13,581 research outputs found

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach

    Get PDF
    Over the past decades, the shrinking transistor size enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Over the past decades, the shrinking transistor size, benefited from the advancement of IC technology, enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Different from many existing DTM heuristics that are based on simple intuitions, we seek to address the thermal problems through a rigorous analytical approach, to achieve the high predictability requirement in real-time system design. In this regard, we have made a number of important contributions. First, we develop a series of lemmas and theorems that are general enough to uncover the fundamental principles and characteristics with regard to the thermal model, peak temperature identification and peak temperature reduction, which are key to thermal-constrained real-time computer system design. Second, we develop a design-time frequency and voltage oscillating approach on multi-core platforms, which can greatly enhance the system throughput and its service capacity. Third, different from the traditional workload balancing approach, we develop a thermal-balancing approach that can substantially improve the energy efficiency and task partitioning feasibility, especially when the system utilization is high or with a tight temperature constraint. The significance of our research is that, not only can our proposed algorithms on throughput maximization and energy conservation outperform existing work significantly as demonstrated in our extensive experimental results, the theoretical results in our research are very general and can greatly benefit other thermal-related research

    Best bang for your buck: GPU nodes for GROMACS biomolecular simulations

    Full text link
    The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well exploited with a combination of SIMD, multi-threading, and MPI-based SPMD/MPMD parallelism, while GPUs can be used as accelerators to compute interactions offloaded from the CPU. Here we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Though hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed since these cards do not support ECC memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime

