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Abstract
In this paper, a Gilpin-Ayala predator-prey model with time-dependent delay withm
preys and (n –m) predators is studied, which can be seen as a modification of the
traditional Lotka-Volterra competition predator-prey system model. Two sets of
sufficient conditions on the permanence of the system are obtained. One set is delay
dependent, while the other set is delay independent.
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1 Introduction
Predator-prey phenomena are always interesting topics in both ecology and mathematical
ecology, which attract a lot of attention due to its universal existence and importance [].
Since Volterra [] proposed a differential equation model to successfully explain the eco-
logical phenomenon of Finme Fish Harbor in , and Lotka [] also derived the model to
describe a hypothetical chemical reaction in which the chemical concentrations oscillate
in , the famous Lotka-Volterra equations were accepted by many experts. The classi-
cal Lotka-Volterra predator-prey model is a rudimentary model of mathematical ecology
which can be expressed as follows:

ẋ(t) = x(t)
(
b – ay(t)

)
,

ẏ(t) = y(t)
(
–d + cx(t)

)
,

(.)

where x(t) is the density of the prey species at time t, y(t) is the density of the predator
species at time t. b is the intrinsic growth rate of the prey, a is the per-capita rate of pre-
dation of the predator, d is the death rate of the predator, c denotes the product of the
per-capita rate of predation and the rate of conversing prey into predator.

Since then the Lotka-Volterra equation and its various generalized forms have been fre-
quently used to describe the population dynamics with predator-prey relations and a lot
of extensive research results have already been obtained and one has seen great progress
[–]. However, regardless of this fact, the Lotka-Volterra equation has a property which
is considered as a disadvantage and that is the linearity of this model (i.e. the rate of change
in the size of each species is a linear function of the sizes of the interacting species). Par-
ticularly, in , Gilpin and Ayala [] claimed that a little more complicated model was
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needed in order to obtain more realistic solutions and proposed the following model:

ẋi(t) = rixi(t)

[

 –
(

xi(t)
Ki

)θi

–
n∑

j=,j �=i

aij(t)
xj(t)
Kj

]

, i = , , . . . , n, (.)

where xi(t) is the population density of species i at time t, ri is the intrinsic exponential
growth rate of species i, Ki is the environment carrying capacity of species i in the absence
of competition, θi provides a nonlinear measure of intraspecific interference, and aij (i �= j)
provides a measure of interspecific competition. So, Li and Lu [] introduced the following
more complicated non-autonomous prey-competition model:

ẋi(t) = xi(t)

[

ri(t) –
n∑

j=

aij(t)xαij
j (t)

]

, i = , , . . . , m,

ẋi(t) = xi(t)

[

–ri(t) +
m∑

j=

aij(t)xαij
j (t) –

n∑

j=m+

aij(t)xαij
j (t)

]

, i = m + , . . . , n,

(.)

they obtained sufficient conditions for the existence of a unique globally attractive periodic
solution of system (.). For more work in this direction, one could refer to [, –] and
the references cited therein.

Furthermore, delay due to negative feedback is a common example, because the process
of a reproduction of a population is not instantaneous. The effect of these kinds of delays
on the asymptotic behavior of populations has been studied by a number of authors (see,
for example, [, , , –]). Chen et al. [] further incorporated time delays in the
model (.) and they proposed the following model:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi(t) = xi(t)[ri(t) –
∑n

j= aij(t)xαij
j (t) –

∑n
j= bij(t)xβij

j (t – τij(t))], i = , , . . . , m,
ẋi(t) = xi(t)[–ri(t) +

∑m
j= aij(t)xαij

j (t) +
∑m

j= bij(t)xβij
j (t – τij(t))

–
∑n

j=m+ aij(t)xαij
j (t) –

∑n
j=m+ bij(t)xβij

j (t – τij(t))], i = m + , . . . , n,
(.)

with the initial conditions

xi(s) = �i(s) ≥ , s ∈ [–τ , ]; �i() > ; (.)

