
Euro. Jnl of Applied Mathematics (2007), vol. 17, pp. 577–595. c© 2007 Cambridge University Press

doi:10.1017/S0956792506006711 Printed in the United Kingdom
577

An intrusion layer in stationary incompressible
fluids Part 2: A solitary wave

LAWRENCE K. FORBES1 and GRAEME C. HOCKING2

1School of Mathematics and Physics, University of Tasmania, Hobart 7001, Tasmania, Australia

email: larry.forbes@utas.edu.au
2School of Mathematics and Statistics, Division of Science, Murdoch University, Murdoch 6150, Western Australia

(Received 30 November 2005; revised 1 June 2006)

The propagation of a solitary wave in a horizontal fluid layer is studied. There is an interfacial

free surface above and below this intrusion layer, which is moving at constant speed through

a stationary density-stratified fluid system. A weakly nonlinear asymptotic theory is presented,

leading to a Korteweg–de Vries equation in which the two fluid interfaces move oppositely.

The intrusion layer solitary wave system thus forms a widening bulge that propagates without

change of form. These results are confirmed and extended by a fully nonlinear solution, in

which a boundary-integral formulation is used to solve the problem numerically. Limiting

profiles are approached, for which a corner forms at the crest of the solitary wave, on one or

both of the interfaces.

1 Introduction

This is the second in a series of two papers that consider a moving intrusion layer in

otherwise stationary stratified fluid. Such situations may arise under a variety of different

circumstances. They may occur in reservoirs when river water flows in from a tributary,

sinks down to its neutrally buoyant level, and then spreads horizontally. In such a flow,

the layer of intruding water may be separated from the lighter fluid above it and the

heavier water below by two horizontal interfaces.

Benjamin [1] has given a discussion of general two-layer intrusion currents under

gravity, and has concluded that the advancing head of the intrusion layer must form

a breaking wave as it propagates. An experimental investigation of this situation for a

three-layer system was described by Mehta et al. [2]. Each layer had constant density

and only the middle fluid was in motion, with the top and bottom layers stationary. They

showed that the intrusion initially propagated along the middle layer as a bulbous head,

leaving behind it a train of waves on each interface. Detailed photographs were included.

Similar experimental work has been presented by Sutherland et al. [3] and Manins

[4].

Withdrawal from the middle layer of a three-fluid system has been investigated by

Wen & Ingham [5], and they have shown that both the upper and the lower interfaces

may be drawn towards the sink in the middle layer, to form a system possessing two

inward-facing cusps. Qualitatively similar flows are also known to exist in ground-water

flows, and have been computed by Papatzacos & Gustafson [6], for example.
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If the fluid above and below the intrusion layer is at rest, then a train of waves may

be formed in this moving middle layer, and involves waves on both the upper and lower

interfaces. This was apparently first recognized by Lord Rayleigh, and has been discussed

by Lamb [7, art. 232]. There it was assumed that all three fluid layers had the same density.

This linearized solution was generalized in Paper 1 [8] to allow all three fluid layers to

have different densities, and it was confirmed there also that two different propagation

modes are possible. There is a high-speed type in which both interfaces move in phase,

and a low-speed branch for which the two interfaces move oppositely.

Similar intrusion currents may also be formed in the atmosphere. Flynn & Sutherland

[9] have described how the anvil cloud of a thunderstorm may form an intrusion layer at

about the level of the tropopause, for example. Two-layer atmospheric intrusion flows can

arise when a heavier layer penetrates beneath a lighter one, and such a process is believed

to be involved in the remarkable ‘Morning Glory’ phenomenon in the Gulf of Carpentaria

in the far north of Australia, as described by Clarke et al. [10]. A mathematical model

of this phenomenon was presented by Forbes & Belward [11], assuming the presence of

a solitary wave on the interface between the two layers. Similar kinds of flows may be

produced pyroclastically due to volcanic eruptions, as discussed by Nield & Woods [12].

Three-layer atmospheric intrusion flows can also occur above rivers, and the ‘Bridgewater

Gerry’ in Hobart in Tasmania is a striking example of this effect; see Figure 13 in Paper 1

[8], for example.

In this second paper, an analysis is undertaken of solitary waves propagating along

the middle layer of a three-fluid system. As in Paper 1 [8], both the upper and lower

fluids are at rest and are of infinite depth. The theory of solitary waves has a long and

distinguished history, and an overall review of the classical work in this field has been

given by Miles [13]. One of the earlier numerical computations of steep solitary waves

was the work of Yamada [14], who used a conformal mapping technique that anticipated

much modern analysis. He concluded that the highest solitary wave encloses a sharp

corner at its crest. This work was extended by Hunter & Vanden-Broeck [15] using both a

conformal mapping approach with a series expansion and an integral-equation technique.

