
Machine Learning for
Resource-Constrained Computing Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Martin Rapp
aus Ehingen (Donau)

Tag der mündlichen Prüfung: 31. Mai 2022
Referent: Prof. Dr.-Ing. Jörg Henkel, Karlsruher Institut für Technologie (KIT)
Korreferent: Prof. Dr. Jian-Jia Chen, Technische Universität (TU) Dortmund

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig ver-
fasst habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig
angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten
und Abbildungen – die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Martin Rapp

Acknowledgements

First of all, I would like to express my deep gratitude to Prof. Dr.-Ing. Jörg Henkel for his
continuous advice and guidance throughout my dissertation. I also greatly appreciate the
freedom that he provided me in exploring and defining my own research directions and
developing my own ideas. I also would like to thank Prof. Dr. Jian-Jia Chen for co-advising
my dissertation and for providing valuable and constructive feedback to improve the
quality of this dissertation.

I was fortunate to be a part of a supportive research environment, where many colleagues
helped me with various smaller and bigger issues regarding research and teaching. My
thanks go to Prof. Dr.-Ing. Anuj Pathania for helping me start my research. I would like to
thank Dr.-Ing. Heba Khdr, Dr.-Ing. Lars Bauer, Dr.-Ing. Marvin Damschen, and Dr. Georgios
Zervakis for always being available when I was looking for advice, for providing feedback
on this dissertation, and for helping me prepare for the Ph.D. defense. I would like to
thank Kilian Pfeiffer for providing comments on my dissertation.

My parents have enabled and fostered my fascination for computer science early on and
have continuously supported my interests and education. For this, I am deeply grateful.
My heartfelt gratitude goes to my partner Hannah for her love and support, her patience
with the generally inconvenient deadlines, and for accompanying me through ups and
downs – in summary, for always standing by me.

Thank You!

Martin Rapp

i

Abstract

Computing systems such as processors are generally constrained in their resources like
power consumption, energy consumption, heat dissipation, and chip area. This makes
optimizing the management of the available resources of paramount importance to achieve
goals like maximum performance. In particular, system-level resource management has a
major impact on the performance, power, and temperature during application execution by
utilizing application mapping, application migration, and dynamic voltage and frequency
scaling (DVFS).

The main challenges in resource management are coping with the high complexity of appli-
cations and platforms, coping with unseen, i.e., not known at design time, scenarios in the
workload and platform configuration, achieving proactive management, and maintaining
a low run-time overhead. Existing solutions based on hand-coded rules, simple heuristics,
or analytical models insufficiently tackle these challenges. To this end, this dissertation
focuses on employing machine learning (ML) within the resource management. ML-based
solutions allow tackling the challenges by predicting the impact of potential resource
management actions, by estimating hidden, i.e., unobservable at run time, properties of
applications, or by directly learning a resource management policy. This dissertation
presents several novel ML-based resource management techniques for different platforms,
objectives, and constraints.

First, a prediction-based application migration technique for performance maximization
of many-core processors with distributed shared last-level cache (LLC) under a thermal
constraint is presented. It employs a neural network (NN) model to predict the impact
of potential migrations on the overall system performance to determine the best one,
enabling proactive management. The prediction model is trained to cope with during
training unseen applications, and even copes with varying thermal constraints.

Second, a frequency boosting technique for performance maximization of homogeneous
many-core processors under a thermal constraint using DVFS is presented. It is based
on a novel boostability metric that integrates the sensitivities of performance, power,
and temperature to voltage/frequency (V/f) changes. The sensitivities of performance
and power depend on the application and cannot be observed or measured at run time.
Therefore, an NN model is employed to estimate these values for unseen applications,
thereby helping tackle the complexity of boosting optimization.

Third, an imitation learning (IL)-based application migration technique for temperature
minimization of heterogeneous multi-core processors under quality of service (QoS)
targets is introduced. It uses IL to directly learn the migration policy by learning from

iii

Abstract

optimal oracle demonstrations. It employs an NN to tackle the complexity of the platform
and application behavior. The NN inference is accelerated using an existing generic NN
accelerator, a so-called neural processing unit (NPU).

Finally, since ML also needs to run with limited resources, a technique for resource-aware
distributed on-device learning is presented to maintain a constant training throughput
under fast-varying computational resource availability, e.g., due to shared resource con-
tention. It employs structured dropout, which randomly drops parts of the NN during
training. This allows to dynamically adjust the required resources for training with negli-
gible overhead, at the cost of a slower training convergence. The Pareto-optimal per-layer
dropout rates are determined using a design space exploration (DSE).

Evaluations of these techniques are performed both in simulation and on real hardware,
and demonstrate significant improvements over the state of the art, at negligible run-time
overhead. Ultimately, this dissertation shows that ML is a key technology to optimize
system-level resource management by tackling the involved challenges listed above.

iv

Zusammenfassung

Die verfügbaren Ressourcen in Informationsverarbeitungssystemen wie Prozessoren sind
in der Regel eingeschränkt. Das umfasst z. B. die elektrische Leistungsaufnahme, den
Energieverbrauch, die Wärmeabgabe oder die Chipfläche. Daher ist die Optimierung der
Verwaltung der verfügbaren Ressourcen von größter Bedeutung, um Ziele wie maximale
Performanz zu erreichen. Insbesondere die Ressourcenverwaltung auf der Systemebene
hat über die (dynamische) Zuweisung von Anwendungen zu Prozessorkernen und über die
Skalierung der Spannung und Frequenz (dynamic voltage and frequency scaling, DVFS)
einen großen Einfluss auf die Performanz, die elektrische Leistung und die Temperatur
während der Ausführung von Anwendungen.

Die wichtigsten Herausforderungen bei der Ressourcenverwaltung sind die hohe Kom-
plexität von Anwendungen und Plattformen, unvorhergesehene (zur Entwurfszeit nicht
bekannte) Anwendungen oder Plattformkonfigurationen, proaktive Optimierung und
die Minimierung des Laufzeit-Overheads. Bestehende Techniken, die auf einfachen Heu-
ristiken oder analytischen Modellen basieren, gehen diese Herausforderungen nur un-
zureichend an. Aus diesem Grund ist der Hauptbeitrag dieser Dissertation der Einsatz
maschinellen Lernens (ML) für Ressourcenverwaltung. ML-basierte Lösungen ermögli-
chen die Bewältigung dieser Herausforderungen durch die Vorhersage der Auswirkungen
potenzieller Entscheidungen in der Ressourcenverwaltung, durch Schätzung verborge-
ner (unbeobachtbarer) Eigenschaften von Anwendungen oder durch direktes Lernen
einer Ressourcenverwaltungs-Strategie. Diese Dissertation entwickelt mehrere neuartige
ML-basierte Ressourcenverwaltung-Techniken für verschiedene Plattformen, Ziele und
Randbedingungen.

Zunächst wird eine auf Vorhersagen basierende Technik zur Maximierung der Performanz
von Mehrkernprozessoren mit verteiltem Last-Level Cache und limitierter Maximaltem-
peratur vorgestellt. Diese verwendet ein neuronales Netzwerk (NN) zur Vorhersage der
Auswirkungen potenzieller Migrationen von Anwendungen zwischen Prozessorkernen
auf die Performanz. Diese Vorhersagen erlauben die Bestimmung der bestmöglichen Mi-
gration und ermöglichen eine proaktive Verwaltung. Das NN ist so trainiert, dass es mit
unbekannten Anwendungen und verschiedenen Temperaturlimits zurechtkommt.

Zweitens wird ein Boosting-Verfahren zur Maximierung der Performanz homogener Mehr-
kernprozessoren mit limitierter Maximaltemperatur mithilfe von DVFS vorgestellt. Dieses
basiert auf einer neuartigen Boostability-Metrik, die die Abhängigkeiten von Performanz,
elektrischer Leistung und Temperatur auf Spannungs/Frequenz-Änderungen in einer Me-
trik vereint. Die Abhängigkeiten von Performanz und elektrischer Leistung hängen von

v

Zusammenfassung

der Anwendung ab und können zur Laufzeit nicht direkt beobachtet (gemessen) werden.
Daher wird ein NN verwendet, um diese Werte für unbekannte Anwendungen zu schätzen
und so die Komplexität der Boosting-Optimierung zu bewältigen.

Drittens wird eine Technik zur Temperaturminimierung von heterogenen Mehrkernpro-
zessoren mit Quality of Service-Zielen vorgestellt. Diese verwendet Imitationslernen, um
eine Migrationsstrategie von Anwendungen aus optimalen Orakel-Demonstrationen zu
lernen. Dafür wird ein NN eingesetzt, um die Komplexität der Plattform und des Anwen-
dungsverhaltens zu bewältigen. Die Inferenz des NNs wird mit Hilfe eines vorhandenen
generischen Beschleunigers, einer Neural Processing Unit (NPU), beschleunigt.

Auch die ML Algorithmen selbst müssen auch mit begrenzten Ressourcen ausgeführt
werden. Zuletzt wird eine Technik für ressourcenorientiertes Training auf verteilten
Geräten vorgestellt, um einen konstanten Trainingsdurchsatz bei sich schnell ändern-
der Verfügbarkeit von Rechenressourcen aufrechtzuerhalten, wie es z. B. aufgrund von
Konflikten bei gemeinsam genutzten Ressourcen der Fall ist. Diese Technik verwendet
Structured Dropout, welches beim Training zufällige Teile des NNs auslässt. Dadurch
können die erforderlichen Ressourcen für das Training dynamisch angepasst werden – mit
vernachlässigbarem Overhead, aber auf Kosten einer langsameren Trainingskonvergenz.
Die Pareto-optimalen Dropout-Parameter pro Schicht des NNs werden durch eine Design
Space Exploration bestimmt.

Evaluierungen dieser Techniken werden sowohl in Simulationen als auch auf realer
Hardware durchgeführt und zeigen signifikante Verbesserungen gegenüber dem Stand
der Technik, bei vernachlässigbarem Laufzeit-Overhead. Zusammenfassend zeigt diese
Dissertation, dass ML eine Schlüsseltechnologie zur Optimierung der Verwaltung der limi-
tierten Ressourcen auf Systemebene ist, indem die damit verbundenen Herausforderungen
angegangen werden.

vi

List of Publications

The following list enumerates papers and book chapters published by the author of this
dissertation while pursuing his doctorate.

First-author publications that present major contributions to this dissertation

[1] Martin Rapp, Heba Khdr, Nikita Krohmer, and Jörg Henkel. “NPU-Accelerated
Imitation Learning for Thermal Optimization of QoS-Constrained Heterogeneous
Multi-Cores”. In: arXiv preprint arXiv:2206.05459 (2022).

[2] Martin Rapp, Nikita Krohmer, Heba Khdr, and Jörg Henkel. “NPU-Accelerated
Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous
Multi-Cores”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2022. doi: 10.23919/DATE54114.2022.9774681.

[3] Martin Rapp, Ramin Khalili, Kilian Pfeiffer, and Jörg Henkel. “DISTREAL: Dis-
tributed Resource-Aware Learning in Heterogeneous Systems”. In: AAAI Confer-
ence on Artificial Intelligence (AAAI). 2022.

[4] Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Pan, Marilyn Wolf, and
Jörg Henkel. “MLCAD: A Survey of Research in Machine Learning for CAD
(Keynote Paper)”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) (2021). doi: 10.1109/TCAD.2021.3124762.

[5] Martin Rapp, Mohammed Bakr Sikal, Heba Khdr, and Jörg Henkel. “SmartBoost:
Lightweight ML-Driven Boosting for Thermally-Constrained Many-Core Pro-
cessors”. In: Design Automation Conference (DAC). 2021. doi: 10.1109/DAC18074.
2021.9586287.

[6] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. “Neural Network-
based Performance Prediction for Task Migration on S-NUCA Many-Cores”. In:
IEEE Transactions on Computers (TC) 70.10 (2021). doi: 10.1109/TC.2020.3023022.

[7] Martin Rapp, Mark Sagi, Anuj Pathania, Andreas Herkersdorf, and Jörg Henkel.
“Power-and Cache-Aware Task Mapping with Dynamic Power Budgeting for
Many-Cores”. In: IEEE Transactions on Computers (TC) 69.1 (2020). doi: 10.1109/
TC.2019.2935446.

[8] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. “Prediction-Based
Task Migration on S-NUCA Many-Cores”. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2019. doi: 10.23919/DATE.2019.8714974.

vii

https://doi.org/10.23919/DATE54114.2022.9774681
https://doi.org/10.1109/TCAD.2021.3124762
https://doi.org/10.1109/DAC18074.2021.9586287
https://doi.org/10.1109/DAC18074.2021.9586287
https://doi.org/10.1109/TC.2020.3023022
https://doi.org/10.1109/TC.2019.2935446
https://doi.org/10.1109/TC.2019.2935446
https://doi.org/10.23919/DATE.2019.8714974

List of Publications

[9] Martin Rapp, Anuj Pathania, and Jörg Henkel. “Pareto-Optimal Power- and Cache-
Aware Task Mapping for Many-Cores with Distributed Shared Last-Level Cache”.
In: Int. Symp. on Low Power Electronics and Design (ISLPED). ACM/IEEE. 2018. doi:
10.1145/3218603.3218630.

