42,230 research outputs found

    Do peaked solitary water waves indeed exist?

    Full text link
    Many models of shallow water waves admit peaked solitary waves. However, it is an open question whether or not the widely accepted peaked solitary waves can be derived from the fully nonlinear wave equations. In this paper, a unified wave model (UWM) based on the symmetry and the fully nonlinear wave equations is put forward for progressive waves with permanent form in finite water depth. Different from traditional wave models, the flows described by the UWM are not necessarily irrotational at crest, so that it is more general. The unified wave model admits not only the traditional progressive waves with smooth crest, but also a new kind of solitary waves with peaked crest that include the famous peaked solitary waves given by the Camassa-Holm equation. Besides, it is proved that Kelvin's theorem still holds everywhere for the newly found peaked solitary waves. Thus, the UWM unifies, for the first time, both of the traditional smooth waves and the peaked solitary waves. In other words, the peaked solitary waves are consistent with the traditional smooth ones. So, in the frame of inviscid fluid, the peaked solitary waves are as acceptable and reasonable as the traditional smooth ones. It is found that the peaked solitary waves have some unusual and unique characteristics. First of all, they have a peaked crest with a discontinuous vertical velocity at crest. Especially, the phase speed of the peaked solitary waves has nothing to do with wave height. In addition, the kinetic energy of the peaked solitary waves either increases or almost keeps the same from free surface to bottom. All of these unusual properties show the novelty of the peaked solitary waves, although it is still an open question whether or not they are reasonable in physics if the viscosity of fluid and surface tension are considered.Comment: 53 pages, 13 figures, 7 tables. Accepted by Communications in Nonlinear Science and Numerical Simulatio

    Falling liquid films with blowing and suction

    Full text link
    Flow of a thin viscous film down a flat inclined plane becomes unstable to long wave interfacial fluctuations when the Reynolds number based on the mean film thickness becomes larger than a critical value (this value decreases as the angle of inclination with the horizontal increases, and in particular becomes zero when the plate is vertical). Control of these interfacial instabilities is relevant to a wide range of industrial applications including coating processes and heat or mass transfer systems. This study considers the effect of blowing and suction through the substrate in order to construct from first principles physically realistic models that can be used for detailed passive and active control studies of direct relevance to possible experiments. Two different long-wave, thin-film equations are derived to describe this system; these include the imposed blowing/suction as well as inertia, surface tension, gravity and viscosity. The case of spatially periodic blowing and suction is considered in detail and the bifurcation structure of forced steady states is explored numerically to predict that steady states cease to exist for sufficiently large suction speeds since the film locally thins to zero thickness giving way to dry patches on the substrate. The linear stability of the resulting nonuniform steady states is investigated for perturbations of arbitrary wavelengths, and any instabilities are followed into the fully nonlinear regime using time-dependent computations. The case of small amplitude blowing/suction is studied analytically both for steady states and their stability. Finally, the transition between travelling waves and non-uniform steady states is explored as the suction amplitude increases

    Nonlinear optical effects in artificial materials

    Full text link
    We consider some nonlinear phenomena in metamaterials with negative refractive index properties. Our consideration includes a survey of previously known results as well as identification of the phenomena that are important for applications of this new field. We focus on optical behavior of thin films as well as multi-wave interactions.Comment: 22 pages, no figures. Submitted in book "Nonlinear waves in complex systems: energy flow and geometry

    Negative refraction in nonlinear wave systems

    Full text link
    People have been familiar with the phenomenon of wave refraction for several centuries. Recently, a novel type of refraction, i.e., negative refraction, where both incident and refractory lines locate on the same side of the normal line, has been predicted and realized in the context of linear optics in the presence of both right- and left-handed materials. In this work, we reveal, by theoretical prediction and numerical verification, negative refraction in nonlinear oscillatory systems. We demonstrate that unlike what happens in linear optics, negative refraction of nonlinear waves does not depend on the presence of the special left-handed material, but depends on suitable physical condition. Namely, this phenomenon can be observed in wide range of oscillatory media under the Hopf bifurcation condition. The complex Ginzburg-Landau equation and a chemical reaction-diffusion model are used to demonstrate the feasibility of this nonlinear negative refraction behavior in practice

    An intrusion layer in stationary incompressible fluids Part 2: A solitary wave

    Get PDF
    The propagation of a solitary wave in a horizontal fluid layer is studied. There is an interfacial free surface above and below this intrusion layer, which is moving at constant speed through a stationary density-stratified fluid system. A weakly nonlinear asymptotic theory is presented, leading to a Korteweg-de Vries equation in which the two fluid interfaces move oppositely. The intrusion layer solitary wave system thus forms a widening bulge that propagates without change of form. These results are confirmed and extended by a fully nonlinear solution, in which a boundary-integral formulation is used to solve the problem numerically. Limiting profiles are approached, for which a corner forms at the crest of the solitary wave, on one or both of the interfaces

    On selection criteria for problems with moving inhomogeneities

    Get PDF
    We study mechanical problems with multiple solutions and introduce a thermodynamic framework to formulate two different selection criteria in terms of macroscopic energy productions and fluxes. Studying simple examples for lattice motion we then compare the implications for both resting and moving inhomogeneities.Comment: revised version contains new introduction, numerical simulations of Riemann problems, and a more detailed discussion of the causality principle; 18 pages, several figure

    Nonlinear surface plasmons

    Full text link
    We derive an asymptotic equation for quasi-static, nonlinear surface plasmons propagating on a planar interface between isotropic media. The plasmons are nondispersive with a constant linearized frequency that is independent of their wavenumber. The spatial profile of a weakly nonlinear plasmon satisfies a nonlocal, cubically nonlinear evolution equation that couples its left-moving and right-moving Fourier components. We prove short-time existence of smooth solutions of the asymptotic equation and describe its Hamiltonian structure. We also prove global existence of weak solutions of a unidirectional reduction of the asymptotic equation. Numerical solutions show that nonlinear effects can lead to the strong spatial focusing of plasmons. Solutions of the unidirectional equation appear to remain smooth when they focus, but it is unclear whether or not focusing can lead to singularity formation in solutions of the bidirectional equation
    corecore