They computed solitary waves accurately up to the highest one enclosing the Stokes angle

120◦ at the crest.

Recently, solitary waves have been computed in more complex environments, such as

between two homogeneous fluids [16], in the presence of constant vorticity [11, 17], and

including the effects of surface tension [18, 19], for example. Laget & Dias [20] have

shown that there are in fact two types of solitary wave when surface tension is included.

Their paper also includes a discussion of the possible configuration of the limiting wave,

which may involve a corner at the crest with enclosed angle 120◦, a flat broad crest or

else overhanging sections in the wave profile. Results for three-layer fluids, with mean

flow in each of the fluid layers, have been obtained numerically by Rus̊as & Grue [21],

and it was seen in that problem that solitary waves of both elevation and depression

could be computed. For elevation solitary waves, profiles with extreme overhanging

sections were obtained. Forced solitary waves created by a bottom obstruction have been

obtained by Dias & Vanden-Broeck [22], using an integral-equation technique for the fully

nonlinear problem in addition to a weakly nonlinear theory for moderate disturbances.

That approach corresponds reasonably closely to the viewpoint of the present paper.
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Figure 1. Illustration of an intrusion layer created when water enters a reservoir. The fluid of

intermediate density ρ2 initially flows down into the reservoir before moving horizontally at its

neutrally buoyant height. A solitary wave is established in the moving middle layer, with its two

interfaces bulging outward, as sketched.

The governing equations for this problem are reviewed in §2, and the results for the

(linearized) small amplitude solution for waves of finite wavelength are summarized from

Paper 1 [8]. In §3, the weakly nonlinear theory is developed, leading to a Korteweg–de

Vries equation for the interface shapes. The solitary wave is obtained as the homoclinic

orbit of this dynamical system, and also yields a speed-amplitude relation for solitary

waves of moderate height. The numerical solution algorithm for the fully nonlinear

problem is outlined in §4, and is based on the use of integral equations in the physical

plane of the solution variables. Numerical results are presented and discussed in §5, and

the paper concludes with a discussion in §6.

2 The governing equations

Consider an unbounded stratified fluid subject to the downward acceleration g of gravity.

It is assumed that the fluid consists of three horizontal layers, each separated from the

other by a sharp interface. There are thus two horizontal interfaces, and a cartesian

coordinate system is located on the lower interface, with the y-axis pointing vertically (in

the opposite direction to the acceleration of gravity). The top, middle and bottom fluid

layers have densities ρ1, ρ2 and ρ3, respectively, and it is a physical requirement that

ρ1 < ρ2 < ρ3 for stability. The height of the middle layer is H .

The top and bottom layers are assumed to be stationary and of infinite depth, but the

middle layer (of density ρ2) is moving with speed c. This is therefore an intrusion layer of

thickness H that is entering an otherwise stationary stratified fluid. It is assumed that the

flow is two-dimensional, with horizontal and vertical velocity components u and v in the

moving middle fluid layer.

A sketch of the three-layer intrusion system is given in Figure 1, illustrating the situation

that might be encountered in a reservoir. The moving middle layer of intermediate density
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ρ2 is created far to the left of the picture by a flow moving down the reservoir side

wall, and detaching from the wall and entering the reservoir at the height of its neutral

buoyancy. A stationary solitary wave is formed at some position, and the y-axis of the

cartesian coordinate system is located at its crests, as indicated. The upper and lower

interfaces have equations y = ηU(x) and y = ηL(x).

Dimensionless coordinates and variables are now defined, and used throughout the

remainder of this paper. All lengths are scaled relative to the mean depth H of the middle

layer, and all speeds are measured relative to the mean speed c of that flowing intrusion

layer. In these dimensionless variables, the middle layer therefore has unit depth and speed

far upstream and downstream of the solitary wave. The fluid system is assumed to be ideal

in the sense that it is incompressible, inviscid and therefore flows irrotationally; a velocity

potential φ thus exists for the moving middle layer, and has been made dimensionless with

respect to the product cH . The solitary wave is then determined by the three dimensionless

parameters:

F =
c√
gH

γ1 =
ρ1

ρ2
γ3 =

ρ3

ρ2
, (2.1)

as in Paper 1 [8]. The first of these parameters F is the Froude number for the moving

middle intrusion layer, and represents a ratio of its speed to a characteristic speed

dependent on its depth. The two constants γ1 < 1 and γ3 > 1 are density ratios of the

stationary top and bottom fluids relative to that of the middle intrusion layer. It will also

be convenient to define a fourth parameter,

AT = ηL(∞) − ηL(0), (2.2)

which is a measure of the amplitude of the solitary wave system, as measured in terms of

the behaviour of the lower interface.