First-author publications that present minor contributions to this dissertation

[10] Martin Rapp, Omar Elfatairy, Marilyn C. Wolf, Jörg Henkel, and Hussam Amrouch.
“Towards NN-based Online Estimation of the Full-Chip Temperature and the Rate
of Temperature Change”. In: Workshop on Machine Learning for CAD (MLCAD).
2020, pp. 95–100. doi: 10.1145/3380446.3430648.

[11] Martin Rapp, Ramin Khalili, and Jörg Henkel. “Distributed Learning on Heteroge-
neous Resource-Constrained Devices”. In: arXiv preprint arXiv:2006.05403 (2020).

[12] Martin Rapp, Sami Salamin, Hussam Amrouch, Girish Pahwa, Yogesh Chauhan,
and Jörg Henkel. “Performance, Power and Cooling Trade-Offs with NCFET-
based Many-Cores”. In: Design Automation Conference (DAC). 2019. doi: 10.1145/
3316781.3317880.

[13] Martin Rapp, Hussam Amrouch, Marilyn C. Wolf, and Jörg Henkel. “Machine
Learning Techniques to Support Many-Core Resource Management: Challenges
and Opportunities”. In: Workshop on Machine Learning for CAD (MLCAD). ACM/
IEEE. 2019. doi: 10.1109/MLCAD48534.2019.9142064.

Other co-authored publications

[14] Lokesh Siddhu, Rajesh Kedia, Shailja Pandey, Martin Rapp, Anuj Pathania, Jörg
Henkel, and Preeti Ranjan Panda. “CoMeT: An Integrated Interval Thermal Sim-
ulation Toolchain for 2D, 2.5 D, and 3D Processor-Memory Systems”. In: ACM
Transactions on Architecture and Code Optimization (TACO) (2022).

[15] Marcel Mettler, Martin Rapp, Heba Khdr, Daniel Müller-Gritschneder, and Jörg
Henkel. “An FPGA-based Approach to Evaluate Thermal and Resource Manage-
ment Strategies of Many-Core Processors”. In: ACM Transactions on Architecture
and Code Optimization (TACO) (2022).

[16] Mohammed Bakr Sikal, Heba Khdr, Martin Rapp, and Jörg Henkel. “Thermal-
and Cache-Aware Resource Management based on ML-Driven Cache Contention
Prediction”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2022.

[17] Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. “CoCo-FL: Commu-
nication- and Computation-Aware Federated Learning via Partial NN Freezing
and Quantization”. In: arXiv preprint arXiv:2203.05468 (2022).

[18] Veera Venkata RamMurali Krishna RaoMuvva, Martin Rapp, Jörg Henkel, Hussam
Amrouch, andMarilyn C.Wolf. “On the Effectiveness of Quantization and Pruning
on the Performance of FPGAs-based NN Temperature Estimation”. In: Workshop
on Machine Learning for CAD (MLCAD). 2021.

viii

https://doi.org/10.1145/3218603.3218630
https://doi.org/10.1145/3380446.3430648
https://doi.org/10.1145/3316781.3317880
https://doi.org/10.1145/3316781.3317880
https://doi.org/10.1109/MLCAD48534.2019.9142064

List of Publications

[19] Mark Sagi, Martin Rapp, Heba Khdr, Yizhe Zhang, Nael Fasfous, Nguyen Anh Vu
Doan, Thomas Wild, Jörg Henkel, and Andreas Herkersdorf. “Long Short-Term
Memory Neural Network-based Power Forecasting of Multi-Core Processors”. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2021,
pp. 1685–1690.

[20] Sami Salamin, Victor M Van Santen, Martin Rapp, Jörg Henkel, and Hussam
Amrouch. “Minimizing Excess Timing Guard Banding Under Transistor Self-
Heating Through Biasing at Zero-Temperature Coefficient”. In: IEEE Access 9
(2021), pp. 30687–30697.

[21] Hussam Amrouch, Martin Rapp, Sami Salamin, and Jörg Henkel. “Impact of
Negative Capacitance Field-Effect Transistor (NCFET) on Many-Core Systems”.
In: A Journey of Embedded and Cyber-Physical Systems. Springer, 2021, pp. 107–
123.

[22] Mark Sagi, Nguyen Anh Vu Doan, Martin Rapp, Thomas Wild, Jörg Henkel,
and Andreas Herkersdorf. “A Lightweight Nonlinear Methodology to Accurately
Model Multi-Core Processor Power”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 39.11 (2020), pp. 3152–3164.

[23] Sami Salamin, Martin Rapp, Jörg Henkel, Andreas Gerstlauer, and Hussam Am-
rouch. “Dynamic Power and Energy Management for NCFET-Based Processors”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 39.11 (2020), pp. 3361–3372.

[24] Behnaz Pourmohseni, Michael Glaß, Jörg Henkel, Heba Khdr, Martin Rapp, Va-
lentina Richthammer, Tobias Schwarzer, Fedor Smirnov, Jan Spieck, Jürgen Teich,
Andreas Weichslgartner, and Stefan Wildermann. “Hybrid Application Mapping
for Composable Many-Core Systems: Overview and Future Perspective”. In: Jour-
nal of Low Power Electronics and Applications (JLPEA) 10.4 (2020).

[25] Sami Salamin, Martin Rapp, Anuj Pathania, Arka Maity, Jörg Henkel, Tulika Mitra,
and Hussam Amrouch. “Power-Efficient Heterogeneous Many-Core Design with
NCFET Technology”. In: IEEE Transactions on Computers (TC) 70.9 (2020), pp. 1484–
1497.

[26] Sami Salamin, Martin Rapp, Hussam Amrouch, Andreas Gerstlauer, and Jörg
Henkel. “EnergyOptimization inNCFET-based Processors”. In:Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2020, pp. 630–633.

[27] Marvin Damschen, Martin Rapp, Lars Bauer, and Jörg Henkel. “i-Core: A Runtime-
Reconfigurable Processor Platform for Cyber-Physical Systems”. In: Embedded,
Cyber-Physical, and IoT Systems. Springer, 2020.

[28] Jörg Henkel, Hussam Amrouch, Martin Rapp, Sami Salamin, Dayane Reis, Di Gao,
Xunzhao Yin, Michael Niemier, Cheng Zhuo, X Sharon Hu, Hsiang-Yun Cheng,
and Chia-Lin Yang. “The Impact of Emerging Technologies on Architectures
and System-level Management”. In: International Conference on Computer-Aided
Design (ICCAD). IEEE. 2019.

ix

List of Publications

[29] Sami Salamin, Martin Rapp, Hussam Amrouch, Girish Pahwa, Yogesh Chauhan,
and Jörg Henkel. “NCFET-aware Voltage Scaling”. In: International Symposium on
Low Power Electronics and Design (ISLPED). IEEE. 2019.

[30] Jörg Henkel, Heba Khdr, and Martin Rapp. “Smart Thermal Management for
Heterogeneous Multicores”. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2019, pp. 132–137.

x

Research at the
Chair for Embedded Systems

The Chair for Embedded Systems (CES) at the Karlsruhe Institute of Technology (KIT) has
its core expertise in design and architectures for embedded systems. The initial focus of the
CESwas on hardware/software co-design. This research area studies designmethodologies
that simultaneously consider hardware and software to optimize for a design metric such
as minimizing power under constraints such as area or performance. One method to
achieve this is to employ application-specific instruction-set processors (ASIPs), which are
designed and manufactured specifically for the executed application [C1]. More flexibility
is attained by introducing run-time reconfiguration to dynamically adapt the instruction
set to the application requirements [C2].

Research related to multi-/many-core processors has also been a continual focus of the
CES, reacting to predictions about a persistent increase in the number of CPU cores per
processor. This includes research on networks-on-chip (NoCs) [C3], which were proposed
as a scalable alternative to the common bus-based communication in processors. The CES
studied this both at the architectural level, e.g., by developing a configurable NoC to adapt
to changing application requirements [C4], and at the system level, e.g., by developing
NoC-aware scheduling to minimize the traffic [C5]. Another branch of research within the
scope of multi-/many-core processors addresses power management, which is necessary
to cope with increasing power densities and corresponding elevated temperatures in
modern technology nodes due to the failure of Dennard’s scaling. For instance, distributed
agent-based management techniques have been studied that distribute the global power
budget to the individual cores based on the application requirements [C6]. Within this
scope, an early learning-based technique has been presented, which employs economic
learning to let per-core agents “buy” power budget [C7]. Modern technology nodes also
aggravate degradation effects. The CES has developed several techniques to cope with
such degradation effects to increase the reliability of computing, most prominently in
the context of DFG SPP 1500 “Dependable Embedded Systems” [C8]. As the underlying
effects affect individual transistors, this research spans several levels of abstraction from
the device (transistor) level to the system level.

Approximate computing studies techniques to optimize power, area, or performance by
tolerating certain errors in computations. The CES contributed to this research area by de-
signing approximate functional units like adders [C9] and by developing embedded design
automation (EDA) methodologies to design accelerators comprising many approximate
functional units [C10].

xi

Research at the Chair for Embedded Systems

Recently, the CES has performed research on the internet of things (IoT) and embedded
ML. IoT systems perform computations at several hierarchy levels from the distributed
devices that interact with their environment, to cloud servers that offer virtually unlimited
computational resources but have high communication latency, and at edge devices at
the boundary between the two. IoT systems require resource management in the form
of computational offloading [C11] to decide which computation is performed at which
level in the hierarchy. In particular, IoT devices that employ ML models to process sensor
data, have been studied. Several techniques in the scope of embedded ML have been
developed to support the computationally heavy operations of ML in IoT systems [C12].
This research direction is currently being extended towards ML training on embedded
devices, such as in federated learning (FL) systems.

DFG Transregio TR89 – Invasive Computing The central idea of DFG Transregio TR89
“Invasive Computing” (InvasIC) is to enable resource-aware programming, where the
resource requirements of an application are expressed by the programmer. This involves
research at all levels of the computing stack, at application and compiler level, where such
requirements must be expressed and represented in a systematic way, at the operating
system (OS)-level, where the resources are managed, and even at the hardware level,
where fine-grained resource allocation to applications needs to be supported. This project
is a collaborative project between the three German universities Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Karlsruher Institut für Technologie (KIT), and
Technische Universität München (TUM). The project started in 2010 and is currently in
its third funding phase from July 2018 to June 2022.

Within InvasIC, sub-project B3 studies power and thermal management of invasive multi-
core processors [C13]. The challenge thereby is that power and temperature are affected
jointly by all running applications, requiring global optimization. Several techniques have
been developed to this end. For instance, the work in [C14] jointly selects the degree
of parallelism, mapping, and V/f levels of applications under a thermal constraint by
exploiting design-time knowledge of the performance and power of applications at various
configurations. Another outcome of this research is Thermal Safe Power (TSP) [C15],
which translates a global thermal constraint into per-core power budgets depending on
the number and location of active cores, which can be enforced decentrally. TSP has been
extended to consider heterogeneous processors by formulating a power density constraint
and reallocate surplus power density to other cores [C16].

This dissertation contributes to sub-project B3. The main goal of B3 in the third funding
phase is to reduce the dependency of resource management on design-time hardware and
application models. This includes unknown workloads, i.e., applications, and to a limited
degree also unknown hardware parameters, such as the cooling. The techniques developed
in this dissertation contribute to this goal by being designed to cope with unknown
scenarios at run time. This is achieved by employing ML modeling that generalizes to
different scenarios than has been used in the training.

xii

Research at the Chair for Embedded Systems

[C1] Jörg Henkel. “A Low Power Hardware/Software Partitioning Approach for Core-
Based Embedded Systems”. In: Design Automation Conference (DAC). IEEE. 1999.

[C2] Lars Bauer, Muhammad Shafique, Simon Kramer, and Jörg Henkel. “RISPP: Rotat-
ing Instruction Set Processing Platform”. In: Design Automation Conference (DAC).
2007.

[C3] Jörg Henkel, WayneWolf, and Srimat Chakradhar. “On-Chip Networks: A Scalable,
Communication-Centric Embedded System Design Paradigm”. In: International
Conference on VLSI Design. IEEE. 2004.

[C4] Mohammad Abdullah Al Faruque, Thomas Ebi, and Jörg Henkel. “Run-Time Adap-
tive On-Chip Communication Scheme”. In: International Conference on Computer-
Aided Design (ICCAD). IEEE. 2007.