where τ = max≤i,j≤n{supt∈[,+∞){τij(t)}}. xi(t), i = , , . . . , m, are the densities of the prey
species i at time t, xi(t), i = m + , . . . , n are the densities of the predator species Xi at time
t; αij, βij are all positive constants and represent nonlinear measures of interspecific or
intraspecific interference. ri(t), i = , . . . , m, and ri(t), i = m + , . . . , n, are the intrinsic and
death rates at time t, aij(t) and bij(t) represent the effects of the interspecific (i �= j) and
the intraspecific (i = j) interaction at time t; the terms bij(t)xβij

j (t – τij(t)) represent the
negative feedback crowding. By using the Gaines and Mawhins continuation theorem of
coincidence degree theory and by constructing an appropriate Lyapunov functional, they
obtained a set of sufficient conditions which guarantee the existence and global attractivity
of positive periodic solutions of the system (.).

As we know, a more important theme that interested mathematicians as well as biolo-
gists is whether all species in a multi-species community would survive in the long run,
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that is, whether the ecosystems are permanent (see, for example, [, , –, , –]).
Huang [] studied the permanence of the system (.). By using comparison theory and a
differential inequality, two sets of sufficient conditions which guarantee the permanence of
the system (.) are obtained. Their results supplement the main results of Chen et al. [].
In this paper, we shall also study the permanence of the system (.) by using comparison
theory, and get the same results as [] do, under weaker conditions.

In this paper, we also explore the system (.). Throughout this paper, we always assume
that for all i, j = , , . . . , n:

(H) The bounded functions ri(t), aij(t), bij(t), τij(t) are all nonnegative and continuous
for all t ∈ R and al

ii ≥ , bl
ii ≥ , al

ii + bl
ii > . Here, for any bounded function f (t),

f u = limt→∞ sup f (t), f l = limt→∞ inf f (t);
(H) αij, βij are all positive constants.

This paper is aimed at obtaining, by developing the analytical technique of [–], two
sets of sufficient conditions which guarantee the permanence of the system (.). One
set is delay dependent, while the other set is delay independent. Our results improve on
Theorems . and . of []. Moreover, we state and prove the main results in the next
section and present a brief conclusion. For more background and biological adjustments
of system (.), see [, , , –, –] and the references cited therein.

2 Main results
In this section, we present two sets of sufficient conditions for the permanence of system
(.). We denote by Rn

+ = {(x, . . . , xn) ∈ Rn|xi ≥ , i = , , . . . , n} the nonnegative cone and
by Int Rn

+ = {(x, . . . , xn) ∈ Rn|xi > , i = , , . . . , n} the positive cone. For ecological reasons,
we consider system (.), only in Int Rn

+.

Definition . System (.) is said to be permanent, if there are positive constants m
and M, such that for each positive solution (x(t), . . . , xn(t))T of system (.) satisfies

m ≤ lim
t→+∞ inf xi(t) ≤ lim

t→+∞ sup xi(t) ≤ M, i = , , . . . , n.

It is easy to prove the following lemma.

Lemma . The positive cone is invariant with respect to system (.).

For system (.), we will consider two cases, al
ii > , bl

ii ≥  and al
ii ≥ , bl

ii > , respec-
tively, then we obtain Theorems . and ..

For convenience, we introduce the following notations.
For i = , . . . , m

Mi =
(

ru
i

al
ii

) 
αii

;

mi =
( rl

i –
∑n

j=,j �=i au
ijM

αij
j –

∑n
j= bu

ijM
βij
j

au
ii

) 
αii

;
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for i = m + , . . . , n

Mi =
(–rl

i +
∑m

j= au
ijM

αij
j +

∑m
j= bu

ijM
βij
j

al
ii

) 
αii

;

mi =
(

�i

au
ii

) 
αii

,

where

�i = –ru
i +

m∑

j=

al
ijm

αij
j +

n∑

j=

bl
ijm

βij
j –

n∑

j=m+,j �=i

au
ijM

αij
j –

n∑

j=m+

bu
ijM

βij
j .

