904 research outputs found

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments

    Eye-gaze interaction techniques for use in online games and environments for users with severe physical disabilities.

    Get PDF
    Multi-User Virtual Environments (MUVEs) and Massively Multi-player On- line Games (MMOGs) are a popular, immersive genre of computer game. For some disabled users, eye-gaze offers the only input modality with the potential for sufficiently high bandwidth to support the range of time-critical interaction tasks required to play. Although, there has been much research into gaze interaction techniques for computer interaction over the past twenty years, much of this has focused on 2D desktop application control. There has been some work that investigates the use of gaze interaction as an additional input device for gaming but very little on using gaze on its own. Further, configuration of these techniques usually requires expert knowledge often beyond the capabilities of a parent, carer or support worker. The work presented in this thesis addresses these issues by the investigation of novel gaze-only interaction techniques. These are to enable at least a beginner level of game play to take place together with a means of adapting the techniques to suit an individual. To achieve this, a collection of novel gaze based interaction techniques have been evaluated through empirical studies. These have been encompassed within an extensible software architecture that has been made available for free download. Further, a metric of reliability is developed that when used as a measure within a specially designed diagnostic test, allows the interaction technique to be adapted to suit an individual. Methods of selecting interaction techniques based upon game task are also explored and a novel methodology based on expert task analysis is developed to aid selection

    Convex Interaction : VR o mochiita kōdō asshuku ni yoru kūkanteki intarakushon no kakuchō

    Get PDF

    NaviFields: relevance fields for adaptive VR navigation

    Get PDF
    Virtual Reality allow users to explore virtual environments naturally, by moving their head and body. However, the size of the environments they can explore is limited by real world constraints, such as the tracking technology or the physical space available. Existing techniques removing these limitations often break the metaphor of natural navigation in VR (e.g. steering techniques), involve control commands (e.g., teleporting) or hinder precise navigation (e.g., scaling user's displacements). This paper proposes NaviFields, which quantify the requirements for precise navigation of each point of the environment, allowing natural navigation within relevant areas, while scaling users' displacements when travelling across non-relevant spaces. This expands the size of the navigable space, retains the natural navigation metaphor and still allows for areas with precise control of the virtual head. We present a formal description of our NaviFields technique, which we compared against two alternative solutions (i.e., homogeneous scaling and natural navigation). Our results demonstrate our ability to cover larger spaces, introduce minimal disruption when travelling across bigger distances and improve very significantly the precise control of the viewpoint inside relevant areas

    Walking with virtual humans : understanding human response to virtual humanoids' appearance and behaviour while navigating in immersive VR