[C5] Mohammad Abdullah Al Faruque, Rudolf Krist, and Jörg Henkel. “ADAM: Run-
Time Agent-Based Distributed Application Mapping for On-Chip Communica-
tion”. In: Design Automation Conference (DAC). IEEE. 2008.

[C6] Thomas Ebi, Mohammad Abdullah Al Faruque, and Jörg Henkel. “TAPE: Thermal-
Aware Agent-Based Power Econom Multi/Many-Core Architectures”. In: Inter-
national Conference on Computer-Aided Design-Digest of Technical Papers. IEEE.
2009.

[C7] Thomas Ebi, David Kramer, Wolfgang Karl, and Jörg Henkel. “Economic Learning
for Thermal-Aware Power Budgeting in Many-Core Architectures”. In: Interna-
tional Conference on Hardware/Software Codesign and System Synthesis (CODES+
ISSS). 2011.

[C8] Jörg Henkel, Lars Bauer, Joachim Becker, Oliver Bringmann, Uwe Brinkschulte,
Samarjit Chakraborty, Michael Engel, Rolf Ernst, HermannHärtig, Lars Hedrich, et
al. “Design andArchitectures for Dependable Embedded Systems”. In: International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
2011.

[C9] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel. “A Low
Latency Generic Accuracy Configurable Adder”. In: Design Automation Conference
(DAC). IEEE. 2015.

[C10] Jorge Castro-Godínez, Sven Esser, Muhammad Shafique, Santiago Pagani, and
Jörg Henkel. “Compiler-Driven Error Analysis for Designing Approximate Accel-
erators”. In: Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2018.

[C11] Farzad Samie, Vasileios Tsoutsouras, Lars Bauer, Sotirios Xydis, Dimitrios Soudris,
and Jörg Henkel. “Computation Offloading and Resource Allocation for Low-
Power IoT Edge Devices”. In: World Forum on Internet of Things (WF-IoT). IEEE.
2016.

[C12] Farzad Samie, Sebastian Paul, Lars Bauer, and Jörg Henkel. “Highly Efficient and
Accurate Seizure Prediction on Constrained IoT Devices”. In: Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2018.

xiii

Research at the Chair for Embedded Systems

[C13] Jörg Henkel, Heba Khdr, Santiago Pagani, and Muhammad Shafique. “New Trends
in Dark Silicon”. In: Design Automation Conference (DAC). IEEE. 2015.

[C14] Heba Khdr, Santiago Pagani, Muhammad Shafique, and Jörg Henkel. “Thermal
Constrained Resource Management for Mixed ILP-TLP Workloads in Dark Silicon
Chips”. In: Design Automation Conference (DAC). ACM. 2015.

[C15] Santiago Pagani, Heba Khdr, Jian-Jia Chen, Muhammad Shafique, Minming Li,
and Jörg Henkel. “Thermal Safe Power (TSP): Efficient Power Budgeting for
Heterogeneous Manycore Systems in Dark Silicon”. In: IEEE Transactions on
Computers (TC) 66.1 (2017), pp. 147–162. doi: 10.1109/TC.2016.2564969.

[C16] Heba Khdr, Santiago Pagani, Ericles Sousa, Vahid Lari, Anuj Pathania, Frank
Hannig, Muhammad Shafique, Jürgen Teich, and Jörg Henkel. “Power Density-
Aware Resource Management for Heterogeneous Tiled Multicores”. In: IEEE
Transactions on Computers (TC) 66.3 (2016), pp. 488–501.

xiv

https://doi.org/10.1109/TC.2016.2564969

Contents

Abstract . iii

Zusammenfassung . v

List of Publications . vii

Research at the Chair for Embedded Systems . xi

1 Introduction . 1
1.1 Constrained Resources in Computing Systems 2
1.2 Challenges in Resource Management . 2
1.3 Machine Learning for Resource Management 6
1.4 Patterns how to Apply ML to Resource Management 8

1.4.1 Predict Impact of Resource Management Actions 8
1.4.2 Estimate Hidden Properties of the Platform or Applications . . . 9
1.4.3 Directly Learn Resource Management Policy 10

1.5 Dissertation Contributions . 11
1.6 Dissertation Outline . 12

2 RelatedWork . 13
2.1 Classical Resource Management . 13

2.1.1 Resource Management with Design-Time Optimization 13
2.1.2 Resource Management with Simple Heuristics 13
2.1.3 Analytical Modeling . 14

2.2 Learning-Based Resource Management 16
2.2.1 Learn Management Policy with Reinforcement Learning 16
2.2.2 Learn Management Policy with Imitation learning 17
2.2.3 Learn Properties of the Platform or Applications 18

2.3 Resource-Aware Learning . 19

3 Experimental Framework . 21
3.1 Simulation-Based Setup . 21

3.1.1 Homogeneous Many-Core Processor 23
3.1.2 S-NUCA Many-Core Processor 24

3.2 Physical Setup with Real Hardware . 25
3.3 Federated Learning Setup . 26

xv

Contents

4 Classical Heuristic Resource Management . 29
4.1 Analysis of the S-NUCA Many-Core Architecture 29

4.1.1 Last-Level Cache Access Latency 29
4.1.2 Thermal Aspects . 30
4.1.3 Trade-off Between Last-Level Cache Latency and Power Budget . 31

4.2 Motivational Examples . 32
4.3 Novel Contributions . 37
4.4 Problem Definition . 37
4.5 Pareto-Optimal Application Mapping . 37
4.6 Run-Time Application Mapping Algorithm 40

4.6.1 Find Near-Pareto-Optimal Mappings 40
4.6.2 Select One of the Near-Pareto-Optimal Mappings 41

4.7 Run-Time Dynamic Power Budget Reallocation 42
4.8 Experimental Evaluation . 44

4.8.1 Comparison to the State of the Art 45
4.8.2 Evaluation of the Mapping Candidates of PCGov 47
4.8.3 Run-Time Overhead . 48
4.8.4 Impact of the Hysteresis Parameter 49

4.9 Summary . 50

5 Prediction-Based Application Migration . 53
5.1 Motivational Examples . 53
5.2 Challenges and Novel Contributions . 55
5.3 Problem Definition . 57
5.4 Neural Network-based Prediction Model 58

5.4.1 Feature Selection . 58
5.4.2 Training Data Generation . 58
5.4.3 Neural Network Topology . 59

5.5 Analytical Prediction Model . 60
5.5.1 Impact of the Last-Level Cache Access Latency 60
5.5.2 Impact of the Voltage/Frequency Level 62
5.5.3 Power Model . 63
5.5.4 Algorithm for Analytical Performance Prediction 63

5.6 Run-Time Application Migration Algorithm 64
5.7 Experimental Evaluation . 66

5.7.1 Comparison of the ML-based and Analytical Prediction Models . 66
5.7.2 Illustrative Example for Performance Prediction 69
5.7.3 Comparison to Classical Heuristics and to the State of the Art . . 71
5.7.4 Run-Time Overhead . 74

5.8 Summary . 75

6 Smart Boosting by Estimating Hidden Application Properties 77
6.1 Motivational Examples . 77
6.2 Challenges and Novel Contributions . 80

xvi

Contents

6.3 Problem Definition . 81
6.4 Boosting Metric: Boostability . 81

6.4.1 Boostability of Single Threads . 81
6.4.2 Boostability of Multi-Threaded Applications 82

6.5 Neural Network Model for Sensitivity Prediction 83
6.5.1 Feature Selection . 83
6.5.2 Training Data Generation . 84
6.5.3 Neural Network Topology . 85

6.6 Smart Boosting Algorithm . 85
6.7 Experimental Evaluation . 88

6.7.1 Comparison to the State of the Art 89
6.7.2 Illustrative Example . 91
6.7.3 Prediction Accuracy of our Sensitivity Model 92
6.7.4 Run-time Overhead . 93

6.8 Summary . 93

7 Learning Optimal Management with Imitation Learning 95
7.1 Motivational Examples . 95
7.2 Challenges and Novel Contributions . 97
7.3 Problem Definition . 98
7.4 Imitation Learning-Based Application Migration 99

7.4.1 Feature Selection . 99
7.4.2 Oracle Demonstrations (Training Data) 100
7.4.3 IL Model Creation and Training 103

7.5 Run-Time Temperature and QoS Management 105
7.5.1 Application Migration with NPU-Accelerated IL 105
7.5.2 Control Loop for Per-Cluster DVFS 106

7.6 Reinforcement Learning-Based Application Migration 107
7.7 Experimental Evaluation . 109

7.7.1 Illustrative Example . 110
7.7.2 Parallel Mixed Workload . 110
7.7.3 Single-Application Workloads . 115
7.7.4 Model Evaluation . 115
7.7.5 Run-Time Overhead . 115

7.8 Summary . 116

8 Resource-Adaptive On-Device Training . 117
8.1 Motivational Examples . 117
8.2 Challenges and Novel Contributions . 118
8.3 Problem Definition . 119
8.4 Dropout to Reduce Computations In Training 119

8.4.1 Filter-based Structured Dropout 119
8.4.2 Efficient Implementation of Structured Dropout 121

xvii

Contents

8.5 Design-Time: Find Pareto-Optimal Dropout Vectors 124
8.5.1 Calculate the Resource Requirements 125
8.5.2 Measure the Convergence Speed 125
8.5.3 Evolutionary Design Space Exploration 126

8.6 Run Time: Resource-Aware Training of Neural Networks 128
8.7 Experimental Evaluation . 129

8.7.1 Heterogeneity Across Devices . 130
8.7.2 Heterogeneity Across Devices and Over Time 132

8.8 Summary . 134

9 Conclusion . 135
9.1 Future Work . 137

List of Figures . 139

List of Tables . 143

List of Algorithms . 145

List of Abbreviations . 147

Bibliography . 149

xviii

1 Introduction

Computing systems like processors are generally resource-constrained [31, 32, 33, 34].
For instance, their power consumption, energy consumption, heat dissipation, and chip
area are often limited. This makes optimizing the management of the available resources
of paramount importance to achieve goals like maximum performance or minimum
temperature. Optimizing the resource usage can be tackled at several stages of the
design and operation of processors. This includes the hardware design, which optimizes
the implementation of processors in hardware w.r.t. performance, power, area, etc., at
different abstraction levels such as technology, circuits, microarchitecture, etc. At run time
(operation time), system-level resource management, which is the focus of this dissertation,
manages the available hardware resources in software at the operating system (OS) level
by dynamically assigning the resources to applications. Resource management utilizes
dynamic voltage and frequency scaling (DVFS) and application mapping/migration, and
thereby has a major impact on the achievable performance, dissipated power, reached
temperature, and consumed energy. The classical approaches for resource management
either perform optimization at design time, rely on hand-coded rules or simple heuristics,
or use analytical models of applications and the platform. They can not sufficiently tackle
the challenges in resource management of dynamic workloads, as will be discussed further
in Section 1.2. Novel approaches to resource management are required instead. To this
end, this dissertation investigates machine learning (ML)-based optimization.

ML has demonstrated great success in various domains [35] like language processing [36],
robotics [37], etc. ML aims at automatically learning abstract concepts from a typically
large set of demonstrations. This is beneficial because it is easier in these domains to
(manually) provide the target output for individual inputs than explicitly create rules or
algorithms that work with arbitrary inputs. For instance, in image classification [38],
which is a flagship use case of ML, it is much easier to annotate a large set of images
with information about their contents than to explicitly formulate rules or algorithms
that determine the content of an image based on its pixel values. This applies also to
many problems in resource management, where it is for instance easier to determine the
optimal application migration in a given single scenario than to create algorithms or rules
to determine the optimal management in all possible scenarios. Recently, researchers
have started to apply ML also to various problems outside the typical flagship use cases,
and even in the embedded design automation (EDA) context, such as chip design [39].

The focus of this dissertation is to study how ML can help in optimizing resource-
constrained computing systems. The majority of the dissertation studies methods on
how to embed ML into system-level resource management. Finally, since ML algorithms

1

1 Introduction

themselves also need to run on the limited resources, this dissertation studies techniques
on how to perform ML with limited computational resources.

1.1 Constrained Resources in Computing Systems

There are several constrained resources in computing systems. First, the chip area is
limited to reduce production costs. This limits the amount of memory for caches and the
number of central processing unit (CPU) cores that can be placed on the chip. Assigning
the chip area to these architectural components is done during hardware design and can
not be changed at run time. Therefore, run-time resource management can only manage
the area by assigning cores to applications, which are consequently considered as the
limited resource at the system level. In the scope of many-core processors, mostly a
one-thread-per-core model [40] is employed, such that every core executes zero or one
thread. Cores are managed by application mapping, which assigns cores to applications
at their start time, and application migration, which changes the assignment of cores
to applications during their execution. Cores are not necessarily homogeneous. They
may differ in their microarchitecture, e.g., simple in-order cores and complex out-of-order
cores [41, 42], or in their cache latency [43]. Consequently, there is in general a limited
number of cores with different characteristics that need to be managed.