Theorem . Assume that system (.) satisfies al
ii >  and the following.

(H) rl
i >

∑n
j=,j �=i au

ijM
αij
j +

∑n
j= bu

ijM
βij
j , i = , , . . . , m,

(H) �i > , i = m + , . . . , n.

Then system (.) is permanent.

Proof Let x(t) = (x(t), . . . , xn(t))T be any positive solution of system (.) with initial con-
dition (.). For i = , , . . . , m, it follows from system (.) that

ẋi(t) ≤ xi(t)
(
ri(t) – aii(t)xαii

i (t)
)
, (.)

thus

d(xαii
i (t))
dt

≤ αiix
αii
i (t)

(
ri(t) – aii(t)xαii

i (t)
)
. (.)

Let ui(t) = xαii
i (t), we have

u̇i(t) ≤ αiiui(t)
(
ri(t) – aii(t)ui(t)

) ≤ αiiui(t)
(
ru

i – al
iiui(t)

)
. (.)

By using the comparability theorem, we obtain

lim
t→+∞ sup ui(t) ≤ ru

i

al
ii

, (.)

so it immediately follows that

lim
t→+∞ sup xi(t) ≤

(
ru

i

al
ii

) 
αii

:= Mi, i = , , . . . , m. (.)

For any ε >  small enough, it follows from (.) that there exists large enough T such
that for all i = , , . . . , m and t ≥ T

xi(t) ≤ Mi + ε. (.)
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For i = m + , . . . , n and t ≥ T + τ , (.) combining with the ith equation of system (.)
leads to

ẋi(t) ≤ xi(t)

(

–ri(t) +
m∑

j=

aij(t)(Mj + ε)αij +
m∑

j=

bij(t)(Mj + ε)βij – aii(t)xαii
i (t)

)

, (.)

thus by a similar argument, we can verify that

lim
t→+∞ sup xi(t) ≤

(–rl
i +

∑m
j= au

ijM
αij
j +

∑m
j= bu

ijM
βij
j

al
ii

) 
αii

:= Mi, i = m + , . . . , n. (.)

From the condition (H) of Theorem ., we could choose ε >  small enough such that

rl
i >

n∑

j=,j �=i

au
ij(Mj + ε)αij +

n∑

j=

bu
ij(Mj + ε)βij , (.)

thus, for ε >  satisfies (.), from (.) and (.), we know that there exists T > T + τ

such that for all i = , , . . . , n and t ≥ T

xi(t) ≤ Mi + ε. (.)

For i = , . . . , m and t ≥ T + τ , by applying (.), from the ith equation of system (.),
we have

ẋi(t) ≥ xi(t)

(

ri(t) –
n∑

j=,j �=i

aij(t)(Mj + ε)αij –
n∑

j=

bij(t)(Mj + ε)βij – aii(t)xαii
i (t)

)

, (.)

thus

d(xαii
i (t))
dt

≥ αiix
αii
i (t)

(

ri(t) –
n∑

j=,j �=i

aij(t)(Mj + ε)αij

–
n∑

j=

bij(t)(Mj + ε)βij – aii(t)xαii
i (t)

)

, (.)

let ui(t) = xαii
i (t), we get

u̇i(t) ≥ αiiui(t)

(

ri(t) –
n∑

j=,j �=i

aij(t)(Mj + ε)αij –
n∑

j=

bij(t)(Mj + ε)βij – aii(t)ui(t)

)

≥ αiiui(t)

(

rl
i –

n∑

j=,j �=i

au
ij(Mj + ε)αij –

n∑

j=

bu
ij(Mj + ε)βij – au

iiui(t)

)

. (.)