    Machine Learning for Resource-Constrained Computing Systems

    Get PDF
    Die verfügbaren Ressourcen in Informationsverarbeitungssystemen wie Prozessoren sind in der Regel eingeschränkt. Das umfasst z. B. die elektrische Leistungsaufnahme, den Energieverbrauch, die Wärmeabgabe oder die Chipfläche. Daher ist die Optimierung der Verwaltung der verfügbaren Ressourcen von größter Bedeutung, um Ziele wie maximale Performanz zu erreichen. Insbesondere die Ressourcenverwaltung auf der Systemebene hat über die (dynamische) Zuweisung von Anwendungen zu Prozessorkernen und über die Skalierung der Spannung und Frequenz (dynamic voltage and frequency scaling, DVFS) einen großen Einfluss auf die Performanz, die elektrische Leistung und die Temperatur während der Ausführung von Anwendungen. Die wichtigsten Herausforderungen bei der Ressourcenverwaltung sind die hohe Komplexität von Anwendungen und Plattformen, unvorhergesehene (zur Entwurfszeit nicht bekannte) Anwendungen oder Plattformkonfigurationen, proaktive Optimierung und die Minimierung des Laufzeit-Overheads. Bestehende Techniken, die auf einfachen Heuristiken oder analytischen Modellen basieren, gehen diese Herausforderungen nur unzureichend an. Aus diesem Grund ist der Hauptbeitrag dieser Dissertation der Einsatz maschinellen Lernens (ML) für Ressourcenverwaltung. ML-basierte Lösungen ermöglichen die Bewältigung dieser Herausforderungen durch die Vorhersage der Auswirkungen potenzieller Entscheidungen in der Ressourcenverwaltung, durch Schätzung verborgener (unbeobachtbarer) Eigenschaften von Anwendungen oder durch direktes Lernen einer Ressourcenverwaltungs-Strategie. Diese Dissertation entwickelt mehrere neuartige ML-basierte Ressourcenverwaltung-Techniken für verschiedene Plattformen, Ziele und Randbedingungen. Zunächst wird eine auf Vorhersagen basierende Technik zur Maximierung der Performanz von Mehrkernprozessoren mit verteiltem Last-Level Cache und limitierter Maximaltemperatur vorgestellt. Diese verwendet ein neuronales Netzwerk (NN) zur Vorhersage der Auswirkungen potenzieller Migrationen von Anwendungen zwischen Prozessorkernen auf die Performanz. Diese Vorhersagen erlauben die Bestimmung der bestmöglichen Migration und ermöglichen eine proaktive Verwaltung. Das NN ist so trainiert, dass es mit unbekannten Anwendungen und verschiedenen Temperaturlimits zurechtkommt. Zweitens wird ein Boosting-Verfahren zur Maximierung der Performanz homogener Mehrkernprozessoren mit limitierter Maximaltemperatur mithilfe von DVFS vorgestellt. Dieses basiert auf einer neuartigen {Boostability}-Metrik, die die Abhängigkeiten von Performanz, elektrischer Leistung und Temperatur auf Spannungs/Frequenz-Änderungen in einer Metrik vereint. % ignorerepeated Die Abhängigkeiten von Performanz und elektrischer Leistung hängen von der Anwendung ab und können zur Laufzeit nicht direkt beobachtet (gemessen) werden. Daher wird ein NN verwendet, um diese Werte für unbekannte Anwendungen zu schätzen und so die Komplexität der Boosting-Optimierung zu bewältigen. Drittens wird eine Technik zur Temperaturminimierung von heterogenen Mehrkernprozessoren mit Quality of Service-Zielen vorgestellt. Diese verwendet Imitationslernen, um eine Migrationsstrategie von Anwendungen aus optimalen Orakel-Demonstrationen zu lernen. Dafür wird ein NN eingesetzt, um die Komplexität der Plattform und des Anwendungsverhaltens zu bewältigen. Die Inferenz des NNs wird mit Hilfe eines vorhandenen generischen Beschleunigers, einer Neural Processing Unit (NPU), beschleunigt. Auch die ML Algorithmen selbst müssen auch mit begrenzten Ressourcen ausgeführt werden. Zuletzt wird eine Technik für ressourcenorientiertes Training auf verteilten Geräten vorgestellt, um einen konstanten Trainingsdurchsatz bei sich schnell ändernder Verfügbarkeit von Rechenressourcen aufrechtzuerhalten, wie es z.~B.~aufgrund von Konflikten bei gemeinsam genutzten Ressourcen der Fall ist. Diese Technik verwendet Structured Dropout, welches beim Training zufällige Teile des NNs auslässt. Dadurch können die erforderlichen Ressourcen für das Training dynamisch angepasst werden -- mit vernachlässigbarem Overhead, aber auf Kosten einer langsameren Trainingskonvergenz. Die Pareto-optimalen Dropout-Parameter pro Schicht des NNs werden durch eine Design Space Exploration bestimmt. Evaluierungen dieser Techniken werden sowohl in Simulationen als auch auf realer Hardware durchgeführt und zeigen signifikante Verbesserungen gegenüber dem Stand der Technik, bei vernachlässigbarem Laufzeit-Overhead. Zusammenfassend zeigt diese Dissertation, dass ML eine Schlüsseltechnologie zur Optimierung der Verwaltung der limitierten Ressourcen auf Systemebene ist, indem die damit verbundenen Herausforderungen angegangen werden