    Get PDF
    In this thesis, we present a set of studies whose results have allowed us to analyze how to improve the realism, navigation, and behaviour of the avatars in an immersive virtual reality environment. In our simulations, participants must perform a series of tasks and we have analyzed perceptual and behavioural data. The results of the studies have allowed us to deduce what improvements are needed to be incorporated to the original simulations, in order to enhance the perception of realism, the navigation technique, the rendering of the avatars, their behaviour or their animations. The most reliable technique for simulating avatars’ behaviour in a virtual reality environment should be based on the study of how humans behave within the environment. For this purpose, it is necessary to build virtual environments where participants can navigate safely and comfortably with a proper metaphor and, if the environment is populated with avatars, simulate their behaviour accurately. All these aspects together will make the participants behave in a way that is closer to how they would behave in the real world. Besides, the integration of these concepts could provide an ideal platform to develop different types of applications with and without collaborative virtual reality such as emergency simulations, teaching, architecture, or designing. In the first contribution of this thesis, we carried out an experiment to study human decision making during an evacuation. We were interested to evaluate to what extent the behaviour of a virtual crowd can affect individuals' decisions. From the second contribution, in which we studied the perception of realism with bots and humans performing just locomotion or varied animations, we can conclude that the combination of having human-like avatars with animation variety can increase the overall realism of a crowd simulation, trajectories and animation. The preliminary study presented in the third contribution of this thesis showed that realistic rendering of the environment and the avatars do not appear to increase the perception of realism in the participants, which is consistent with works presented previously. The preliminary results in our walk-in-place contribution showed a seamless and natural transition between walk-in-place and normal walk. Our system provided a velocity mapping function that closely resembles natural walk. We observed through a pilot study that the system successfully reduces motion sickness and enhances immersion. Finally, the results of the contribution related to locomotion in collaborative virtual reality showed that animation synchronism and footstep sound of the avatars representing the participants do not seem to have a strong impact in terms of presence and feeling of avatar control. However, in our experiment, incorporating natural animations and footstep sound resulted in smaller clearance values in VR than previous work in the literature. The main objective of this thesis was to improve different factors related to virtual reality experiences to make the participants feel more comfortable in the virtual environment. These factors include the behaviour and appearance of the virtual avatars and the navigation through the simulated space in the experience. By increasing the realism of the avatars and facilitating navigation, high scores in presence are achieved during the simulations. This provides an ideal framework for developing collaborative virtual reality applications or emergency simulations that require participants to feel as if they were in real life.En aquesta tesi, es presenta un conjunt d'estudis els resultats dels quals ens han permès analitzar com millorar el realisme, la navegació i el comportament dels avatars en un entorn de realitat virtual immersiu. En les nostres simulacions, els participants han de realitzar una sèrie de tasques i hem analitzat dades perceptives i de comportament mentre les feien. Els resultats dels estudis ens han permès deduir quines millores són necessàries per a ser incorporades a les simulacions originals, amb la finalitat de millorar la percepció del realisme, la tècnica de navegació, la representació dels avatars, el seu comportament o les seves animacions. La tècnica més fiable per simular el comportament dels avatars en un entorn de realitat virtual hauria de basar-se en l'estudi de com es comporten els humans dins de l¿entorn virtual. Per a aquest propòsit, és necessari construir entorns virtuals on els participants poden navegar amb seguretat i comoditat amb una metàfora adequada i, si l¿entorn està poblat amb avatars, simular el seu comportament amb precisió. Tots aquests aspectes junts fan que els participants es comportin d'una manera més pròxima a com es comportarien en el món real. A més, la integració d'aquests conceptes podria proporcionar una plataforma ideal per desenvolupar diferents tipus d'aplicacions amb i sense realitat virtual col·laborativa com simulacions d'emergència, ensenyament, arquitectura o disseny. En la primera contribució d'aquesta tesi, vam realitzar un experiment per estudiar la presa de decisions durant una evacuació. Estàvem interessats a avaluar en quina mesura el comportament d'una multitud virtual pot afectar les decisions dels participants. A partir de la segona contribució, en la qual estudiem la percepció del realisme amb robots i humans que realitzen només una animació de caminar o bé realitzen diverses animacions, vam arribar a la conclusió que la combinació de tenir avatars semblants als humans amb animacions variades pot augmentar la percepció del realisme general de la simulació de la multitud, les seves trajectòries i animacions. L'estudi preliminar presentat en la tercera contribució d'aquesta tesi va demostrar que la representació realista de l¿entorn i dels avatars no semblen augmentar la percepció del realisme en els participants, que és coherent amb treballs presentats anteriorment. Els resultats preliminars de la nostra contribució de walk-in-place van mostrar una transició suau i natural entre les metàfores de walk-in-place i caminar normal. El nostre sistema va proporcionar una funció de mapatge de velocitat que s'assembla molt al caminar natural. Hem observat a través d'un estudi pilot que el sistema redueix amb èxit el motion sickness i millora la immersió. Finalment, els resultats de la contribució relacionada amb locomoció en realitat virtual col·laborativa van mostrar que el sincronisme de l'animació i el so dels avatars que representen els participants no semblen tenir un fort impacte en termes de presència i sensació de control de l'avatar. No obstant això, en el nostre experiment, la incorporació d'animacions naturals i el so de passos va donar lloc a valors de clearance més petits en RV que treballs anteriors ja publicats. L'objectiu principal d'aquesta tesi ha estat millorar els diferents factors relacionats amb experiències de realitat virtual immersiva per fer que els participants se sentin més còmodes en l'entorn virtual. Aquests factors inclouen el comportament i l'aparença dels avatars i la navegació a través de l'entorn virtual. En augmentar el realisme dels avatars i facilitar la navegació, s'aconsegueixen altes puntuacions en presència durant les simulacions. Això proporciona un marc ideal per desenvolupar aplicacions col·laboratives de realitat virtual o simulacions d'emergència que requereixen que els participants se sentin com si estiguessin en la vida realPostprint (published version