According to the comparability theorem, we have

lim
t→+∞ inf ui(t) ≥ rl

i –
∑n

j=,j �=i au
ij(Mj + ε)αij –

∑n
j= bu

ij(Mj + ε)βij

au
ii

,
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setting ε →  in above inequality, we have

lim
t→+∞ inf ui(t) ≥ rl

i –
∑n

j=,j �=i au
ijM

αij
j –

∑n
j= bu

ijM
βij
j

au
ii

, (.)

therefore

lim
t→+∞ inf xi(t) ≥

( rl
i –

∑n
j=,j �=i au

ijM
αij
j –

∑n
j= bu

ijM
βij
j

au
ii

) 
αii

:= mi, i = , , . . . , m. (.)

From the condition (H) of Theorem ., we could choose ε >  small enough such that

–ru
i +

m∑

j=

al
ij(mj – ε)αij +

m∑

j=

bl
ij(mj – ε)βij

–
n∑

j=m+,j �=i

au
ij(Mj + ε)αij –

n∑

j=m+

bu
ij(Mj + ε)βij ≥ , (.)

thus, for ε >  it satisfies (.), and it follows from (.) that there exists large enough
T > T + τ such that for all i = , . . . , m and t ≥ T

xi(t) ≥ mi – ε, (.)

thus, for i = m + , . . . , n and t ≥ T + τ , (.) and (.) combining with the ith equation
of system (.) leads to

ẋi(t) ≥ xi(t)

(

–ri(t) +
m∑

j=

aij(t)(mj – ε)αij +
m∑

j=

bij(t)(mj – ε)βij

–
n∑

j=m+,j �=i

aij(t)(Mj + ε)αij –
n∑

j=m+

bij(t)(Mj + ε)βij – aii(t)xαii
i (t)

)

, (.)

by using (.), similarly, we obtain

lim
t→+∞ inf xi(t) ≥

(
�i

au
ii

) 
αii

:= mi, i = m + , . . . , n, (.)

where

�i = –ru
i +

m∑

j=

al
ijm

αij
j +

n∑

j=

bl
ijm

βij
j –

n∑

j=m+,j �=i

au
ijM

αij
j –

n∑

j=m+

bu
ijM

βij
j .

Take M = max≤i≤n{Mi}, m = min≤i≤n{mi}, we have

m ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ M, i = , , . . . , n.

This ends the proof of Theorem .. �
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Denote for i = , . . . , m

M̄i =
(

ru
i

bl
ii

) 
βii

exp
[
ru

i τ
]
;

m̄i = min
≤i≤n

{(
rl

i
bu

i

) 
βii

, l


βii
i

}
,

where

τ = max
≤i,j≤n

{
sup

t∈[,+∞)

{
τij(t)

}}
;

li ≤
{(

rl
i –

n∑

j=

au
ijM̄

αij
j –

n∑

j=,j �=i

bu
ijM̄

βij
j

)
/

bu
ii, i = , . . . , m

}

;

for i = m + , . . . , n

M̄i =
(

λi

bl
ii

) 
βii

exp[λiτ ];

m̄i = min
≤i≤n

{(–ru
i +

∑m
j= al

ijm
αij
j +

∑m
j= bl

ijm
βij
j

bu
i

) 
βii

, l


βii
i

}
,

where

λi = –rl
i +

m∑

j=

au
ijM̄j

αij +
m∑

j=

bu
ijM̄j

βij ;

li ≤ {∇i/bu
ii, i = m + , . . . , n

}
;

∇i = –ru
i +

m∑

j=

al
ijm

αij
j +

n∑

j=

bl
ijm

βij
j –

n∑

j=m+

au
ijM

αij
j –

n∑

j=m+,j �=i

bu
ijM

βij
j .

Theorem . Assume that system (.) satisfies bl
ii >  and the following.

(H) rl
i >

∑n
j= au

ijM̄
αij
j +

∑n
j=,j �=i bu

ijM̄
βij
j , i = , , . . . , m,

(H) ∇i > , i = m + , . . . , n.

Then system (.) is permanent.