In addition, peak power and energy are commonly limited [32]. The power supply is
designed to deliver a certain peak power that must not be exceeded. Energy is limited for
instance in battery-driven operation. These limits may even change over time, e.g., in the
case of a device that is powered by renewable energies. The main method for system-level
resource management to distribute the available power and energy to applications is
DVFS, which dynamically at run time adjusts the voltage/frequency (V/f) levels of cores
to adjust the trade-off between performance and power. In addition, heterogeneous cores
also offer different power and performance to applications, which allows distributing
power and energy to applications by application mapping and migration.

Finally, the heat dissipation of a processor is limited by the cooling system [44]. Since
the failure of Dennard scaling [45], voltage scaling could not keep up with technology
scaling, resulting in increasing power density. High power density increases the on-chip
temperature, which accelerates circuit degradation and may even permanently damage
the chip [33, 34]. These negative effects can be reduced by enforcing an upper limit on the
temperature. Resource management affects the temperature via DVFS and application
mapping/migration. DVFS changes the temperature via the power consumption. Applica-
tion migration can migrate threads from hot to colder cores. Application mapping can
leave cores idle between active cores with high power consumption to dissipate the heat.

1.2 Challenges in Resource Management

Resource management mostly operates on discrete decisions, such as assigning CPU cores
or selecting discrete V/f levels. It is NP-complete in the general case [46]. In addition, the

2

1.2 Challenges in Resource Management

blac
ksch

oles

bod
ytra

ck
cann

eal dedu
p

face
sim ferre

t

fluid
anim

ate
swa

ptio
ns x264

2.0

2.2

2.4

2.6

Sp
ee

du
p
of

bi
g
vs

.L
IT
TL

E

Figure 1.1: Performance of the big cluster vs. LITTLE cluster on Arm big.LITTLE for various applications.

search spaces are large. For instance, when running 16 threads on a many-core processor
with 64 cores, where each core supports 31 V/f levels, there are

(64
16
)
≈ 4.9·1014 possible

mappings with 3116 ≈ 7.3·1023 possible V/f level settings, each, resulting in a total of
over 1038 possible configurations. Therefore, it is most often infeasible to find optimal
solutions and the resource management should find solutions as close as possible to the
optimum instead. There are four main challenges to resource management.

Challenge: Platform and Application Complexity Many factors affect the power con-
sumption (and thereby the temperature) and performance of an application. These include
the application characteristics, which are determined by the instruction mix and inter-
instruction dependencies, the CPU microarchitecture, the cache architecture, the intercon-
nect, the random access memory (RAM), etc. Fig. 1.1 presents an example to demonstrate
the role of the application characteristics and CPU/memory microarchitecture in the
application performance. The figure shows that the speedup of different PARSEC [47]
applications when running on the big cluster compared to running on the LITTLE cluster
on an Arm big.LITTLE processor1 varies significantly. First, the speedup comes from a
different microarchitecture and cache architecture of the two clusters. The big cluster
uses out-of-order processors, in contrast to the in-order processors of the LITTLE cluster.
In addition, the big cluster supports higher V/f levels and has larger caches. Secondly,
different applications show different speedup, as they benefit differently from the features
of the big cluster, e.g., due to different memory usage patterns that affect the efficacy of the
caches, or different instruction-level parallelism that affects the efficacy of out-of-order
execution.

The platform complexity is aggravated by technology scaling, which allows to build
more complex microarchitectures and house more cores in a processor due to tighter
integration. Explicitly modeling every detail of modern many-core processor architectures
is not practicable for resource management due to their sheer complexity. First, it requires

1 The experimental setup of the heterogeneous Arm big.LITTLE multi-core processor is described in Section 3.2.

3

1 Introduction

barn
es

blac
ksch

oles
cann

eal
chol

esky dedu
p
lu.n

cont
ocea

n.co
nt

ocea
n.nc

ont radi
x
rayt

race

strea
mcl

uste
r

wat
er.n

sq
wat

er.sp
0.9

1.0

1.1

1.2

1.3
Pe

ak
Po

w
er

w
ith

la
rg
e

vs
.sm

al
lI

np
ut

Se
t

Figure 1.2: Peak power of different PARSEC and SPLASH-2 applications on a homogeneous many-core processor
with the simmedium/large input data compared to the simsmall/small input data.

detailed knowledge of the architecture, which may be kept confidential by manufacturers.
Second, such accurate models would be too slow for run-time use, limiting their use to
design-time simulations. When introducing simplifications in the form of abstractions, it
is difficult to still maintain a relatively high accuracy, requiring a detailed understanding
of all involved aspects to avoid introducing too large errors.

In summary, a resource management technique needs to optimize a complex platform running
complex applications, without requiring detailed knowledge about their internal structure.

Challenge: Unseen Scenarios The applications that are executed at run time are in
general not known at design time. Such systems are called open systems [48], where
a priori unknown applications arrive at a priori unknown times. However, as already
shown in Fig. 1.1, there is a large variation between applications. Furthermore, even the
characteristics of the same application binary differ when processing different input data.
This is illustrated in the example in Fig. 1.2, which plots the peak power consumption of
several PARSEC and SPLASH-2 [49] applications when operating on the simmedium/large
input data relative to the simsmall/small input data, running on a homogeneous many-core
processor2. For instance, the power consumption of ocean.ncont increases by 35 %, while
the power consumption of ocean.cont decreases by 7 %, just by changing the input data,
even though the same binary is executed. In addition, several applications running in
parallel further affect each other’s execution via thermal coupling of the cores they are
running on and contention on the shared resources like memory.

The set of currently running applications is called theworkload. Overall, there are infinitely
many possible workloads that may be executed on the platform, i.e., it is impossible to
explicitly consider all possible workloads at design time when developing a resource
management technique. Therefore, the workload that is executed at run time must be
considered as unseen, i.e., not known, at design time.

2 The experimental setup of the homogeneous many-core processor is described in Section 3.1.1.

4

1.2 Challenges in Resource Management

85 90 95 100 105 110 115 120 125 130

70

75

80

85

Thermal
Constraint

t0

Time [ms]

Te
m
pe

ra
tu
re

[◦
C]

585 590 595 600 605 610 615 620 625 630

70

75

80

85

Thermal
Constraint

t0

Time [ms]

Te
m
pe

ra
tu
re

[◦
C]

No Boosting (f0) Boost by 100MHz Boost by 200MHz
Boost by 300MHz Boost by 400MHz Boost by 500MHz

(a) lu.cont (f0 = 2.8GHz) (b) fft (f0 = 3.4GHz)

Figure 1.3: Without proactively considering the impact of upscaling (boosting) V/f levels, violations of the
thermal constraint cannot be avoided.

In summary, a resource management technique needs to cope with unseen applications and
workloads that have not been observed at design time. In addition, the characteristics of the
platform may not be known at design time. For instance, the cooling characteristics may
degrade over time, or change with the environment temperature.

Challenge: Proactive Management Resource management typically needs to satisfy con-
straints, such as a thermal or performance constraint. It is in general not clear in advance
whether executing a certain action (e.g., scaling V/f levels) would violate the constraint.
Fig. 1.3 shows an example, in which the SPLASH-2 lu.cont (a) or fft (b) application is
running on the same homogeneous many-core processor as in Fig. 1.2, subject to a thermal
constraint of 80 ◦C. Initially, the applications are operated at f0 = 2.8GHz and 3.4GHz,
respectively. Both applications show a thermal margin of around 8 ◦C. At t0 = 100ms and
600ms, respectively, several V/f level boosts between 100MHz and 500MHz are consid-
ered to increase the performance. Without prior knowledge, it is not clear which of the
V/f levels are thermally safe. In fact, the thermally-safe V/f level increase differs between
the two applications, despite almost the same initial thermal margin. Switching to an
unsafe level, e.g., boost lu.cont by 500MHz, results in a thermal violation after less than
1ms, which is too fast to react, and must be avoided. Increasing the V/f levels step by
step until the temperature is exceeded is slow, especially if the thermal margin is large,
and still results in a thermal violation when testing the first unsafe level. This problem is
aggravated by the fact that typically many applications are executing in parallel, where
each application has separate characteristics, requiring to operate each application at a
different optimal V/f level, but all jointly affect the peak temperature. Similar challenges
are observed with application migration, where different cores offer different properties
(microarchitecture, cache latency, thermal properties, etc.). Trying all possible migrations
to find the best is impracticable due to their potentially large number, and migrations that
cause abrupt performance or temperature violations must be avoided.

5

1 Introduction

In summary, proactive resource management needs to consider the impact of an action before
executing it. However, this requires predictions, which are difficult to obtain, and there is
usually a large number of potential actions that need to be considered.

Challenge: Run-Time Overhead The goal of resource management is to optimize the
resource usage by the applications. Since the state of platform and applications changes
continuously over time, optimal management actions also change continuously. Therefore,
resource management is usually invoked periodically to be able to adapt to such changes.
The optimization performed by the resourcemanagement itself also requires computational
resources at run time, called the run-time overhead. In particular, one or several cores are
occupied for some time by resource management optimization, and the optimization may
itself dissipate power, consume energy, and heat up the cores. All these resources are not
available for the applications.

In particular, there is a trade-off between the achievable quality of the management
decisions and the overhead. First, achieving faster adaptability to changes requires a faster
control epoch, i.e., executing the optimization more often. Second, obtaining management
actions closer to the optimum requires a more complex optimization, which requires more
resources. In both cases, the more resources are spent on the optimization, the better is
the management but fewer resources are available to the applications.

In summary, resource management needs to optimize the usage of time-varying resources by
the applications while maintaining a low overhead.

1.3 Machine Learning for Resource Management
This section discusses how ML helps solve the challenges described above. This disser-
tation considers mostly neural network (NN) models, which recently dominate the field
of ML due to their capabilities to learn both low-level features in their first layers and
high-level representations in subsequent layers, coining the term deep learning [50].

Managing the Platform and Application Complexity ML models help managing the high
complexity in the platform and applications because 1) ML can train models that learn
complex functions, and 2) ML reduces the requirement for detailed system knowledge, as
discussed in the following.

The capabilities of ML models, especially NN models, to learn complex functions is one
of the main reasons for their recent success. Therefore, such ML models should also be
capable of learning the complex interdependencies of performance, power, temperature,
application characteristics, microarchitecture, etc.

As discussed earlier, one of the main challenges with high complexity is that building
analytical models requires detailed knowledge of the potentially confidential internals of
the platform. ML helps because it allows building models with significantly less domain
knowledge. While it is still required to identify the relevant parameters to use as features,
detailed knowledge about their impact is not required. Instead, information about these

6

1.3 Machine Learning for Resource Management

internals is extracted from the system by observing its behavior at different scenarios
to create training data, essentially treating it as a black box. Thereby, ML models allow
to trade the requirement for detailed domain knowledge for a requirement to probe the
system at different scenarios.

Coping with Unseen Scenarios ML algorithms are designed to generalize to unseen data.
There are 1) established processes to measure the generalization and 2) established training
methods to improve generalization, as discussed in the following. When employing ML
for resource management, we can utilize these established processes and methods to cope
with unseen workloads or even different hardware platforms.

A key concept in ML is the separation of training and test data, where the former is used
to create a model and the latter is used to evaluate the model [35]. This separation is the
basis for an established process to evaluate the generalization capabilities of a trained
model. The key challenge is to maintain statistical independence between training and
test data. The major unseen component considered in this dissertation is the workload,
i.e., the executed applications. Therefore, in the scope of this dissertation, the split of
training and test data is always performed at the granularity of applications, where some
applications are used exclusively for training and others are used exclusively for testing.

ML training aims at preventing overfitting of the model, which manifests itself in high
accuracy on the training data, yet poor generalization (low accuracy on the test data).
Several methods are typically used during NN training to improve generalization, such as
dropout [51] or regularization [50]. Both techniques affect only the NN training process
and have no overhead at run time.

Achieving Proactive Management The main challenge with proactive management is
that the impact of an action is difficult to estimate in advance. However, in hindsight, after
having executed a certain action, the impact is very straightforward to quantify and can
easily be measured. This allows to create training data to train an ML model. In addition,
NNs have proven effective in many control tasks, such as playing video games [52], where
the impact of an action needs to be learned (implicitly or explicitly). Finally, the impact
of a set of actions often follows a continuous trend. For instance, the performance and
power continuously increase with higher V/f levels. This allows to use the interpolation
capabilities of NNs, which learn continuous functions on continuous feature and output
spaces, and thereby reduces the amount of required training data.

Maintaining a Low Run-Time Overhead While ML algorithms may be very compute-
intensive, there are several properties of ML algorithms that also help achieve a low
run-time overhead. These are 1) a flexible trade-off between overhead and accuracy,
2) moving the most expensive computations to the design time, and 3) easy use of hardware
acceleration, as discussed in the following.

