5,756 research outputs found

    Energy-aware coordination of machine scheduling and support device recharging in production systems

    Get PDF
    Electricity generation from renewable energy sources is crucial for achieving climate targets, including greenhouse gas neutrality. Germany has made significant progress in increasing renewable energy generation. However, feed-in management actions have led to losses of renewable electricity in the past years, primarily from wind energy. These actions aim to maintain grid stability but result in excess renewable energy that goes unused. The lost electricity could have powered a multitude of households and saved CO2 emissions. Moreover, feed-in management actions incurred compensation claims of around 807 million Euros in 2021. Wind-abundant regions like Schleswig-Holstein are particularly affected by these actions, resulting in substantial losses of renewable electricity production. Expanding the power grid infrastructure is a costly and time-consuming solution to avoid feed-in management actions. An alternative approach is to increase local electricity consumption during peak renewable generation periods, which can help balance electricity supply and demand and reduce feed-in management actions. The dissertation focuses on energy-aware manufacturing decision-making, exploring ways to counteract feed-in management actions by increasing local industrial consumption during renewable generation peaks. The research proposes to guide production management decisions, synchronizing a company's energy consumption profile with renewable energy availability for more environmentally friendly production and improved grid stability

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts

    Get PDF
    The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above

    Various approaches for power balancing in grid-connected and islanded microgrids

    Get PDF
    One of the promising solutions to reduce power imbalance, an undesired impact of intermittent renewable energy sources, is to supply the loads by means of local distributed energy resources in the form of a microgrid. Microgrids offer several benefits such as reduction of line losses, increased system reliability, and maximum utilisation of local energy resources. A microgrid, during its islanded operation, is more susceptible to the frequency and voltage fluctuation caused by a sudden dispatch either from the generation or load. Therefore, additional control is required to manage either the output power from the generation side or the demand from the end-user side. Thus, appropriate and efficient control and monitoring systems need to be installed. However, the cost of such a system will reduce the rate of investment return on microgrid projects. This research has focused on developing various techniques to maintain the voltage and frequency within acceptable limits in microgrids, taking into account various influencing factors. This study proposes an additional active power management technique through the use of inverters, that can maintain the microgrid’s frequency when the generated power in the microgrid is much higher than its demand. Also, to facilitate the microgrid’s transition from grid-connected to islanded mode, the inverters can be controlled with a soft starting ramp. Moreover, a control function employing a droop control method is proposed in order to reduce the output power of the renewable sources when the microgrid frequency is much higher than the nominal frequency. On the other hand, when the demand is higher than the generated power, managing the demand under a demand response program is proposed as a means of maintaining the microgrid stability. This is an inexpensive solution which will not reduce the rate of investment return on the microgrid project. However, this requires the installation of appropriate enabling technologies at the utility and end-user sides. Moreover, the participation from demand response participants is influenced by the profit earned from engaging in the program. Therefore, in this research, the technical and economic benefits of demand response deployment are analysed in detail. The execution of the demand response program through load-shifting, reducing the appliances’ consumed power, and load-shedding causes customer discomfort. To minimise this discomfort, in this thesis, suitable strategies are suggested for various groups of loads. Furthermore, each load profile contains information on its capacity, flexibility, and operating time. The proposed approach ensures that the loads with a larger capacity and flexibility are the most preferred ones to be controlled during demand response events so that customer discomfort and the number of affected loads can be minimised. Also, this study examines the load’s economic value, power losses, emission factor, and cost of energy production to maximise the microgrid operator’s profit as a result of deploying the demand response program. Meanwhile, to encourage end-users’ engagement in demand response programs, the microgrid operator should offer incentives to the customer as compensation for any incurred costs and discomfort felt. The given incentives should be such that both the microgrid operator and the end-user gain the maximum profit. Therefore, this study proposes an approach for calculating the level of incentives that should be given to the participants by comparing the differences between ongoing revenue and the cost of energy with and without demand response

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Management of Islanded Operation of Microgirds

    Get PDF
    Distributed generations with continuously growing penetration levels offer potential solutions to energy security and reliability with minimum environmental impacts. Distributed Generations when connected to the area electric power systems provide numerous advantages. However, grid integration of distributed generations presents several technical challenges which has forced the systems planners and operators to account for the repercussions on the distribution feeders which are no longer passive in the presence of distributed generations. Grid integration of distributed generations requires accurate and reliable islanding detection methodology for secure system operation. Two distributed generation islanding detection methodologies are proposed in this dissertation. First, a passive islanding detection technique for grid-connected distributed generations based on parallel decision trees is proposed. The proposed approach relies on capturing the underlying signature of a wide variety of system events on a set of critical system parameters and utilizes multiple optimal decision tress in a parallel network for classification of system events. Second, a hybrid islanding detection method for grid-connected inverter based distributed generations combining decision trees and Sandia frequency shift method is also proposed. The proposed method combines passive and active islanding detection techniques to aggregate their individual advantages and reduce or eliminate their drawbacks. In smart grid paradigm, microgrids are the enabling engine for systematic integration of distributed generations with the utility grid. A systematic approach for controlled islanding of grid-connected microgrids is also proposed in this dissertation. The objective of the proposed approach is to develop an adaptive controlled islanding methodology to be implemented as a preventive control component in emergency control strategy for microgrid operations. An emergency power management strategy for microgrid autonomous operation subsequent to inadvertent islanding events is also proposed in this dissertation. The proposed approach integrates microgrid resources such as energy storage systems, demand response resources, and controllable micro-sources to layout a comprehensive power management strategy for ensuring secure and stable microgrid operation following an unplanned islanding event. In this dissertation, various case studies are presented to validate the proposed methods. The simulation results demonstrate the effectiveness of the proposed methodologies

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research
    • …
    corecore