time delays

    Get PDF
    AbstractIn the present paper we study a nonautonomous predator–prey model with stage structure and double time delays due to maturation time for both prey and predator. We assume that the immature and mature individuals of each species are divided by a fixed age, and the mature predator only attacks the immature prey. Based on some comparison arguments we discuss the permanence of the species. By virtue of the continuation theorem of coincidence degree theory, we prove the existence of positive periodic solution. By means of constructing an appropriate Lyapunov functional, we obtain sufficient conditions for the uniqueness and the global stability of positive periodic solution. Two examples are given to illustrate the feasibility of our main results

    Dynamic Behaviors of a Discrete Lotka-Volterra Competition System with Infinite Delays and Single Feedback Control

    Get PDF
    A nonautonomous discrete two-species Lotka-Volterra competition system with infinite delays and single feedback control is considered in this paper. By applying the discrete comparison theorem, a set of sufficient conditions which guarantee the permanence of the system is obtained. Also, by constructing some suitable discrete Lyapunov functionals, some sufficient conditions for the global attractivity and extinction of the system are obtained. It is shown that if the the discrete Lotka-Volterra competitive system with infinite delays and without feedback control is permanent, then, by choosing some suitable feedback control variable, the permanent species will be driven to extinction. That is, the feedback control variable, which represents the biological control or some harvesting procedure, is the unstable factor of the system. Such a finding overturns the previous scholars’ recognition on feedback control variables

    Permanence and Stability of an Age-Structured Prey-Predator System with Delays

    Get PDF
    An age-structured prey-predator model with delays is proposed and analyzed. Mathematical analyses of the model equations with regard to boundedness of solutions, permanence, and stability are analyzed. By using the persistence theory for infinite-dimensional systems, the sufficient conditions for the permanence of the system are obtained. By constructing suitable Lyapunov functions and using an iterative technique, sufficient conditions are also obtained for the global asymptotic stability of the positive equilibrium of the model

    Existence and Global Attractivity of Positive Periodic Solutions for a Two-Species Competitive System with Stage Structure and Impulse

    Get PDF
    A class of nonautonomous two-species competitive system with stage structure and impulse is considered. By using the continuation theorem of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that guarantee the existence of at least a positive periodic solution, and, by constructing a suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic solution are presented. Finally, an illustrative example is given to demonstrate the correctness of the obtained results
    • …
    corecore