Within the moving middle layer, the two velocity components are given in terms of the

derivatives u = ∂φ/∂x and v = ∂φ/∂y of the velocity potential φ, which in turn satisfies

Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0 in ηL(x) < y < ηU(x). (2.3)

On the upper interface, there is a kinematic condition

v = u
dηU

dx
on y = ηU(x) (2.4)

representing the fact that the fluid cannot cross this boundary, and a dynamic condition

1

2
F2(u2 + v2) + (1 − γ1)(ηU − 1) =

1

2
F2 on y = ηU(x) (2.5)

which expresses the continuity of pressure across this interface. Similarly, the kinematic

condition on the lower interface is

v = u
dηL

dx
on y = ηL(x), (2.6)



An intrusion layer in stationary incompressible fluids 581

and the dynamic condition takes the form

1

2
F2(u2 + v2) − (γ3 − 1)ηL =

1

2
F2 on y = ηL(x). (2.7)

Solitary waves in this system are thus obtained as solutions of equations (2.2)–(2.7).

A linearized solution to equations (2.3)–(2.7), for periodic waves of wavelength λ and

wavenumber k = 2π/λ, is discussed in Paper 1 [8]. It is shown there that the Froude

number F is obtained in terms of the wavenumber k by means of the dispersion relation:

2F2k sinh k =
(
γ3 − γ1

)
cosh k ±

√(
γ3 − γ1

)2
cosh2 k − 4

(
γ3 − 1

)(
1 − γ1

)
sinh2 k. (2.8)

The argument of the square root term in this expression (2.8) is always positive, and both

of the two signs on the right hand side yield positive values for the Froude number F .

There are thus two possible propagation modes for periodic intrusion waves. When the

plus sign is chosen in (2.8), a higher speed solution is obtained, in which both interfaces

are in phase. The minus sign in (2.8) gives rise to a second propagation mode at lower

speed, for which the two interfaces are of opposite phase.

Solitary waves may be thought of as bifurcating from the linearized solution (2.8)

in the limit of infinite wavelength, k → 0. This limit may be investigated using Taylor

series expansions in (2.8), and readily shows that a finite Froude number limit is not

obtained when the plus sign is chosen. Solitary waves are therefore not possible for this

higher-speed propagation mode with the two interfaces in phase.

However, the lower-speed wave type, obtained with the negative sign in equation (2.8),

yields the finite limit

F →

√
(1 − γ1)(γ3 − 1)

(γ3 − γ1)
(2.9)

as k → 0. Solitary waves are thus only possible for the one propagation mode in which the

two interfaces are in anti-phase, and they bifurcate from the trivial uniform-flow solution

at the value of Froude number given by equation (2.9).

3 Weakly nonlinear theory

This section derives the solution for the double-interface solitary wave in the weakly

nonlinear approximation, essentially following the development outlined in Wehausen &

Laitone [23, section 10]. To begin, new scaled variables are introduced, according to the

relations

x̄ = x
√
ε; ȳ = y; ū = u; v̄ = v

√
ε; p̄ = p. (3.1)

Here, the square root of the parameter ε is intended to represent the ratio of vertical to

horizontal length scales, and is assumed to be small. The variable p denotes pressure in

the middle layer.

The full set of governing equations is written in these scaled variables (3.1), in the

moving intrusion layer η̄L(x̄) < ȳ < η̄U(x̄). The continuity equation becomes

ε
∂ū

∂x̄
+

∂v̄

∂ȳ
= 0 (3.2)
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and the condition of irrotational flow is

∂v̄

∂x̄
=

∂ū

∂ȳ
. (3.3)

The horizontal and vertical components of the momentum equation take the forms

ε

(
F2ū

∂ū

∂x̄
+

∂p̄

∂x̄

)
+ F2v̄

∂ū

∂ȳ
= 0 (3.4)

and

ε

(
F2ū

∂v̄

∂x̄
+

∂p̄

∂ȳ
+ 1

)
+ F2v̄

∂v̄

∂ȳ
= 0, (3.5)

respectively.

On the upper interface ȳ = η̄U(x̄), the kinematic condition (2.4) becomes

v̄ = εū
dη̄U

dx̄
, (3.6)

and the dynamic condition (2.5) is replaced with the equivalent statement

p̄ = p̄∞ − γ1ȳ. (3.7)

Similarly, the kinematic and dynamic conditions (2.6) and (2.7) on the lower interface

ȳ = η̄L(x̄) become

v̄ = εū
dη̄L

dx̄
(3.8)

and

p̄ = p̄∞ + 1 − γ1 − γ3ȳ, (3.9)

respectively.