ML models allow us to make a fine-grained trade-off between overhead and accuracy.
This applies both to training (creating the model) and inference (using the model). In

7

1 Introduction

particular, the regular structure of NNs allows to statically scale the size (depth: number
of layers, and width: neurons or filters per layer) of the models for different trade-offs
between overhead and accuracy. Moreover, the regular structure of computations during
training allows to dynamically skip some computations to adjust to a dynamic resource
availability but at the cost of slower convergence.

The separation into distinct training and inference phases allows to further reduce the
overhead. Since the main concern is the run-time overhead, more complex computations
can be afforded at design time. Inference needs to be done at run time, while training can
also be shifted to design time. For most ML algorithms, the training is more complex than
inference. Performing training at design time enables to reduce the run-time overhead
significantly.

Finally, the computations involved in NN inference are dominated by multiply-accumulate
(MAC) operations with a high degree of data parallelism. These computations can be
implemented efficiently in hardware. In addition, these computations are always similar
for different NNs, independently of the task the NN was trained for. This enables to
employ a single generic NN accelerator to speed up many different policies with different
NNs, instead of requiring a separate specific accelerator for each policy, which would
require manufacturing a new chip.

1.4 Patterns how to Apply ML to Resource Management
This section discusses the main patterns how ML can be employed in resource manage-
ment. In abstract terms, resource management can be modeled as the problem of taking
actions (e.g., V/f scaling, application migration, etc.) based on observations of the state
of platform and applications (e.g., temperature, hardware performance counters, cache
miss rate, application arrival rate, etc.) in order to optimize for a certain objective (e.g.,
minimize temperature, maximize performance) under constraints (e.g., not violate a critical
temperature, maintain quality of service (QoS) targets). This dissertation distinguishes
and studies three alternative methods on how to employ ML in resource management
that are described in the following sections, respectively.

1.4.1 Predict Impact of Resource Management Actions

The first pattern is to predict the impact of potential management actions before executing
any. The impact is quantified in terms of performance, power, temperature, etc., depending
on the objective and constraints. Based on the predicted impact, only one action is selected
and executed. This pattern is depicted in Fig. 1.4. First, a set of candidate actions is created.
Representations of these actions are passed to an ML model. The ML model predicts
how each candidate action would impact the performance, power, or temperature of the
platform or application. Based on these predictions, a greedy algorithm selects the best
action and executes it. As the output of the model is a physical property, the ML model is
a regression model that can be trained using supervised learning. Many actions needs to
be observed or emulated to evaluate their impact to create the training data.

8

1.4 Patterns how to Apply ML to Resource Management

Platform, Applications Algorithm ML Model

State

Action

Candidate Actions

Predictions

Figure 1.4:ML Usage Pattern 1: Employing ML to predict the impact of a potential management action.

This approach has several advantages. First, proactive management is straightforward to
achieve because no action is executed without predicting its impact in advance. Second, the
learned model is easily reusable for different objectives or constraints because it is trained
to predict the impact of any action, independently of whether this action is beneficial, and,
hence, independently of objectives and constraints. Finally, it is rather straightforward
to create training examples because one training example can be created directly by
observing how a certain management action affects the platform and application state.

The major disadvantage of this pattern is that many inference calls to the model are
required, which may negatively affect the run-time overhead. Consequently, the main
challenge in this pattern is to select a suitable set of candidate actions that is not too large,
which would increase the overhead, but also does not discard the best actions.

1.4.2 Estimate Hidden Properties of the Platform or Applications

The second pattern is to employ an MLmodel to estimate hidden properties of the platform
or applications. Hidden properties are properties that can not be measured directly. This
includes for example temperature, which is only measurable at a few distinct locations
on the chip, where thermal sensors are located, but also abstract properties of running
applications, like their performance sensitivity on V/f level changes. Knowing hidden
properties make determining the best actions much easier. This pattern is depicted
in Fig. 1.5.

The model can be trained with supervised learning. Obtaining the labels requires mea-
suring the hidden properties. This may be possible either in special measurement setups
(e.g., our work in [10] uses a thermal camera to measure the full-chip thermal heatmap),
in simulation, or by indirect measurement of hidden properties (e.g., the work presented
in Chapter 6 profiles applications at design time at different V/f levels to measure the
sensitivity of their performance to the V/f levels).

One of the advantages of this pattern is, similar to the previous one, that the model
training is independent of the objective and constraints, which allows reusing the model
and training data for different objectives and constraints. Secondly, in contrast to the
previous pattern, only one inference call is required, which allows for a lower overhead.
The overhead then largely depends on the complexity of the subsequent optimization

9

1 Introduction

Platform, Applications

Algorithm

ML Model

State

Estimates of Hidden Properties

Action

Figure 1.5:ML Usage Pattern 2: Employing ML to estimate hidden properties of the platform or applications.

algorithm. However, as explained earlier, creating the training data may be challenging,
since it requires access to the hidden properties to create labels.

1.4.3 Directly Learn Resource Management Policy

The third pattern is to directly learn management actions, i.e., the model output is directly
the next action to take. This pattern is visualized in Fig. 1.6. The two main methods on
how to train such a model are reinforcement learning (RL) and imitation learning (IL).

RL learns which actions to take by trial and error [35]. RL is designed for Markov decision
processes (MDPs), where an agent (partially) observes the state of its environment, selects
an action, and executes it to affect the environment. The goal of the agent is to maximize
its reward, which is determined based on the state of the environment and the selected
action, and should reflect the objectives and constraints. This model is directly applicable
to resource management. The main advantage of RL is that it learns at run time, which
enables adaptive management. However, this is also its main weakness because run-time
learning introduces instability into the learning process, resulting in suboptimal actions
being selected, and it comes with a high run-time overhead.

In contrast, IL trains a model only once at design time based on oracle demonstrations
that describe the optimal action for various scenarios. Oracle demonstrations are usually
created by brute-force testing of many possible actions to find the best one w.r.t. the
given objective and constraints. This process may be rather inefficient since many actions
must be tested for just one training example. IL trains a model based on these oracle
demonstrations with the goal that the model generalizes also to different scenarios. At run
time, IL only performs inference of the model, i.e., low overhead. Therefore, IL promises
to combine the optimality of the oracle demonstrations with a low overhead. Both RL
and IL train models for a specific objective and constraints, which prevents reusing these
models for different objective or constraints.

10

1.5 Dissertation Contributions

Platform, Applications ML Model

State

Action

Figure 1.6:ML Usage Pattern 3: Employing ML to directly select management actions.

1.5 Dissertation Contributions

The key contributions of this dissertation are:

• An application mapping and DVFS technique has been developed, using a classi-
cal approach based on simple heuristics, for performance maximization under a
thermal constraint. It targets many-core processors with physically-distributed,
yet logically-shared last-level cache (LLC), resulting in non-uniform cache access
latency among the cores. This technique enables us to assess the strengths and
weaknesses of classical heuristic resource management. The obtained insights are
used to develop ML-based solutions.

• An ML-based application migration technique has been developed, following ML
Usage Pattern 1 (Fig. 1.4), for performance maximization under a thermal constraint.
An NNmodel is developed and trained to predict the performance impact of migrat-
ing a thread to a different core, enabling proactive management. The prediction is
based on hardware performance counters readings, to be able to cope with various
characteristics (and, hence, different optimal migrations) of unseen applications.
The model is used to determine at each control epoch the best migration w.r.t. the
overall performance. Thereby, the technique dynamically adjusts the mapping of
the application to maintain peak performance even under changing workload and
execution phases.

• A frequency boosting technique has been developed, following ML Usage Pattern 2
(Fig. 1.5), for performance maximization under a thermal constraint. This tech-
nique proactively boosts or throttles applications based on a novel metric, called
boostability, which integrates the sensitivity of performance and power to V/f
changes, and the sensitivity of the hotspot temperature to power into a single value.
An NN is used to estimate the sensitivity of performance and power of the running
applications to V/f changes, which cannot be measured directly. Predictions of
these properties enable proactive management and help tackle the complexity of
the problem. Similar to the previous technique, the features of the model are based
on hardware performance counters, enabling to cope with unseen applications.

• A technique using DVFS and application migration has been developed, following
ML Usage Pattern 3 (Fig. 1.6), for temperature minimization under QoS targets of

11

1 Introduction

heterogeneous clustered processors like Arm big.LITTLE. It uses IL with an NN
to tackle the complexity of the platform and application behavior by learning an
application migration policy from optimal oracle demonstrations. This technique
has been evaluated on a real smartphone chip (Kirin 970 on HiKey 970 board). To
reduce the run-time overhead, NN inference is performed using its existing generic
NN accelerator, the neural processing unit (NPU).

• A technique for resource-adaptive on-device training has been developed. It enables
to dynamically adjust the required computational resources for training an NN
at negligible overhead. The targeted use case is dynamic resource availability
for NN training, e.g., if the training needs to share resources with other running
applications. The core idea is to dynamically drop filters of convolutional layers,
to trade off resource requirements for convergence speed. The Pareto-optimal
per-layer dropout rates are determined using a design space exploration (DSE).
This technique is evaluated in a federated learning (FL) setting, where many devices
jointly perform distributed training of a large NN model.

1.6 Dissertation Outline
The next chapter discusses the related work for system-level resource management and
resource-aware learning. Chapter 3 introduces the experimental framework used to eval-
uate the techniques developed in this dissertation. These comprise both simulation-based
setups and a physical setup with real hardware. Chapters 4 to 8 present the techniques de-
veloped in this dissertation. Chapter 4 develops and studies the classical heuristic resource
management technique for application mapping and DVFS. The application migration
technique based on predicting the impact of potential migrations with ML is presented
in Chapter 5. Chapter 6 presents the boosting technique that performs optimization by
predicting the sensitivity of performance and power with ML. Chapter 7 introduces the
IL-based application migration and DVFS technique for heterogeneous multi-core proces-
sors. The technique for resource-adaptive on-device training by dynamically dropping
parts of an NN during training is presented in Chapter 8. Finally, Chapter 9 concludes
this dissertation and discusses future research directions.

12

2 RelatedWork

This chapter discusses related work in three categories. The first category of techniques
performs classical resource management, i.e., not based on ML. The second category
targets ML-based resource management techniques. The third category discusses resource-
aware ML.

2.1 Classical Resource Management

Classical resource management either performs optimization at design time, is based
on simple heuristics, or employs analytical models of applications or the platform. The
following sections discuss each of these categories.

2.1.1 Resource Management with Design-Time Optimization

If the workload (executed applications and arrival times) and the platform (processor,
cooling, etc.) are known at design time, resource management can already be optimized
at design time. The main advantages are that virtually unlimited computational resources
are available for the optimization, and that alternative management decisions can be
tried (profiled). Coskun et al. [53] present a design-time application mapping technique
formulated as an integer linear program (ILP) thatminimizes the peak temperature, thermal
gradients, or energy under performance constraints. Khdr et al. [54] jointly select the
degree of parallelism, mapping, and V/f levels of applications under a thermal constraint
with dynamic programming. Olsen et al. [55] use design-time profiling to determine the
optimal parallelism and thermal-aware mapping to maximize the performance.

The main drawback of design-time optimization is that it is rather unrealistic to assume
that the workload is known at design time, e.g., due to varying user activity or input
data, as has been discussed in Section 1.2. All these techniques cannot cope with unseen
scenarios.

2.1.2 Resource Management with Simple Heuristics

The second class of resource management techniques rely on hand-coded rules or other
simple heuristics to make decisions. Processor manufacturers developed frequency boost-
ing techniques like Intel TurboBoost [56] or AMD Turbo Core, which upscale the V/f levels
of all active cores simultaneously if a thermal margin exists, and throttle all cores in case

13

2 Related Work

a thermal violation is imminent. These techniques boost the cores without specific knowl-
edge of the applications running on the cores. Resource management at the operating
system level, like Android / Linux resource management [57] comprises scheduling and
DVFS. Most schedulers are designed for homogeneous processors. In contrast, Global
Task Scheduling (GTS) aims at increasing the energy efficiency of heterogeneous proces-
sors by migrating mostly-idle applications to the LITTLE cluster. DVFS is performed by
governors [58], such as powersave for power minimization or ondemand for a trade-off
between power and performance. These policies employ simple hand-coded rules. For
instance, ondemand tries to keep the CPU utilization between a predefined lower and
upper bound by scaling the V/f levels.

Sha et al. [59] propose to operate cores at oscillating V/f levels that are determined such
that the maximum transient temperature is below the thermal constraint. Pathania et
al. [60] present a run-time application mapping algorithm targeting many-core processors
with static non-uniform cache access (S-NUCA) architecture. They greedily minimize the
average LLC latency of applications, aiming at maximizing the performance, by prioritizing
cores close to the center of the many-core processor. However, they do not take into
account application characteristics. Kanduri et al. [61] present a run-time application
mapping and power budgeting algorithm for performance maximization under a thermal
constraint. They develop a heuristic algorithm to sparsely map threads of an application.
In addition, they propose a power budgeting controller and a boosting controller, which
determines the application to boost based on the current temperatures of the cores they
are running on, i.e., boost the coldest core.