Proof Let x(t) = (x(t), . . . , xn(t))T be any positive solution of system (.) with initial con-
dition (.), for i = , , . . . , m, it follows from system (.) that

ẋi(t) ≤ xi(t)
(
ri(t) – bii(t)xβii

i
(
t – τii(t)

))
, (.)

thus

d(xβii
i (t))
dt

≤ βiix
βii
i (t)

(
ri(t) – bii(t)xβii

i
(
t – τii(t)

))
. (.)
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Let ui(t) = xβii
i (t), we have

u̇i(t) ≤ βiiui(t)
(
ri(t) – bii(t)ui

(
t – τii(t)

))

≤ βiiui(t)
(
ru

i – bl
iiui

(
t – τii(t)

))
. (.)

Take M̃i = ru
i

bl
ii

(+hi), where  < hi < exp[ru
i τ ]–, τ = max≤i,j≤n{supt∈[,+∞){τij(t)}}. Firstly,

suppose ui(t) is not oscillatory about M̃i. That is, there exists a T∗
 > , for t > T∗

 such that

ui(t) < M̃i, (.)

or

ui(t) > M̃i. (.)

If (.) holds, then our aim is reached. Suppose (.) holds, then for t ≥ T∗
 + τ , we

obtain

u̇i(t) < –βiihiru
i ui(t),

thus ui(t) < ui() exp[–βiihiru
i t] → , as t → +∞, which is in contradiction with (.).

Hence there must exist T̃ > T∗
 + τ such that ui(t) < M̃i for t > T̃. Secondly now assume

that ui(t) is oscillatory about M̃i for t ≥ T∗
 , that is, there exists a time sequence {tn} such

that τ < ti < t < · · · < tn < · · · is a sequence of zeros of ui(tn) – M̃i with limn→∞ tn = +∞
and ui(tn) = M̃i. Set t̄n to be a point where ui(t) attends its maximum in (tn, tn+). Thus we
get ui(t̄n) ≥ ui(tn) = M̃i. Then it is easy to see from (.) that

 = u̇i(t)|t=t̄n ≤ βiiui(t̄n)
(
ru

i – bl
iiui

(
t̄n – τii(t̄n)

))
, (.)

which implies that

ui
(
t̄n – τii(t̄n)

) ≤ ru
i

bl
ii

. (.)

Integrating the both sides of (.) from t̄n – τii(t̄n) to t̄n, it follows that

ln
ui(t̄n)

ui(t̄n – τii(t̄n))
≤

∫ t̄n

t̄n–τii(t̄n)
βii

(
ru

i – bl
iiui

(
t – τii(t)

))
dt ≤ βiiru

i τii(t̄n). (.)

From (.) and (.) we get

ui(t̄n) ≤ ru
i

bl
ii

exp
[
βiiru

i τ
]

:= Li.

Since ui(t̄n) is an arbitrary local maximum of ui(t), we can conclude that there exists a
T∗

 >  such that ui(t) ≤ Li for all t ≥ T∗
 . Thus

lim
t→+∞ sup xi(t) ≤

(
ru

i

bl
ii

) 
βii

exp
[
ru

i τ
]

:= M̄i. (.)
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For any ε >  small enough, it follows from (.) that there exists large enough T∗
 > T∗



such that for all i = , , . . . , m and t ≥ T∗


xi(t) ≤ M̄i + ε. (.)

For i = m + , . . . , n and t ≥ T∗
 + τ , (.) combining with the ith equation of system (.)

leads to

ẋi(t) ≤ xi(t)

(

–ri(t) +
m∑

j=

aij(t)(M̄j + ε)αij

+
m∑

j=

bij(t)(M̄j + ε)βij – bii(t)xβii
i

(
t – τii(t)

)
)

, (.)

from (.), by a procedure similar to the discussion above, we can verify that

lim
t→+∞ sup xi(t) ≤

(
λi

bl
ii

) 
βii

exp[λiτ ] := M̄i, i = m + , . . . , n, (.)

where

λi = –rl
i +

m∑

j=

au
ijM̄j

αij +
m∑

j=

bu
ijM̄j

βij .