The solution variables and the Froude number are expanded as regular perturbation

series in ε, and take the forms

ū = ū0 + εū1 + ε2ū2 + ε3ū3 + O(ε4)

v̄ = v̄0 + εv̄1 + ε2v̄2 + ε3v̄3 + O(ε4)

η̄U = H̄0 + εH̄1 + ε2H̄2 + ε3H̄3 + O(ε4)

η̄L = L̄0 + εL̄1 + ε2L̄2 + ε3L̄3 + O(ε4)

p̄ = P̄0 + εP̄1 + ε2P̄2 + ε3P̄3 + O(ε4)

F̄2 = Ḡ0 + εḠ1 + ε2Ḡ2 + ε3Ḡ3 + O(ε4). (3.10)

It is evident from the original non-dimensionalization of this problem that it is necessary

to set H̄0 = 1 and L̄0 = 0. The expansions (3.10) are substituted into the full system (3.2)–

(3.9) of partial differential equations and boundary conditions, and terms are collected at

each order in the parameter ε.

At the zeroth order in ε, it is found that

v̄0 = 0 and ū0 = ū0(x̄). (3.11)
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The first-order equations then show that

ū0 = 1

ū1 = ū1(x̄)

v̄1 = 0

P̄0(ȳ) = p̄∞ + 1 − γ1 − ȳ (3.12)

The equations at the second order in ε now show that

Ḡ0 =
(1 − γ1)(γ3 − 1)

(γ3 − γ1)
. (3.13)

This result (3.13) gives the Froude number at which the solitary wave bifurcates from

uniform flow. It is identical to the result (2.9) obtained as the long-wavelength limit of the

small-amplitude wave solution, for the branch of solutions with the two interfaces having

opposite phase. In addition, the second-order solution yields the relations

P̄1(x̄) = (1 − γ3)L̄1(x̄),

H̄1(x̄) = −
(
γ3 − 1

1 − γ1

)
L̄1(x̄),

ū1(x̄) =

(
γ3 − γ1

1 − γ1

)
L̄1(x̄), (3.14)

for the functions at first order in the expansions (3.10). In particular, the second equation

in this group shows that the two interfaces must move oppositely to one another. Finally,

the second-order solution gives the two velocity components at the second order in (3.10)

in the forms

v̄2(x̄, ȳ) =

[
1 − ȳ

(
γ3 − γ1

1 − γ1

)]
dL̄1

dx̄
,

ū2(x̄, ȳ) =

[
ȳ − 1

2
ȳ2

(
γ3 − γ1

1 − γ1

)]
d2L̄1

dx̄2
+ g2(x̄), (3.15)

in which the function g2 is so far arbitrary.

The remaining function L̄1 in the expressions (3.14) and (3.15) may be determined by

making partial use of the equations to third order in ε. After some considerable algebra

and making use of (3.11)–(3.15), it is found that this function satisfies the third-order

differential equation

d3L̄1

dx̄3
− 9β1L̄1

dL̄1

dx̄
− 3β2Ḡ1

dL̄1

dx̄
= 0. (3.16)

In this expression, the two constants are defined to be

β1 =
(γ3 − γ1)

2

(1 − γ1)[γ3 − γ1 − 3Ḡ0]
, β2 =

(γ3 − γ1)

Ḡ0[γ3 − γ1 − 3Ḡ0]
. (3.17)

The constant Ḡ0 is the bifurcation value of the squared Froude number, as given in (3.13),

and Ḡ1 is the first-order perturbation in (3.10).
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Figure 2. An illustration of the (L̄1, Q̄1) phase plane, for the dynamical system (3.18). The soliton

corresponds to the homoclinic orbit that passes into the saddle at the origin.

The expression (3.16) is a Korteweg–de Vries equation for the shape of the lower

interface (see Wehausen & Laitone [23] and Whitham [24]). From (3.14), the upper

interface must satisfy the similar equation, although its sign is opposite. For the solitary

wave, there is an immediate first integral of (3.16), under the requirement that the lower

interface must become horizontal at infinity. The resulting second-order equation may

then be written as the first-order system

dL̄1

dx̄
= Q̄1

dQ̄1

dx̄
=

9

2
β1L̄

2
1 + 3β2Ḡ1L̄1. (3.18)

This system (3.18) has the two stationary points

(L̄1, Q̄1) = (0, 0),

(
−2β2Ḡ1

3β1
, 0

)
, (3.19)

and the fact that the solitary wave becomes flat at infinity means that the origin (0, 0)

in equation (3.19) must be a saddle of the dynamical system (3.18). This is only possible

if Ḡ1 > 0, which shows that the solitary wave moves faster than the speed given by the

bifurcation value (2.9).