The main advantage of techniques that rely on hand-coded rules or simple heuristics is
that they tend to have low complexity and low overhead. However, this comes at the
cost of ignoring relevant information like specific application or platform characteristics.
Therefore, these techniques cannot cope with the complexity of platform and applications
and the resulting management decisions are suboptimal. A plethora of techniques has
been developed to improve resource management by using analytical modeling of the
platform and applications, which are discussed in the next section.

2.1.3 Analytical Modeling

Most works based on analytical modeling are specific to a certain processor architecture
(e.g., homogeneous or heterogeneous) and use models of the platform (e.g., power or
temperature). However, the works differ in how they handle applications, where some
works assume that application characteristics are known in advance at design time and
others target unknown (at design time) applications.

Known Applications Many works target known applications, i.e., use design-time in-
formation about the running applications like power consumption or execution time. In
contrast to techniques that perform design-time optimization, the arrival times of the
applications are not assumed to be known, which mandates run-time optimization.

14

2.1 Classical Resource Management

Some works target network-on-chip (NoC)-based many-core processors with message
passing between threads of an application. Ng et al. [62] maximize the performance
of a NoC-based many-core processor by application migration. They migrate threads
of a single application close to each other and maintain coherent regions of idle cores
to map new applications. Their optimization requires information about the execution
time and communication volume of the applications. Zhu et al. [63] perform application
mapping making a trade-off between temperature and communication latency, which
is formulated as a graph problem. They also require models of applications’ execution
time, communication volume, and power consumption. Wang et al. [64] use application
mapping and DVFS to maximize the performance under a thermal constraint. They map
threads of an application spatially compactly with idle cores in between. The mapping and
DVFS heuristics require knowledge of the communication volume and power consumption,
respectively.

Other works target shared-memory architectures. Wang et al. [65] determine the V/f
levels that maximize the performance under a power budget. Their approach relies on
application-specific models for power consumption and performance depending on the
V/f level. Khdr et al. [66] perform aging-constrained performance optimization. They also
require design-time performance models of applications, in addition to aging models of the
platform. Liu et al. [67] formulate the problem of performancemaximization asmaximizing
the sum of instructions per second (IPS) of all applications. Hence, high-IPS applications
are boosted more than the ones with low-IPS. Their optimization requires models of
the power consumption and throughput of applications. In addition, focusing only on
the absolute value of the IPS ignores relevant other information, like the applications’
V/f sensitivity of the performance, which is required to achieve optimal management.
Therefore, several techniques consider the V/f sensitivity of the performance, instead.
Hankendi et al. [68] maximize the overall system performance under a power constraint
considering the sensitivity of the performance, which needs to be known in advance.
In addition, they require knowledge of the resource demand of applications. Wang et
al. [69] consider the sensitivity of the performance of the applications (known a priori) to
determine the V/f levels of their corresponding cores. Particularly, they execute memory-
intensive applications at lower V/f levels than compute-intensive applications.

The limitation of these techniques is their dependency on the existence of models (per-
formance, power, etc.) of the applications at design time, which is rather unrealistic, and
thereby, they cannot be employed for unknown applications.

UnknownApplications Finally, someworks target a priori unknown applications by using
only information about the running applications that can be collected at run time. Several
works develop analytical performance and power prediction models. Van Craeynest et
al. [70] predict the performance of a thread when migrated to another CPU type in a
heterogeneous processor. They model the impact of the microarchitecture on individual
parts of the cycles per instruction (CPI) stack. However, they do not consider power or
temperature. Pricopi et al. [71] extend this concept to also predict power consumption.
They first estimate how miss event rates are affected by the microarchitecture and then

15

2 Related Work

estimate the performance and power based on the estimated miss event rates. However,
they do not present a resource management technique to make use of the predictions.

Bhat et al. [72] perform thermal management of a heterogeneous processor with models of
power and temperature. They build analytical power models based on domain knowledge,
e.g., physics-based leakagemodels, to decidewhen to boost or throttle cores. Using a simple
linear performance model, they throttle the applications with the lowest sensitivities,
in case of expected thermal violations, thereby minimizing the performance reduction.
However, they incompletely make use of these models. For instance, they ignore power
and temperature to decide which application to boost or throttle.

These works ignore parts of the complexity in resource management, by not performing
resource management itself, or by ignoring application characteristics in parts of the
optimization, ultimately leading to suboptimal decisions.

2.2 Learning-Based Resource Management

Recently, a trend towards ML-based resource management can be observed [73]. The
following sections discuss techniques that learn the management policy with RL or IL,
and techniques that use ML to learn properties of the platform and applications.

2.2.1 Learn Management Policy with Reinforcement Learning

Several works have employed RL for resource management. Some employ table-based
centralizedQ-learning. Das et al. [74] optimize the reliability under QoS targets using both
application migration and DVFS. However, they do not cope with several applications
running in parallel. Shafik et al. [75] employ Q-learning for DVFS. The learned policy is
not intended to generalize to different workloads. Instead, workload changes are detected
and a re-exploration is triggered to update the learned policy. They use a small Q-table
to speed up the repeated exploration. Dinakarrao et al. [76] use Q-learning to minimize
the energy consumption under reliability constraints by using DVFS. Kwon et al. [77]
minimize the energy per cycle by controlling per-cluster DVFS. Liu et al. [78] apply
application mapping and DVFS to minimize the temperature under QoS targets. However,
they analyze intermediate compiler-level representations of applications, and, hence, their
technique is only applicable to known applications. In addition, they do not cope with
several applications running in parallel.

A major limitation of centralized table-based Q-learning is that the number of different
states and actions is limited by the affordable storage. In addition, large Q-tables slow
down the convergence substantially because commonly, only one entry is updated per
time step. Therefore, several works approximate the Q-function or the policy function. Lu
et al. [79] perform migration for temperature minimization based on per-core temperature
measurements. They approximate the Q-function with a radial basis function composition.
Other works employ NNs for approximation. Gupta et al. [80] use deep reinforcement
learning (DRL) to decide the number of active cores and their V/f levels in a heterogeneous

16

2.2 Learning-Based Resource Management

multi-core processor to minimize the energy consumption. Yang et al. [81] minimize the
temperature via mapping applications to a core at arrival time.

Other works avoid with large state and action spaces and slow convergence by splitting the
centralized agent into many distributed agents, e.g., per core or per application. However,
special attention needs to be paid to achieve convergence and cooperativeness between
agents. Chen et al. [82] maximize the performance under a global power budget using
per-core RL. The individual agents are coordinated using a global heuristic to assign
per-core power budgets. Donyanavard et al. [83] employ RL at the core level. A high-level
coordinator translates the system goal, e.g., minimizing power, into core-level target IPS.
Then, the core-level agents select the V/f level to manage the core IPS accordingly.

RL-based resource management suffers from several problems. It requires to combine
objective and constraints into a single scalar reward, which does not reflect their different
properties and may lead to suboptimal actions. This is known as reward hacking [84].
Moreover, RL performs training at run time. This may be computationally expensive,
preventing a low-overhead implementation, especially if NNs are used. In addition, this
may result in instability, due to the requirement to perform exploration at run time, and
may even lead to catastrophic forgetting, where the performance of the policy degrades
for certain scenarios. Both cases lead to suboptimal management decisions.

2.2.2 Learn Management Policy with Imitation learning

IL has recently gained attention for resource management. Gupta et al. [85] train an ML
model to predict the optimal number of active cores and per-cluster V/f levels to minimize
the energy. Kim et al. [86] propose an IL technique for DVFS to minimize the energy
under a QoS targets. They compare their IL-based technique to an RL-based technique
and demonstrate that IL achieves a significantly better management at a lower overhead.
However, they train a separate policy per application, and, hence, their technique cannot
cope with unknown applications. Mandal et al. [87] use IL to select the types, number,
and V/f levels of active cores for several optimization goals, such as minimize the energy
under a QoS targets. Finally, Sartor et al. [88] propose a hierarchical IL technique to select
the number of active cores and the per-cluster V/f levels to maximize the energy efficiency
of a heterogeneous multi-core processor under QoS targets.

These works divide the application execution into phases and record hardware perfor-
mance counters, performance, and power for each phase at each configuration (number
of active cores, V/f levels, etc.). Oracle demonstrations are created by finding the optimal
sequence of per-phase configurations. A greedy approach can be used in some cases, e.g.,
when minimizing energy. More complex heuristics are required in other cases, e.g., when
minimizing energy under a performance constraint, as the locally optimal configuration
of a phase not necessarily is part of the global optimal sequence of configurations. These
techniques initially perform training only on the optimal sequence of configurations, i.e.,
train the policy to imitate the oracle. They use the DAgger algorithm [89] to make the

17

2 Related Work

policy more robust. DAgger adds a training example whenever the policy differs from the
oracle. This example contains information about how to recover from the misprediction.

A major limitation of these techniques is that they only work for power/energy/per-
formance optimization but can not cope with temperature. The reason is that power,
performance, and energy of a phase depend only on the used configuration in this phase.
This is not the case with temperature, which is subject to both spatial (heat transfer)
and temporal (heat capacity) effects that do not exist in power/energy. The reached
temperature during a phase additionally depends on all configurations of all previous
phases. Consequently, the oracle policy does not work for temperature optimization and
would require an exponential number of traces, which is infeasible. In addition, the power
sensors required for creating the oracle are often not available in real-world processors.

2.2.3 Learn Properties of the Platform or Applications

Several works employ supervised learning to learn properties of the platform or applica-
tions. The models are used to estimate properties that can not be measured at run time,
predict the impact of a management action before executing it, or to forecast future events.
This section discuss techniques for each of these categories.

Estimate Hidden Properties of the Platform or Applications As discussed in Section 1.4.2,
ML can be used to estimate hidden properties of the platform or applications, thereby
reconstructing the current, partially observable system state. Analog sensors for power and
temperature are costly to implement and, therefore, usually only a few sensors are placed
on a chip, making the platform state only partially observable. Bircher et al. [90] employ
a simple linear model to estimate the current power from performance counter readings.
Sadiqbatcha et al. [91] develop a recurrent NN to estimate the current temperature of the
thermal hotspots at run time from processor performance counter readings. Other works
aim at estimating application properties. Gupta et al. [92] estimate the sensitivity of the
performance of an application to V/f changes with a linear model based on performance
counter readings. Walker et al. [93] propose a run-time power model that can be used to
estimate the sensitivity of the power to V/f levels.

These works do not perform any resource management but only aim at providing estimates
of the platform or application properties. As the available observations to the developed
models and required estimates depend on the platform and the management objectives,
constraints, and optimization, these models would require adjustment when integrated
into a resource management technique.

Predict Impact of Management Actions Another set of works employs ML to predict the
impact of potential management actions, as described in Section 1.4.1. The impact of a
management action depends on the action but also on potential workload changes that
may happen simultaneously to executing the management action. To avoid the challenges
of forecasting workload changes, many techniques predict how the system metrics would
be now if another action would have been selected, i.e., assume that the workload does not

18

2.3 Resource-Aware Learning

change within the next control step. Consequently, control steps must be short enough to
react to changing workloads.

For application scheduling in a high-performance system, Zhang et al. [94] predict how
the temperature of a processor will change if a certain application is started. They use
application characteristics (performance counters, kernel counters, etc.), as well as CPU-
specific features that describe the processor’s current properties.

Several works target a more fine-grained control using application migration. Ge et al. [95]
predict the steady-state peak temperature of a core after an application migration. They
train a very small NN with a single hidden layer. This work targets a homogeneous multi-
core processor, i.e., no heterogeneity between cores. Therefore, no workload dependency
needs to be learned as the power consumption of an application is the same on all cores,
i.e., not affected by migration. Kim et al. [96] predict the performance and power of an
application when migrated to another core of a heterogeneous processor. They employ a
cascaded NN, where the first NN predicts the expected performance counter values on
the target architecture, and the second NN predicts the power and performance based on
the performance counter values. Both NNs are small fully-connected feedforward NNs.

As the works in the previous category, these works do not perform any resource manage-
ment but only aim at providing predictions.

Forecast Future Events Finally, several works aim at forecasting future events, such as
changes in the workload or environment. Such forecasts may provide relevant inputs to a
resource management technique. Coşkun et al. [97] forecast future workload behavior,
such as temperature, core utilization, and instructions per cycle (IPC). They assume
repeating patterns in the workload. Abad et al. [98] use an NN to forecast the temperature
in a multi-core processor based on information about the workload, as well as information
about the V/f level and cooling fan speed.

Similar to the previous two categories, these works do not perform any resource manage-
ment themselves but only aim at providing relevant inputs.