From the condition (H) of Theorem ., we could choose ε >  small enough such that

rl
i >

n∑

j=

au
ij(Mj + ε)αij +

n∑

j=,j �=i

bu
ij(Mj + ε)βij , (.)

thus, for ε >  it satisfies (.), from (.) and (.), we know that there exists T∗
 >

T∗
 + τ such that for all i = , , . . . , n and t ≥ T∗



xi(t) ≤ M̄i + ε. (.)

And so, for i = , . . . , m and t ≥ T∗
 + τ , by applying (.), from the ith equation of system

(.), one has

ẋi(t) ≥ xi(t)

(

ri(t) –
n∑

j=

aij(t)(M̄j + ε)αij –
n∑

j=

bij(t)(M̄j + ε)βij

)

(.)

and

ẋi(t) ≥ xi(t)

(

ri(t) –
n∑

j=

aij(t)(M̄j + ε)αij

–
n∑

j=,j �=i

bij(t)(M̄j + ε)βij – bii(t)xβii
i

(
t – τii(t)

)
)

, (.)
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thus

d(xβii
i (t))
dt

≥ βiix
βii
i (t)

(

ri(t) –
n∑

j=

aij(t)(M̄j + ε)αij –
n∑

j=

bij(t)(M̄j + ε)βij

)

(.)

and

d(xβii
i (t))
dt

≥ βiix
βii
i (t)

(

ri(t) –
n∑

j=

aij(t)(M̄j + ε)αij

–
n∑

j=,j �=i

bij(t)(M̄j + ε)βij – bii(t)xβii
i

(
t – τii(t)

)
)

. (.)

Let ui(t) = xβii
i (t), we have

u̇i(t) ≥ βiiui(t)

(

ri(t) –
n∑

j=

aij(t)(M̄j + ε)αij –
n∑

j=

bij(t)(M̄j + ε)βij

)

≥ βiiui(t)

(

rl
i –

n∑

j=

au
ij(M̄j + ε)αij –

n∑

j=

bu
ij(M̄j + ε)βij

)

= βiiui(t)
iε (.)

and

u̇i(t) ≥ βiiui(t)

(

ri(t) –
n∑

j=

aij(t)(M̄j + ε)αij

–
n∑

j=,j �=i

bij(t)(M̄j + ε)βij – bii(t)ui
(
t – τii(t)

)
)

≥ βiiui(t)

(

rl
i –

n∑

j=

au
ij(M̄j + ε)αij

–
n∑

j=,j �=i

bu
ij(M̄j + ε)βij – bu

ii(t)ui
(
t – τii(t)

)
)

. (.)

Note that ru
i

bl
ii

≤ M̄βii
i implies that


iε = rl
i –

n∑

j=

au
ij(M̄j + ε)αij –

n∑

j=

bu
ij(M̄j + ε)βij

≤ rl
i – bu

ii(M̄i + ε)βii

≤ ru
i – bl

ii(M̄i + ε)βii ≤ .

Now we consider the following two cases.
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Case (i). If 
iε = , then for t ≥ T∗
 + τ , from Lemma . and (.) it follows that

u̇i(t) = ,

this implies that limt→+∞ ui(t) =: ρi < rl
i

bu
ii

, then there exists T∗
 > T∗

 such that for t ≥ T∗


ui(t) ≤ ρi +
rl

i/bu
ii – ρi


<

rl
i

bu
ii

< M̄βii
i . (.)

From the ith equation of system (.) and (.) if follows that

u̇i(t) ≥ βiiui(t)

(

rl
i –

n∑

j=

au
ij

( rl
j /bu

jj + ρj



)αij

–
n∑

j=

bu
ij

( rl
j /bu

jj + ρj



)βij
)

> βiiui(t)
iε = , t ≥ T∗
 + τ . (.)