A phase-plane analysis of the dynamical system (3.18) shows that the solitary wave is

the homoclinic orbit with equation

Q̄2
1 = 3β1L̄

3
1 + 3β2Ḡ1L̄

2
1, (3.20)

since it must pass into the origin. A sketch of the situation is given in Figure 2, in which the

outermost loop corresponds to the solitary wave. The smaller inner loops surrounding the

second of the stationary points in (3.19) represent periodic ‘cnoidal’ waves, and are similar



An intrusion layer in stationary incompressible fluids 585

to the anti-phase branch of periodic intrusion waves discussed in Paper 1 [8]. (However,

cnoidal solutions to equations (3.18) are necessarily supercritical, as their Froude number

must exceed the bifurcation value in equation (2.9). We do not discuss these further here.)

The system (3.18), (3.20) can be integrated in closed form, for the solitary wave, to

give the famous ‘sech-squared’ profile. This is discussed in detail by Whitham [24], for

example. (A summary of the various solitary wave theories is also given in the paper by

Grue et al. [25].) In terms of the original variables obtained from (3.1) and (3.10), the

lower and upper interfaces are predicted by this weakly nonlinear analysis to have the

profiles

ηL(x) = −AT sech2((x/2)
√

3β1AT )

ηU(x) = 1 +
γ3 − 1

1 − γ1
AT sech2((x/2)

√
3β1AT ). (3.21)

The horizontal velocity component is then determined with the aid of equation (3.14) to

be

u(x) = 1 − γ3 − γ1

1 − γ1
AT sech2((x/2)

√
3β1AT ). (3.22)

In addition, the amplitude of the soliton, as defined by (2.2), is related to the Froude

number F by means of the equation

F2 = Ḡ0 + (β1/β2)AT , (3.23)

after the first-order term Ḡ1 has been eliminated using (3.10).

The limit γ1 → 0 corresponds to the situation in which the top fluid has zero density;

in that case, the upper interface becomes a free surface. The two constants in equations

(3.17) become simply

β1 =
(γ3)

3

(γ3)2 − 3γ3 + 3
, β2 =

β1

γ3 − 1
,

The interface shapes are as in equations (3.21), and the weakly nonlinear dispersion

relation (3.23) has the simple form

F2 = (γ3 − 1)[1/γ3 + AT ]. (3.24)

Although (3.24) has a similar form to that of the solitary wave of depression summarized

in Grue et al. [25], it is nevertheless a different solution, since in the present situation, the

lowest fluid is stationary.

The result (3.21)–(3.23) thus represents the complete solitary wave solution in the weakly

nonlinear analysis. It will be seen that it provides a good approximation for waves of

moderate amplitude, and thus gives a good starting point for the fully nonlinear numerical

solution of the next section.

4 Numerical solution algorithm

The numerical method used for the solution of the fully nonlinear system of equations

(2.2)–(2.7) is discussed in this section. The formulation is based on the use of integral

equations in the physical plane of the solution variables.
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Suppose that the complex position zQ = xQ + iyQ represents a point either on the

upper interface y = ηU(x) or on the lower interface y = ηL(x). The complex function

f(z) = u(x, y) − iv(x, y) − 1 is analytic in the moving middle fluid layer, since the fluid is

incompressible and flows irrotationally, and the velocity components satisfy the Cauchy-

Riemann equations (from which (3.2) and (3.3) were derived). Furthermore, f(z) vanishes

far upstream and far downstream. It therefore follows from Cauchy’s integral formula

that ∮
Γ

f(zP )

zP − zQ
dzP = 0. (4.1)

In this expression, P denotes a moveable point anywhere on the closed contour Γ . This

contour is made up of the upper interface and the lower interface connected by vertical

lines far upstream and far downstream; the point zQ on either interface is by-passed with

a small semi-circular arc contained within the moving middle layer.

The contributions to the integral in equation (4.1) from the vertical lines at infinity are

simply zero, since the function f(z) vanishes there. Thus only the line integrals along the

two interfaces and on the small semi-circle by-passing the point Q on either interface need

to be taken into account in equation (4.1). After a little algebra, and taking the imaginary

part in (4.1), for point Q on the upper interface it is found that

π(u − 1)Q = CPV

∫ ∞

−∞

TU(P )(ηU(P ) − ηU(Q)) + δx(−)η′
U(P )

(δx(−))2 + (ηU(P ) − ηU(Q))2
dxP

−
∫ ∞

−∞

TL(P )(ηL(P ) − ηU(Q)) + δx(−)η′
L(P )

(δx(−))2 + (ηL(P ) − ηU(Q))2
dxP . (4.2)

In this expression, it is convenient to define the intermediate functions

TU = u(x, ηU)[1 + (η′
U)2] − 1

TL = u(x, ηL)[1 + (η′
L)2] − 1 (4.3)

and the differences

δx(−) = xP − xQ, δx(+) = xP + xQ. (4.4)

A similar expression to (4.2) is obtained when point Q is located on the lower interface.

