36,690 research outputs found

    Frame Permutation Quantization

    Full text link
    Frame permutation quantization (FPQ) is a new vector quantization technique using finite frames. In FPQ, a vector is encoded using a permutation source code to quantize its frame expansion. This means that the encoding is a partial ordering of the frame expansion coefficients. Compared to ordinary permutation source coding, FPQ produces a greater number of possible quantization rates and a higher maximum rate. Various representations for the partitions induced by FPQ are presented, and reconstruction algorithms based on linear programming, quadratic programming, and recursive orthogonal projection are derived. Implementations of the linear and quadratic programming algorithms for uniform and Gaussian sources show performance improvements over entropy-constrained scalar quantization for certain combinations of vector dimension and coding rate. Monte Carlo evaluation of the recursive algorithm shows that mean-squared error (MSE) decays as 1/M^4 for an M-element frame, which is consistent with previous results on optimal decay of MSE. Reconstruction using the canonical dual frame is also studied, and several results relate properties of the analysis frame to whether linear reconstruction techniques provide consistent reconstructions.Comment: 29 pages, 5 figures; detailed added to proof of Theorem 4.3 and a few minor correction

    Reconstruction of permutations distorted by single transposition errors

    Get PDF
    The reconstruction problem for permutations on nn elements from their erroneous patterns which are distorted by transpositions is presented in this paper. It is shown that for any n3n \geq 3 an unknown permutation is uniquely reconstructible from 4 distinct permutations at transposition distance at most one from the unknown permutation. The {\it transposition distance} between two permutations is defined as the least number of transpositions needed to transform one into the other. The proposed approach is based on the investigation of structural properties of a corresponding Cayley graph. In the case of at most two transposition errors it is shown that 32(n2)(n+1)\frac32(n-2)(n+1) erroneous patterns are required in order to reconstruct an unknown permutation. Similar results are obtained for two particular cases when permutations are distorted by given transpositions. These results confirm some bounds for regular graphs which are also presented in this paper.Comment: 5 pages, Report of paper presented at ISIT-200

    On the reconstruction index of permutation groups: general bounds

    Get PDF

    On the reconstruction index of permutation groups: semiregular groups

    Get PDF

    On Reconstructing a Hidden Permutation

    Get PDF
    The Mallows model is a classical model for generating noisy perturbations of a hidden permutation, where the magnitude of the perturbations is determined by a single parameter. In this work we consider the following reconstruction problem: given several perturbations of a hidden permutation that are generated according to the Mallows model, each with its own parameter, how to recover the hidden permutation? When the parameters are approximately known and satisfy certain conditions, we obtain a simple algorithm for reconstructing the hidden permutation; we also show that these conditions are nearly inevitable for reconstruction. We then provide an algorithm to estimate the parameters themselves. En route we obtain a precise characterization of the swapping probability in the Mallows model
    corecore