Thus

ui(t) ≥ ui
(
T∗

 + τ
)

exp

[

βii

(

rl
i –

n∑

j=

au
ij

( rl
j /bu

jj + ρj



)αij

–
n∑

j=

bu
ij

( rl
j /bu

jj + ρj



)βij
)

(
t –

(
T∗

 + τ
))

]

, (.)

then we have ui(t) → +∞ as t → +∞, which is in contradiction with ui(t) ≤ (M̄i + ε)βii .
Hence we have limt→+∞ ui(t) ≥ rl

i
bu

ii
, which implies that there exists T ′

 such that ui(t) ≥ rl
i

bu
ii

for t ≥ T ′
, that is, xi(t) ≥ ( rl

i
bu

ii
)


βii for t ≥ T ′

.
Case (ii). If 
iε < , from (.), for t ≥ T∗

 + τ , it follows that

u̇i(t) ≥ βiiui(t)

(

rl
i –

n∑

j=

au
ij(M̄j + ε)αij

–
n∑

j=,j �=i

bu
ij(M̄j + ε)βij – bu

ii(t)ui
(
t – τii(t)

)
)

. (.)

Set

m̃i =
rl

i –
∑n

j= au
ij(M̄j + ε)αij –

∑n
j=,j �=i bu

ij(M̄j + ε)βij

bu
ii

( – σi),

where  < σi <  – exp[βii
iετ ].
Firstly, suppose ui(t) is not oscillatory about m̃i. That is, there exists a T∗

 > , for t > T∗


such that

ui(t) > m̃i, (.)

or

ui(t) < m̃i. (.)
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If (.) holds, then our aim is obtained. Suppose (.) holds, then for t ≥ T∗
 + τ , we

obtain

u̇i(t) ≥ βiiσi

(

rl
i –

n∑

j=

au
ij(M̄j + ε)αij –

n∑

j=,j �=i

bu
ij(M̄j + ε)βij

)

ui(t),

thus there must exist T ′
 > T∗

 + τ such that ui(t) > m̃i for t > T ′
, which is a contradiction.

Hence, (.) could not hold. Secondly now assume that ui(t) is oscillatory about m̃i for
t ≥ T∗

 + τ , that is, there exists a time sequence {tn} such that τ < ti < t < · · · < tn < · · ·
is a sequence of zeros of ui(tn) – m̃i with limn→∞ tn = +∞ and ui(tn) = m̃i. Set t̂n to be a
point where ui(t) attends its minimum in (tn, tn+). Thus, we get ui(t̂n) ≤ ui(tn) = m̃i. Then
it follows from (.) that

 = u̇i(t)|t=t̂n ≥ βiiui(t̂n)

(

rl
i –

n∑

j=

au
ij(M̄j + ε)αij

–
n∑

j=,j �=i

bu
ij(M̄j + ε)βij – bu

iiui
(
t̂n – τii(t̂n)

)
)

, (.)

which implies that

ui
(
t̂n – τii(t̂n)

) ≥ rl
i –

∑n
j= au

ij(M̄j + ε)αij –
∑n

j=,j �=i bu
ij(M̄j + ε)βij

bu
ii

. (.)

Integrating (.) on the interval [t̂n – τii(t̂n), t̂n], we have

ln
ui(t̂n)

ui(t̂n – τii(t̂n))
≥

∫ t̂n

t̂n–τii(t̂n)
βii

(

rl
i –

n∑

j=

au
ij(M̄j + ε)αij

–
n∑

j=,j �=i

bu
ij(M̄j + ε)βij – bu

ii(t)ui
(
t – τii(t)

)
)

dt

≥
∫ t̂n

t̂n–τii(t̂n)
βii
iε dt

= βii
iετii(t̂n). (.)

From (.) and (.) we get

ui(t̂n) ≥ rl
i –

∑n
j= au

ij(M̄j + ε)αij –
∑n

j=,j �=i bu
ij(M̄j + ε)βij

bu
ii

exp[βii
iετ ].