As the solitary wave is left-right symmetric, it is appropriate to exploit this fact in the

numerical solution algorithm. It follows that

ηU(−x) = ηU(x) ηL(−x) = ηL(x)

u(−x, y) = u(x, y) v(−x, y) = −v(x, y). (4.5)

When the symmetry relations (4.5) are incorporated into (4.2), the final form of the

integral equation, with point Q on the upper interface, becomes

π(u − 1)Q =

∫ ∞

0

TU(P )(ηU(P ) − ηU(Q)) + δx(+)η′
U(P )(

δx(+)
)2

+ (ηU(P ) − ηU(Q))2
dxP

+CPV

∫ ∞

0

TU(P )(ηU(P ) − ηU(Q)) + δx(−)η′
U(P )(

δx(−)
)2

+ (ηU(P ) − ηU(Q))2
dxP
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−
∫ ∞

0

TL(P )(ηL(P ) − ηU(Q)) + δx(+)η′
L(P )(

δx(+)
)2

+ (ηL(P ) − ηU(Q))2
dxP

−
∫ ∞

0

TL(P )(ηL(P ) − ηU(Q)) + δx(−)η′
L(P )(

δx(−)
)2

+ (ηL(P ) − ηU(Q))2
dxP . (4.6)

The intermediate quantities and the differences in this expression are as defined in (4.3) and

(4.4). Similarly, if point Q is on the lower interface, the corresponding integral equation is

π(u − 1)Q =

∫ ∞

0

TU(P )(ηU(P ) − ηL(Q)) + δx(+)η′
U(P )(

δx(+)
)2

+ (ηU(P ) − ηL(Q))2
dxP

+

∫ ∞

0

TU(P )(ηU(P ) − ηL(Q)) + δx(−)η′
U(P )(

δx(−)
)2

+ (ηU(P ) − ηL(Q))2
dxP

−
∫ ∞

0

TL(P )(ηL(P ) − ηL(Q)) + δx(+)η′
L(P )(

δx(+)
)2

+ (ηL(P ) − ηL(Q))2
dxP

−CPV

∫ ∞

0

TL(P )(ηL(P ) − ηL(Q)) + δx(−)η′
L(P )(

δx(−)
)2

+ (ηL(P ) − ηL(Q))2
dxP . (4.7)

The notation CPV in these expressions indicates that the Cauchy Principal Value inter-

pretation is to be given to the integrands that are singular in the limit P → Q.

The numerical method thus consists of obtaining an approximate solution to the system

of equations (2.4)–(2.7) along with the integral equations (4.6) and (4.7) and the amplitude

condition (2.2). To do this, a grid of equally-spaced points

0 = x1, x2 , . . . , xN−1, xN

is defined, in which the last point xN is taken to be appropriately large. The interval

between successive grid points is ∆x. The solution variables at the two interfaces are

represented approximately by point values at each of the grid points, and a vector of

unknowns

U =
[
η

(U)
1 , . . . , η

(U)
N−1; η

(L)
1 , . . . , η

(L)
N−1; u

(U)
1 , . . . , u

(U)
N−1; u

(L)
1 , . . . , u

(L)
N−1;F

]T
(4.8)

is established. This vector has 4N − 3 components.

After an initial guess has been made for the vector U in (4.8), all the remaining

components on both interfaces are then computed. The flow is taken to be uniform far

downstream, so that

η
(U)
N = 1, η

(L)
N = 0, u

(U)
N = 1, u

(L)
N = 1. (4.9)

The derivatives of the two interface elevations are calculated using centred three-point

differences. Thus the slope of the upper interface at each mesh point is estimated to be

(
η(U)

)′
k

=
(
η

(U)
k+1 − η

(U)
k−1

)
/(2∆x), k = 2 , . . . , N − 1 (4.10)

and is zero at the first and last points k = 1 and k = N. The derivatives of the lower
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interface are computed in exactly the same way as (4.10). The two kinematic conditions

(2.4) and (2.6) are satisfied directly at each mesh point by computing

v
(U)
k = u

(U)
k

(
η(U)

)′
k
, k = 1, 2 , . . . , N

at the upper interface, and the corresponding vertical velocity component at the lower

interface.

An error vector E of length 4N − 3 is now defined. Its first N − 1 components come

from the dynamic condition (2.5) at the upper interface, evaluated at all mesh points

except the last. The next N − 1 components are similarly obtained by evaluating (2.7)

along the lower interface, at each mesh point except the last one. The next N − 1 entries

in this vector come from the upper integral equation (4.6), with Q chosen to be evaluated

at the N − 1 half-mesh points

xk+1/2 = 1
2

(
xk + xk+1

)
, k = 1, 2 , . . . , N − 1 (4.11)

and a further N − 1 components are obtained by similarly evaluating the lower integral

equation (4.7) at the half-mesh points (4.11). Finally, the last element of the error vector

E is derived from the amplitude condition (2.2), and takes the form

E4N−3 = AT + η
(L)
1 − η

(L)
N .