2.3 Resource-Aware Learning

The majority of works on resource-aware machine learning focuses on resource-aware
inference [99, 100, 101]. These techniques dynamically adapt the resource requirements of
the inference but are not applicable to training. Resource-aware training is only recently
getting increasing attention, mostly in the context of distributed learning, where the
available resources for training vary between devices and additionally on each device over
time, as will be discussed in Chapter 8.

Some techniques dynamically drop training data. Li et al. [102] present FedProx, which
allows devices that participate in distributed training to drop training examples that could
not be processed with the available resources. However, dropping data greatly reduces
the achievable model accuracy.

19

2 Related Work

Several techniques train separate models on each device, and use distributed learning
to improve these individual models. For instance, Shi et al. [103] optimize the hyperpa-
rameters of the per-device models with distributed model-based optimization. However,
they do not synchronize the learned concepts by the models. Recently, techniques based
on Federated Distillation [104, 105, 106] have been presented that allow each device in a
distributed system to train an NN model with different topology that fits best its available
resources. However, synchronizing knowledge between these different models is rather
inefficient because the NNs do not necessarily share a common structure, reducing the
achievable accuracy. In addition, such techniques cannot cope with time-varying resource
availability.

Instead of training independent NN topologies on the devices, several techniques perform
training only on a dynamic subset of a single NN. In contrast to Federated Distillation, the
obtained parameter updates during training can be merged easily. The size of the subset
determines a trade-off between the required resources and the achievable convergence
speed. Horváth et al. [107], Yu et al. [108], and Diao et al. [109] select subsets of the
NN in a hierarchical way, where smaller subsets are fully contained in larger subsets.
For instance, Diao et al. [109] introduce a shrinkage ratio s that determines the ratio of
removed hidden channels in convolutional layers to reduce the resource requirements
of the NN. The same parameter s is applied repeatedly to all layers to obtain several NN
subsets with decreasing resource requirements. However, using hierarchical subsets is
restricted to a small number of supported subsets to avoid accuracy losses [99]. This
prevents fine-grained adjustability of resource requirements for training, which leads to
wasted computational resources.

This limitation can be avoided by selecting subsets randomly, i.e., use non-hierarchical
subsets. Xu et al. [110] randomly remove neurons before training on slow devices at the
beginning of local training. Graham et al. [111] study the suitability of dropout [51], which
is commonly used as a regularization method, to reduce resource requirements. They
observe that computations can only be saved if dropout is done in a structured way, i.e., a
contiguous set of neurons is dropped for all samples of a mini-batch. Caldas et al. [112]
perform structured dropout before starting local training and train a repacked smaller
network on the devices. However, they use the same dropout rate for all devices that
participate in distributed training, which needs to be selected according to the device with
the lowest resources, and leads to wasted resources on other devices. In addition, they
use a single dropout rate for all layers, which is suboptimal and reduces the achievable
convergence speed. All these works select the trained subset at the beginning of training,
and do not support changing it during training. This does not allow to adapt to changing
resource availability during training on the devices.

None of these techniques supports heterogeneous and changing resource availability for
local training on the devices, while still achieving a high model accuracy.

20

3 Experimental Framework

The techniques developed in this dissertation are evaluated experimentally. Two different
setups are used to evaluate resource management policies, a simulation-based setup and a
setup based on real hardware. Finally, a third setup based on FL is employed to evaluate
resource-aware on-device ML techniques.

3.1 Simulation-Based Setup

The simulation-based setup uses HotSniper [113], which combines the Sniper [114] multi-
/many-core simulator for performance simulation with McPAT [115] for periodic interval-
based power simulation, and HotSpot [44] for periodic interval-based thermal simulation.
Sniper enables multi-program simulation of multi-threaded applications with full modeling
of shared resource contention, such as on cache capacity or memory bandwidth. The tight
integration with McPAT and HotSpot enables resource management policies to access
information about the power and temperature during execution. We always simulate the
full execution of the benchmarks [116]. The main advantage of the simulation-based setup
is its flexibility to simulate different systems (e.g., different hardware architectures).

Resource Management API and Simulation Automation During this dissertation, exten-
sions for HotSniper have been developed and published as open source contribution1. The
main extensions are a resource management API and simulation automation flow. The
resource management API enables to implement custom policies for application map-
ping, application migration, or DVFS by implementing well-defined C++ interfaces. The
simulation automation flow enables to run multiple different simulations (e.g., different
workloads, different resource management policies) in batch mode. It extends the configu-
ration file syntax of HotSniper to automatically switch between different configuration
values in each simulation. In addition, it provides a Python API for automated evaluation
of the simulation results.

CPI Stacks to Represent Application Characteristics A cycle stack [117] divides the num-
ber of CPU cycles for executing a sequence of instructions into several components. The
base cycle count is the number of cycles that would have been required if the CPU never
stalled, i.e., loads and stores finish immediately, no branch mispredictions, no interdepen-
dencies between instructions, etc. Every additional cycle is assigned to the architectural

1 https://github.com/anujpathania/HotSniper

21

https://github.com/anujpathania/HotSniper

3 Experimental Framework

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0.0

0.5

1.0

1.5

2.0

Time [ms]

CP
IS

ta
ck

[C
yc

le
s/

In
st
ru

ct
io
n]

base branch/depend mem-l1d mem-dram others

Figure 3.1: The CPI stack of SPLASH-2 fft clearly shows its execution phases and provides insights into what
causes them (e.g., instruction dependencies or many DRAM accesses).

component that causes it. This comprises data dependencies between instructions, bottle-
necks in the CPU (e.g., limited issue width, limited number of reservation stations), branch
mispredictions, and the memory hierarchy (e.g., TLB, L1 cache, L2 cache, LLC, RAM).
A CPI stack normalizes the cycle stack to the number of executed instructions. CPI stacks
are a valuable tool for system designers because they visualize performance bottlenecks
and represent the characteristics of the applications. Furthermore, CPI stacks can be
obtained from common performance counters at run time with minimal overhead [70].
HotSniper directly provides CPI stacks per each thread during execution.

Fig. 3.1 shows the CPI stack of SPLASH-2 fft over time when running at a constant fre-
quency of 3.0GHz on the architecture described in Section 3.1.1. A certain minimum
number of cycles are always required to execute any instructions, called the base compo-
nent in a CPI stack. The other components clearly show the application execution phases.
Initially, data and branch dependencies between instructions cause many stall cycles in the
CPU pipeline. Later, fft is more memory-intensive with three short distinct phases of high
dynamic random access memory (DRAM) activity. A CPI stack not only allows to detect
the execution phases of fft with different characteristics, but also presents an explanation
of the causes, which is relevant information for application-aware optimization in the
resource management.

Thermal Modeling This setup uses HotSpot to perform thermal modeling of the chip
and the cooling system, comprising the thermal interface material, heatspreader, and heat
sink. HotSpot uses an RC-thermal network where temperature and heat flow correspond
to voltage and current in an electrical circuit, respectively [44]. The many-core processor
and its cooling system are modeled by N thermal nodes. The first n nodes correspond
to the n cores of the many-core processor along with their associated components like
private caches, LLC banks, or NoC routers. The remaining N – n nodes describe the

22

3.1 Simulation-Based Setup

Core 0

L1-D L1-I

L2

Core 1

L1-D L1-I

L2

Core 2

L1-D L1-I

L2

Core 63

L1-D L1-I

L2

…

L3

Many-Core Processor

DRAM

Figure 3.2: The 8×8 bus-based homogeneous many-core architecture employed in the simulation-based setup.

cooling system. The changes in temperatures T′ =[T ′i]N of all nodes are described by N
differential equations:

AT′ + BT = P + TambG (3.1)

Thereby, the matrix A=[Aij]N×N describes the dynamic thermal behavior, i.e., thermal
capacitance values, the vector T = [Ti]N contains the current temperatures, the matrix
B = [Bij]N×N describes the thermal conductivity between nodes, the vector P = [Pi]N
contains the current power consumption of all nodes, Tamb is the ambient temperature,
and the vector G = [Gi]N describes the thermal conductivity between the nodes and
ambient.

For a constant power consumption, the temperature asymptotically approaches the steady-
state temperature Tsteady = [Tsteady,i]N , which is described by

Tsteady = B–1P + B–1TambG (3.2)

where matrix B–1 =[B–1
ij]N×N is the inverse of matrix B. The steady-state temperature

is much cheaper to compute than transient temperatures. This is as the main required
computation is a single matrix-vector multiplication. As low run-time overhead is always
a concern in resource management, the steady-state temperature may be used to lower the
complexity of the optimization. However, this may come at the risk of transient thermal
violations that are not captured by the steady-state temperature. Pagani et al. [118] have
shown that thermal overshoot can happen when the distribution of power consumption
on the chip changes, even if the steady-state temperature is always thermally safe. It is
important to notice here that while several techniques in this dissertation consider the
steady-state temperature within their optimization, evaluations are always performed on
the transient temperature, and the observed thermal violations are negligible.

3.1.1 Homogeneous Many-Core Processor

HotSniper is configurable to simulate many different architectures. The first studied
architecture is a homogeneous bus-based 64-core many-core processor with the gainestown

23

3 Experimental Framework

Many-Core Processor

DRAM

Core i

L1-D L1-I

LLC Bank

NoC Router

Tile i

Figure 3.3: The 8×8 NoC-based many-core architecture with S-NUCA LLC employed in the simulation-based
setup.

microarchitecture. It is depicted in Fig. 3.2. This architecture is close tomany commercially-
used desktop and server processors [119]. The 32KBL1-D, 32KBL1-I, and 256KBL2 caches
are private per core. The 8MBL3 cache is shared among all cores. Themany-core processor
is modeled in the 14 nm FinFET technology node. The most recent technology that is
supported by McPAT is 22nm FinFET. We, therefore, estimate the power consumption at
22nm and scale it to 14nm FinFET with factors based on [33]. DVFS selects frequencies
between 1.0GHz and 4.0GHz in steps of 100MHz. The cooling is modeled with the default
parameters of HotSpot.

3.1.2 S-NUCAMany-Core Processor

The second studied processor employs an S-NUCA architecture [43], which is depicted
in Fig. 3.3. S-NUCA is also employed in commercially available many-core processors [120].
In an S-NUCA architecture, banks of the LLC are physically distributed among all tiles of
the many-core processor, yet still logically form a single large cache that is shared among
all cores. Each bank of the LLC is co-located with a CPU core within a tile. The main
advantage of S-NUCA is that it allows for a high scalability in the number of cores because
distributing the LLC and routing the memory traffic on the NoC prevents a single LLC
bottleneck. To achieve such scalability and enable a simple hardware implementation,
the mapping of memory address to LLC bank is static, i.e., the mapping is based on the
lower-level bits of the address tag. All cores are connected by a NoC, with a NoC router
in each tile. Prior work [60] has shown that this architecture is heterogeneous w.r.t. LLC
latency, where cores closer to the center of the many-core processor experience a lower
LLC latency than cores closer to the corners.

The simulated many-core processor comprises 64 cores aligned in an 8×8 grid. The per-
core private L1 data and instruction caches have a size of 16KB each and an access latency
of 3 cycles. The shared LLC uses S-NUCA policy and has a total size of 8MB where
each core holds an LLC bank of size 128KB with a latency of 8 cycles. The NoC uses

24

3.2 Physical Setup with Real Hardware

Core 0

L1-D L1-I

Core 1

L1-D L1-I

Core 2

L1-D L1-I

Core 3

L1-D L1-I

Core 4

L1-D L1-I

Core 5

L1-D L1-I

Core 6

L1-D L1-I

Core 7

L1-D L1-I

L2 L2

LITTLE Cluster big Cluster

Cache coherent interconnect (CCI)

NPU GPU

Multi-Core Processor

DRAM

Figure 3.4: The Arm big.LITTLE architecture employed in the physical setup with a HiKey 970 board.

XY-routing with a latency of 1.5 ns (6 CPU cycles @ 4GHz) per hop and a link width of
256 bits. DVFS sets core frequencies in multiples of 100MHz from a minimum of 1.0GHz
up to a maximum of 4.0GHz. The many-core processor is modeled to be fabricated in the
14nm FinFET technology node. As with the homogeneous architecture, we use McPAT to
estimate power at 22nm and scale it to 14nm. The area of each core is 0.81mm2. We use
the default HotSpot cooling parameters. Idle cores consume 0.3W because their associated
globally-shared LLC banks need to stay active.

3.2 Physical Setup with Real Hardware

In addition to the simulation-based setup, we also use a physical setup that is based on a
HiKey 970 [121] board with aHiSilicon Kirin 970 smartphone system-on-chip (SoC). Fig. 3.4
shows the SoC architecture. It implements the common Arm big.LITTLE architecture,
which combines powerful big cores (in our platform four Arm Cortex-A73 cores [41]) with
energy-efficient LITTLE cores (in our platform four Arm Cortex-A53 cores [42]). Thereby,
the system comprises two clusters with very different characteristics. Arm big.LITTLE
is the prevalent architecture in mobile SoCs. However, there are also recent advances to
employ big.LITTLE architectures in desktop and server processors, like Intel Alder Lake-S
and AMD Zen 5.