    ADAPTIVE POWER MANAGEMENT FOR COMPUTERS AND MOBILE DEVICES

    Get PDF
    Power consumption has become a major concern in the design of computing systems today. High power consumption increases cooling cost, degrades the system reliability and also reduces the battery life in portable devices. Modern computing/communication devices support multiple power modes which enable power and performance tradeoff. Dynamic power management (DPM), dynamic voltage and frequency scaling (DVFS), and dynamic task migration for workload consolidation are system level power reduction techniques widely used during runtime. In the first part of the dissertation, we concentrate on the dynamic power management of the personal computer and server platform where the DPM, DVFS and task migrations techniques are proved to be highly effective. A hierarchical energy management framework is assumed, where task migration is applied at the upper level to improve server utilization and energy efficiency, and DPM/DVFS is applied at the lower level to manage the power mode of individual processor. This work focuses on estimating the performance impact of workload consolidation and searching for optimal DPM/DVFS that adapts to the changing workload. Machine learning based modeling and reinforcement learning based policy optimization techniques are investigated. Mobile computing has been weaved into everyday lives to a great extend in recent years. Compared to traditional personal computer and server environment, the mobile computing environment is obviously more context-rich and the usage of mobile computing device is clearly imprinted with user\u27s personal signature. The ability to learn such signature enables immense potential in workload prediction and energy or battery life management. In the second part of the dissertation, we present two mobile device power management techniques which take advantage of the context-rich characteristics of mobile platform and make adaptive energy management decisions based on different user behavior. We firstly investigate the user battery usage behavior modeling and apply the model directly for battery energy management. The first technique aims at maximizing the quality of service (QoS) while keeping the risk of battery depletion below a given threshold. The second technique is an user-aware streaming strategies for energy efficient smartphone video playback applications (e.g. YouTube) that minimizes the sleep and wake penalty of cellular module and at the same time avoid the energy waste from excessive downloading. Runtime power and thermal management has attracted substantial interests in multi-core distributed embedded systems. Fast performance evaluation is an essential step in the research of distributed power and thermal management. In last part of the dissertation, we present an FPGA based emulator of multi-core distributed embedded system designed to support the research in runtime power/thermal management. Hardware and software supports are provided to carry out basic power/thermal management actions including inter-core or inter-FPGA communications, runtime temperature monitoring and dynamic frequency scaling

    A Control-Theoretic Design And Analysis Framework For Resilient Hard Real-Time Systems

    Get PDF
    We introduce a new design metric called system-resiliency which characterizes the maximum unpredictable external stresses that any hard-real-time performance mode can withstand. Our proposed systemresiliency framework addresses resiliency determination for real-time systems with physical and hardware limitations. Furthermore, our framework advises the system designer about the feasible trade-offs between external system resources for the system operating modes on a real-time system that operates in a multi-parametric resiliency environment. Modern multi-modal real-time systems degrade the system’s operational modes as a response to unpredictable external stimuli. During these mode transitions, real-time systems should demonstrate a reliable and graceful degradation of service. Many control-theoretic-based system design approaches exist. Although they permit real-time systems to operate under various physical constraints, none of them allows the system designer to predict the system-resiliency over multi-constrained operating environment. Our framework fills this gap; the proposed framework consists of two components: the design-phase and runtime control. With the design-phase analysis, the designer predicts the behavior of the real-time system for variable external conditions. Also, the runtime controller navigates the system to the best desired target using advanced control-theoretic techniques. Further, our framework addresses the system resiliency of both uniprocessor and multicore processor systems. As a proof of concept, we first introduce a design metric called thermal-resiliency, which characterizes the maximum external thermal stress that any hard-real-time performance mode can withstand. We verify the thermal-resiliency for the external thermal stresses on a uniprocessor system through a physical testbed. We show how to solve some of the issues and challenges of designing predictable real-time systems that guarantee hard deadlines even under transitions between modes in an unpredictable thermal environment where environmental temperature may dynamically change using our new metric. We extend the derivation of thermal-resiliency to multicore systems and determine the limitations of external thermal stress that any hard-real-time performance mode can withstand. Our control-theoretic framework allows the system designer to allocate asymmetric processing resources upon a multicore proiii cessor and still maintain thermal constraints. In addition, we develop real-time-scheduling sub-components that are necessary to fully implement our framework; toward this goal, we investigate the potential utility of parallelization for meeting real-time constraints and minimizing energy. Under malleable gang scheduling of implicit-deadline sporadic tasks upon multiprocessors, we show the non-necessity of dynamic voltage/frequency regarding optimality of our scheduling problem. We adapt the canonical schedule for DVFS multiprocessor platforms and propose a polynomial-time optimal processor/frequency-selection algorithm. Finally, we verify the correctness of our framework through multiple measurable physical and hardware constraints and complete our work on developing a generalized framework
    • …
    corecore