A damped Newton’s method is used to adjust the components of the vector U in

equation (4.8) so as to drive the components of the error vector E to zero. Convergence

to a numerical solution is usually obtained in four or five iterations, and many separate

solutions have been computed, typically using N = 201 points on each interface. This

involves Newton’s method in a total of 801 variables. The integrals in (4.6) and (4.7) have

been evaluated using trapezoidal rule quadrature.

5 Presentation of results

Numerical results have been obtained with a variety of density ratios γ1 and γ3 in (2.1),

and compared with the weakly nonlinear analysis of §3. To begin, we present solutions for

the symmetric case γ1 = 0.95, γ3 = 1.05. The small-amplitude solution AT = 0.01 for this

case is shown as a phase-plane plot for the lower interface ηL in Figure 3. The dashed line

is the homoclinic orbit from the weakly nonlinear analysis of §3, and has been obtained

by plotting the first equation in (3.21) against its derivative. The nonlinear result is shown

with a solid line, using numerical differentiation as in (4.10). The two results are in close

agreement for this low amplitude result.

A large-amplitude solution for this set of density ratios is presented in Figure 4. In

this diagram, the amplitude has the value AT = 0.3, and is close to a maximum limiting

profile. This is evident from the figure, since the crests on each interface have become more

sharply curved. The limiting wave would involve the formation of a corner at the crest,

enclosing the Stokes’ angle of 120◦ [15], although this precise feature cannot be resolved

exactly with the present numerical scheme. The corresponding phase-plane orbits for this

case are given in Figure 5, for the lower interface. The dashed line is again the weakly
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Figure 3. Phase-plane plots for the lower interface, for γ1 = 0.95, γ3 = 1.05 and amplitude

AT = 0.01. The dashed line is the Korteweg–de Vries solution and the solid line is the nonlinear

profile.
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Figure 4. Nonlinear solitary wave profile for γ1 = 0.95, γ3 = 1.05 and amplitude AT = 0.3.

nonlinear solution obtained from (3.21) and the solid line is the fully nonlinear numerical

result. The two are in broad agreement, although the nonlinear solution is evidently more

narrowly pointed near the origin of the phase plane. In addition, some numerical noise

due to grid-scale oscillation is present near the origin in Figure 5.
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Figure 5. Phase-plane plots for the lower interface, for γ1 = 0.95, γ3 = 1.05 and amplitude AT = 0.3,

as in Figure 4. The dashed line is the Korteweg–de Vries solution and the solid line is the nonlinear

profile.
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Figure 6. Dependence of Froude number on solitary wave amplitude for the case γ1 = 0.95,

γ3 = 1.05. The dashed line is the Korteweg–de Vries solution and the solid line is the nonlinear

result.

Figure 6 presents a comparison of the wave-speed (the Froude number in (2.1)) for the

weakly nonlinear and numerical solutions, as functions of the wave amplitude AT . The

two are evidently in close agreement for solitary waves of small to medium amplitude,
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Figure 7. Nonlinear solitary wave profile for γ1 = 0.91, γ3 = 1.01 and amplitude AT = 0.54.

and in fact the Korteweg–de Vries result (3.23) gives a reasonable estimate of the speed

F over the entire interval of amplitudes AT for which nonlinear solitary waves could be

obtained. However, the two curves differ somewhat for large amplitude, and the fully

nonlinear solution eventually fails at a value of amplitude slightly larger than AT = 0.3,

when a corner is formed at the crest of the limiting wave profile.

We consider now the situation in which the density jumps across the two interfaces

are not symmetrical. The first such case presented here has density ratios γ1 = 0.91 and

γ3 = 1.01. The density jump at the lower interface is thus one tenth of that at the upper

interface, so that larger interfacial disturbances are to be expected on the lower surface.

It is evident from Figure 7 that this is indeed the case. This solution has been calculated

for an amplitude AT = 0.54, and is close to the maximum limiting wave profile which

contains a sharp crest on the lower free surface.

The phase-plane representation of the wave profile in Figure 7 is shown in Figure 8. The

solid line corresponds to the result in Figure 7 for the lower interface y = ηL(x), and the

dashed line is the weakly nonlinear trajectory computed from (3.21). The fully nonlinear

profile is narrower near the phase-plane origin than its weakly nonlinear equivalent, and

the effects of small grid-scale oscillations are again evident there.

Figure 9 shows the variation of Froude number F with amplitude AT for this case.