    VR Lab: User Interaction in Virtual Environments using Space and Time Morphing

    Get PDF
    Virtual Reality (VR) allows exploring changes in space and time that would otherwise be difficult to simulate in the real world. It becomes possible to transform the virtual world by increasing or diminishing distances or playing with time delays. Analysing the adaptability of users to different space-time conditions allows studying human perception and finding the right combination of interaction paradigms. Different methods have been proposed in the literature to offer users intuitive techniques for navigating wide virtual spaces, even if restricted to small physical play areas. Other studies investigate latency tolerance, suggesting humans’ inability to detect slight discrepancies between visual and proprioceptive sensory information. These studies contribute valuable insights for designing immersive virtual experiences and interaction techniques suitable for each task. This dissertation presents the design, implementation, and evaluation of a tangible VR Lab where spatiotemporal morphing scenarios can be studied. As a case study, we restricted the scope of the research to three spatial morphing scenarios and one temporal morphing scenario. The spatial morphing scenarios compared Euclidean and hyperbolic geometries, studied size discordance between physical and virtual objects, and the representation of hands in VR. The temporal morphing scenario investigated from what visual delay the task performance is affected. The users’ adaptability to the different spatiotemporal conditions was assessed based on task completion time, questionnaires, and observed behaviours. The results revealed significant differences between Euclidean and hyperbolic spaces. They also showed a preference for handling virtual and physical objects with concordant sizes, without any virtual representation of the hands. Although task performance was affected from 200 ms onwards, participants considered the ease of the task to be affected only from 500 ms visual delay onwards.A Realidade Virtual (RV) permite explorar mudanças no espaço e no tempo que de outra forma seriam difíceis de simular no mundo real. Torna-se possível transformar o mundo virtual aumentando ou diminuindo as distâncias ou manipulando os atrasos no tempo. A análise da adaptabilidade dos utilizadores a diferentes condições espaço-temporais permite estudar a perceção humana e encontrar a combinação certa de paradigmas de interação. Diferentes métodos têm sido propostos na literatura para oferecer aos utilizadores técnicas intuitivas de navegação em espaços virtuais amplos, mesmo que restritos a pequenas áreas físicas de jogo. Outros estudos investigam a tolerância à latência, sugerindo a incapacidade do ser humano de detetar ligeiras discrepâncias entre a informação sensorial visual e propriocetiva. Estes estudos contribuem com valiosas informações para conceber experiências virtuais imersivas e técnicas de interação adequadas a cada tarefa. Esta dissertação apresenta o desenho, implementação e avaliação de um Laboratório de RV tangível onde podem ser estudados cenários de distorção espaço-temporal. Como estudo de caso, restringimos o âmbito da investigação a três cenários de distorção espacial e um cenário de distorção temporal. Os cenários de distorção espacial compararam geometrias Euclidianas e hiperbólicas, estudaram a discordância de tamanho entre objetos físicos e virtuais, e a representação das mãos em RV. O cenário de distorção temporal investigou a partir de que atraso visual o desempenho da tarefa é afetado. A adaptabilidade dos utilizadores às diferentes condições espaço-temporais foi avaliada com base no tempo de conclusão da tarefa, questionários, e comportamentos observados. Os resultados revelaram diferenças significativas entre os espaços Euclidiano e hiperbólico. Também mostraram a preferência pelo manuseamento de objetos virtuais e físicos com tamanhos concordantes, sem qualquer representação virtual das mãos. Embora o desempenho da tarefa tenha sido afetado a partir dos 200 ms, os participantes consideraram que a facilidade da tarefa só foi afetada a partir dos 500 ms de atraso visual

    The benefits of using a walking interface to navigate virtual environments

    No full text
    Navigation is the most common interactive task performed in three-dimensional virtual environments (VEs), but it is also a task that users often find difficult. We investigated how body-based information about the translational and rotational components of movement helped participants to perform a navigational search task (finding targets hidden inside boxes in a room-sized space). When participants physically walked around the VE while viewing it on a head-mounted display (HMD), they then performed 90% of trials perfectly, comparable to participants who had performed an equivalent task in the real world during a previous study. By contrast, participants performed less than 50% of trials perfectly if they used a tethered HMD (move by physically turning but pressing a button to translate) or a desktop display (no body-based information). This is the most complex navigational task in which a real-world level of performance has been achieved in a VE. Behavioral data indicates that both translational and rotational body-based information are required to accurately update one's position during navigation, and participants who walked tended to avoid obstacles, even though collision detection was not implemented and feedback not provided. A walking interface would bring immediate benefits to a number of VE applications
    corecore