Since ui(t̂n) is an arbitrary local minimum of ui(t), we might find there exists a li ≤ m̃i

such that ui(t) ≥ li for all t ≥ T∗
 . Thus, we have

lim
t→+∞ inf ui(t) ≥ li,
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where

li ≤
{(

rl
i –

n∑

j=

au
ijM̄

αij
j –

n∑

j=,j �=i

bu
ijM̄

βij
j

)
/

bu
ii, i = , , . . . , m

}

.

Take m̄i = min≤i≤n{( rl
i

bu
i

)


βii , l


βii
i }, we obtain

lim
t→+∞ inf xi(t) ≥ m̄i. (.)

From the condition (H) of Theorem ., we could choose ε >  small enough such that

–ru
i +

m∑

j=

al
ij(mj – ε)αij +

m∑

j=

bl
ij(mj – ε)βij

–
n∑

j=m+,j �=i

au
ij(Mj + ε)αij –

n∑

j=m+

bu
ij(Mj + ε)βij ≥ , (.)

thus, for ε >  it satisfies (.), and it follows from (.) that there exists large enough
T∗

 > T∗
 such that for all i = , , . . . , m and t ≥ T∗



xi(t) ≥ m̄i – ε. (.)

For i = m + , . . . , n and t ≥ T∗
 + τ , by using (.), from the ith equation of system (.),

one has

ẋi(t) ≥ xi(t)

(

–ru
i +

m∑

j=

al
ij(mj – ε)αij +

m∑

j=

bl
ij(mj – ε)βij

–
n∑

j=m+

au
ij(Mj + ε)αij –

n∑

j=m+

bu
ij(Mj + ε)βij

)

(.)

and

ẋi(t) ≥ xi(t)

(

–ri(t) +
m∑

j=

aij(t)(mj – ε)αij +
m∑

j=

bij(t)(mj – ε)βij

–
n∑

j=m+

aij(t)(Mj + ε)αij –
n∑

j=m+,j �=i

bij(t)(Mj + ε)βij – bii(t)xβii
i

(
k – τii(t)

)
)

. (.)

From (.) and (.), similar to the argument of (.) and (.), we also have

lim
t→+∞ inf xi(t) ≥ m̄i, i = m + , . . . , n, (.)

where

m̄i = min
≤i≤n

{(–ru
i +

∑m
j= al

ijm
αij
j +

∑m
j= bl

ijm
βij
j

bu
i

) 
βii

, l


βii
i

}
,
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li ≤ {∇i/bu
ii, i = m + , . . . , n

}
,

∇i = –ru
i +

m∑

j=

al
ijm

αij
j +

n∑

j=

bl
ijm

βij
j –

n∑

j=m+

au
ijM

αij
j –

n∑

j=m+,j �=i

bu
ijM

βij
j .

Take M̄ = max≤i≤n{M̄i}, m̄ = min≤i≤n{m̄i}, we have

m̄ ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ M̄, i = , , . . . , n.

This completes the proof of Theorem .. �

3 Concluding remarks
In this paper, we study a Gilpin-Ayala predator-prey model with time-dependent delay
with m preys and (n – m) predators. In this system, the competition among the predator
species and among the prey species are simultaneously considered. The system (.) can
be seen as the modification of the traditional Lotka-Volterra prey-competition system.
Some new and interesting sufficient conditions are obtained for the permanence of the
system (.). In [], under the assumption that the coefficient of the density-dependent
term aii(t) must be positive, by using a new differential inequality, two sets of sufficient
conditions on the permanence of the system (.) are obtained. However, in this paper we
allow the coefficient to be zero; therefore the study of the permanence of the population
becomes technically more difficult. Our results are different from the existing ones such
as those of Huang []. In some sense, our results supplement those obtained by Chen et al.
[], generalize the results in [], and have further application on the population dynamics.
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