The fully nonlinear result, drawn with a solid line, agrees well with the predictions of the

Korteweg–de Vries analysis (dashed line), for smaller amplitude. The two curves diverge

at larger amplitude, and near the maximum wave in the nonlinear case, there is a small

region where the wave speed actually decreases slightly, before the limiting profile with

an enclosed corner at its crest is formed on the lower interface.

This presentation of results concludes with an investigation of the opposite asymmetry

in density jumps at the two interfaces. Figure 10 shows the solitary wave solution for

γ1 = 0.99, γ3 = 1.09, and for wave amplitude AT = 0.027. As the density difference at the
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Figure 8. Phase-plane plots for the lower interface, for γ1 = 0.91, γ3 = 1.01 and amplitude

AT = 0.54, as in Figure 7. The dashed line is the Korteweg–de Vries solution and the solid line is

the nonlinear profile.
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Figure 9. Dependence of Froude number on solitary wave amplitude for the case γ1 = 0.91,

γ3 = 1.01. The dashed line is the Korteweg–de Vries solution and the solid line is the nonlinear

result.

upper interface is now very small by comparison with that at the lower interface, larger

disturbances are to be expected on the upper free surface. The solution in Figure 10 is

again close to the maximum wave profile, for which a corner would be formed at the

crest of the disturbance on the upper interface, and it is clear that a sharp crest is present
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Figure 10. Nonlinear solitary wave profile for γ1 = 0.99, γ3 = 1.09 and amplitude AT = 0.027.
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Figure 11. Dependence of Froude number on solitary wave amplitude for the case γ1 = 0.99,

γ3 = 1.09. The dashed line is the Korteweg–de Vries solution and the solid line is the nonlinear

result.

there. Small grid-scale oscillations may be visible on the lower surface, and these make it

more difficult for the nonlinear solution scheme to converge when AT is very close to the

wave of maximum amplitude.

The Froude number dependence on amplitude for this case is shown in Figure 11, and

is qualitatively similar to previous cases shown in Figures 6 and 9. Agreement between the



594 Lawrence K. Forbes and Graeme C. Hocking

fully nonlinear wave speed and the value (3.23) predicted by Korteweg-de Vries theory is

good for small amplitudes, but the two become more dissimilar as the amplitude increases.

Near the maximum wave, the nonlinear wave speed again decreases slightly, as is evident

from Figure 11.

6 Conclusion and discussion

In this paper, solitary waves have been calculated on a moving intrusion layer that is

penetrating otherwise stationary stratified fluid of infinite depth. Results have been shown

primarily for density ratios pertaining to flows in reservoirs, although similar situations

exist in the atmosphere for example. A weakly nonlinear theory was derived, that leads to

a Korteweg–de Vries equation for both interfaces. It has been shown that the disturbances

to each interface are opposite in sign, so that the soliton occurs as an outwardly directed

bulge, for this three-layer system. The fluid speed (3.22) necessarily slows down in that

section, as is required to conserve mass.

These predictions have been confirmed using a numerical solution of the fully nonlinear

problem, based on an integral-equation technique. The solution profiles and their predicted

wave-speeds are in good agreement for small-amplitude waves, but in the nonlinear case,

a limiting configuration is ultimately achieved at some maximum amplitude. When the

density jumps at the two interfaces are equal, then the system has reflectional symmetry

about the centre-line for the moving middle intrusion layer, and in that case the limiting

profile involves the formation of corners at the crests of the disturbances on both interfaces

simultaneously. Otherwise, for asymmetric density profiles, the limiting wave system has

a corner at the crest of the wave on either the upper or the lower interface alone.

As a check on the solitary waves computed in this second paper, we have used the

method of part 1 [8], valid for periodic waves of wavelength λ, to reproduce many of

the results presented here. We have computed a large number of waves with very long

wavelength λ = 200, and have confirmed that the method in paper 1 can indeed generate

the solitary waves produced here. Precisely this approach was adopted by Michallet &

Dias [26] in their study of solitary waves with oscillatory tails.

The numerical technique of this paper is capable of generalization to more complicated

soliton flows. It is possible with this physical-plane approach to consider constant vorticity

in the fluid layers, although in that case it may be expected that the limiting wave will not

necessarily involve a corner enclosing the Stokes angle 120◦ at its crests. Instead, there

may be overhanging portions in the wave profile, similar to those discussed earlier [16, 17,

20, 21], for example. The method presented in §4 could not compute such waves directly,

but can easily be adapted to the task, by re-writing the interfacial boundary conditions

in terms of an arclength. When more than one fluid layer is in motion, it is also possible

for nonlinear resonances to occur between the flow modes in the different layers, and that

more complex flow situation has been discussed by Rus̊as & Grue [21] and Michallet &

Dias [26], for example.
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