The SoC on HiKey 970 is manufactured in 10nm. It supports per-cluster DVFS with
frequencies up to 1.84GHz and 2.36GHz, respectively. Furthermore, it comes with an NPU
to accelerate the inference of NNs. However, the NPU does not support NN training. The
board is placed in an air-conditioned room to maintain a constant ambient temperature.
Two different cooling settings are supported. The first setting is forced-convection cooling
by adding a fan with constant power (Fig. 3.5a). The second setting is passive air cooling
with the provided heat sink (Fig. 3.5b). The on-chip temperature is monitored with the

25

3 Experimental Framework

(a)With a fan (b)Without a fan

Figure 3.5: The HiKey 970 board with (a) and without (b) a fan.

on-board thermal sensor with a frequency of 20Hz. The board runs Android 8.0. We use
the Linux CPU affinity feature to pin threads to cores to implement custom applications
mapping and migration, and use the Linux governor subsystem, specifically the userspace
governor, to implement custom DVFS policies.

3.3 Federated Learning Setup

Techniques for resource-aware on-device ML are evaluated in an FL setting [122]. FL
has emerged as an alternative to traditional centralized training of an ML model on a
single server, which suffers from several problems. First, training data is often obtained
at end devices, such as smartphones, internet of things (IoT) nodes, etc. Collecting all
training data at the server is costly, as the raw data would need to be sent all over the
network to that centralized entity [123]. Second, the training might use users’ private
data, mandating that the data must not leave the users’ devices. In contrast, FL performs
distributed training on many participating devices, where each device holds its own private
training data, and knowledge is exchanged between the devices by synchronizing the
parameters of an NN model. However, training a deep NN model is resource-hungry in
terms of computation, energy, time, etc. Hence, the available resources for training are
limited. In summary, FL is a suitable use case to study resource-aware learning techniques
because it performs training of an NNmodel on devices such as smartphones or IoT nodes,
which are resource-constrained in terms of computations, power, energy, etc.

Fig. 3.6 shows the FL-based setup, which simulates one server and N distributed devices
that act as clients. Each device i holds its own local training data Xi . We target a syn-
chronous coordination scheme, which divides the training into many rounds. At the
beginning of a round, the server selects n devices to participate in the training. Each
selected device downloads the recent model from the server and trains it with its local
data, considering the available resources for training. After training, each device sends
weight updates back to the server. The server combines all received weight updates to a

26

3.3 Federated Learning Setup

FL Server

Collect
Updates

Weighted
Averaging

Model

Test
Accuracy

Test
Data

Performance
Logs

Device i

Model

Resource Availability
Model ri (t) (#MACs/s)

Local Training
Data Xi

Model Parameter
Update

Resource-Aware
Training

Figure 3.6: FL-based setup to evaluate techniques for resource-aware ML.

single update by weighted averaging. Updates from devices that take too long to perform
the training (stragglers) arrive at the server too late and are discarded. At the end of a
round, the server has obtained a new model. The accuracy of this model is measured in
each round with the help of test data that is independent of the devices’ data.

The devices are subject to time-varying limited computational resource availability for
training. To which degree the availability of a certain resource affects the local training
time of an NN depends on the NN and hyperparameters, but also on the deep learning
implementation (the used library) and the underlying hardware [124]. We abstract from
such specifics of the hardware and software implementation, and from the constrained
physical resource to keep this setup applicable to many systems by representing the
resource availability in the number of MACs that a device can calculate per time given
its specifications, implementation, and available resources. MAC operations are the
fundamental building block of NNs (e.g., fully-connected and convolutional layers) and
account for the great majority of operations [125]. The resource availability ri(t) depend
on the device i, and the current time t . Resources may change at any time, i.e., also within
an FL round. Resources are not modeled to be known ahead of time.

The setup offers several points of customization. Different NN topologies and data sets can
be studied. On the server, the device (client) selection and weighted averaging algorithm
can be changed. On the devices, the resource availability model and the resource-aware
training algorithm can be customized.

27

4 Classical Heuristic Resource
Management

Sophisticated application mapping and power budgeting policies are required to efficiently
utilize the increasing number of cores in many-core processors [31]. An application
mapping policy determines for each thread of a multi-threaded application the core that it
is executed on, while the power budgeting policy sets a limit to the power consumptions
of the cores in order to prevent thermal violations. Both policies need to be matched to
attain best performance. This section introduces a classical heuristic application mapping
and power budgeting policy for many-core processors with S-NUCA architecture, as
introduced in Section 3.1.2. The gained insights into the advantages and shortcomings
of classical heuristic management are used in the development of ML-based solutions in
Chapters 5 to 7.

4.1 Analysis of the S-NUCAMany-Core Architecture

We first present an analysis of LLC latency and temperature on an S-NUCA architecture.

4.1.1 Last-Level Cache Access Latency

The latency of a single LLC access is affected by the hop count between the thread’s core
and the LLC bank, which corresponds to the Manhattan distance (MD). The MD between
two points a and b is the sum of absolute differences of their Cartesian coordinates:

MD(a, b) =
∑
i
|ai – bi | (4.1)

The fine-grained interleaving of memory addresses to LLC banks causes a thread to access
the LLC banks on all cores equally likely irrespective of the core it is executing on [60].
Thereby, the average LLC latency correlates with the average Manhattan distance (AMD)

This chapter is mainly based on [7, 9].

29

4 Classical Heuristic Resource Management

A
B

C
D

E
F

G
H

(a) Core Locations

A B C D E F G H
0
1
2
3
4
5
6
7

Core

A
M
D

[#
ho

ps
]

(b) LLC Access Characteristics

Figure 4.1:AMD of cores to the LLC banks is lowest for the cores closest to the center of the many-core processor.
Cores C and F close to the center experience only a small increase in the AMD.

of the core that the thread is executing on to all tiles (LLC banks). The AMD of a core
with location (x , y) on a many-core processor with X × Y cores is defined by

AMD(x , y) =
1

X · Y

X∑
i=1

Y∑
j=1

MD
((
i
j

)
,
(
x
y

))
(4.2)

Cores that have a lower AMD to all other cores (LLC banks) have a lower average LLC
latency [60]. For quadratic n × n many-core processors, i.e., n = X = Y , Eq. (4.2) can be
rewritten as

AMD(x , y) =
1
n

©«
x

y

ª®¬ – ©«
n+1
2

n+1
2

ª®¬

2

+
n2 – 1
2 · n (4.3)

The AMD of cores increase quadratically with their Euclidian distance to the center of
the many-core processor. This is also shown in Fig. 4.1. The LLC latency in S-NUCA is
heterogeneous, i.e., lowest close to the center of the many-core processor and higher closer
to the corners. Furthermore, the AMD to LLC banks increases steeply near the corner
of the many-core processor (cores A and H), but changes only slightly near the center
(cores C and F). Therefore, we make the observation that cores near the center of the many-
core processor experience only a slight increase in LLC latency. These observations are
not restricted to S-NUCA many-core processors. Similar observations also hold true for
directory-based many-core processors where the cache directory is distributed along the
cores [126].

4.1.2 Thermal Aspects

The second important factor that affects the performance of applications running on a
thermally-constrained many-core processor is the power. Due to increasing power densi-
ties in smaller technology nodes, active cores of a many-core processor are constrained by

30

4.1 Analysis of the S-NUCA Many-Core Architecture

Active Core Idle Core

B
C

D
E

F
G

H

(a) Core Locations

B C D E F G H
44
45
46
47
48
49
50
51
52

Core

Te
m
pe

ra
tu
re

[℃
]

Core Temperature Ambient Temperature

(b) Core Temperatures

Figure 4.2:Heat conductance across the many-core processor falls off approximately exponentially. Cores D to
H have similar temperatures even though their distances to the active core differ significantly.

a power budget that aims to ensure thermally safe operation [127]. The most commonly
used power budget is Thermal Design Power (TDP), which is a constant per-chip power
budget determined at design time. It is unaware of the number and location of active
cores (the mapping of threads to cores). Hence, it needs to be pessimistic to be able to
prevent thermal violations. Pagani et al. [128] present Thermal Safe Power (TSP) as an
alternative to overcome this limitation by considering the actual mapping. TSP provides a
per-core power budget for a given mapping that prevents thermal violations in the steady
state. By considering the actual mapping, TSP can provide a higher power budget than
TDP while still being thermally safe.

Pinning threads to spatially close cores leads to a reduced power budget to avoid thermal
hotspots, whereas spreading these threads far across the many-core processor leads to
better heat distribution and thereby to a higher power budget. The increased power
budget can potentially increase the performance of an application by allowing to operate
the cores at higher V/f levels. Fig. 4.2 shows that the heat conductance on the many-core
processor approximately falls off exponentially with the distance. Cores B to H in Fig. 4.2
are all idle, but their temperatures differ significantly. The farther a core is from the active
core, the lower is its temperature. However, once a sufficient distance is reached, the
changes in temperature are insignificant. Therefore, the temperatures of cores D to H
are nearly identical even though their distances to the active core differ significantly. We
observe that maximizing the power budget requires to spatially distribute active cores on the
many-core processor. However, if active cores have sufficiently high distance to each other,
further increasing it only slightly increases the power budget.

4.1.3 Trade-off Between Last-Level Cache Latency and Power Budget

As described in Sections 4.1.1 and 4.1.2 and illustrated in Fig. 4.3, minimum LLC latency
and maximum power budget are obtained by contradictory mapping decisions. While
the former requires clustering threads near the center of the many-core processor, the

31

4 Classical Heuristic Resource Management

Trade-Off

Lower average LLC lateny in the center Higher power budget when distributing
threads far from each other.

Figure 4.3: Trade-off between power budget and LLC latency in S-NUCA many-core processors.

latter requires maximizing the spatial distances between threads by distributing them
across the whole chip. Since both metrics cannot be simultaneously optimal, there exist
multiple Pareto-optimal mappings. In a Pareto-optimal mapping, the power budget cannot
be improved without sacrificing LLC latency and vice versa. Based on the insights from
Figs. 4.1 and 4.2, it is very likely that there exist many near-optimal mappings with respect
to both optimization goals. To maximize application performance, a trade-off between
pinning threads as far as possible from each other in order to maximize the power budget
and pinning threads as near as possible to the center in order to minimize the LLC latency
needs to be found. This trade-off has not been observed before. We demonstrate it using
the following motivational examples.

4.2 Motivational Examples

This section presents motivational examples for application mapping and dynamic power
budget reallocation, which are the two means employed in this section.

Application Mapping Fig. 4.4 shows the execution times of different four-threaded
PARSEC applications on a 64-core S-NUCA many-core processor under three different
mappings. TSP is used to calculate a uniform per-core power budget for each mapping.
Mapping 4.4a (Corner) uses cores close to the corners to gain a high distance between
active cores and, thereby, maximize the power budget, reaching 1.37W. Using the exact
corner cores would result in a lower power budget since the cores in the corners have
fewer neighboring cores that can absorb heat. Mapping 4.4b (Center) uses cores as close
as possible to the center of the many-core processor to minimize the LLC latency, reach-
ing AMD = 4 hops. Mapping 4.4c (Intermediate) uses inner, but not the center cores to
achieve a trade-off between a low LLC latency (AMD = 4.5 hops) and a high power budget
(1.35W). DVFS enables cores to run at different V/f levels allowing them to restrict the

32

4.2 Motivational Examples

Active Core Idle Core

TSP: 1.37W
AMD: 5.5 hops

(a) Corner

TSP: 0.96W
AMD: 4 hops

(b) Center

TSP: 1.35W
AMD: 4.5 hops
(c) Intermediate

blackscholes bodytrack canneal dedup streamcluster swaptions x264

–5

0

5

10

Sp
ee

du
p
w
ith

In
te
rm

ed
ia
te

M
ap

pi
ng

[%
]

vs. Corner vs. Center

(d)Obtained Speedups

Figure 4.4: Impact of mapping on the performance of PARSEC applications on an S-NUCA many-core processor.
Neither mapping threads to the corner cores nor mapping them to the center cores results in the best performance.
Instead, an intermediate mapping yields the highest performance for almost all PARSEC applications.

power consumption by sacrificing performance. The V/f levels of the cores are adapted
dynamically at run time to not exceed the power budget.

Fig. 4.4d shows the speedup achieved with the intermediate mapping over the other two
mappings. The intermediate mapping almost always provides the highest performance.
Mapping to the corners suffers from high LLC latency and mapping to the center suffers
from a low power budget, while mapping to intermediate cores has both a relatively high
power budget and a low LLC latency. The average speedup with the intermediate mapping
among all applications is 5.7% (or 4.1%) compared to mapping to corners (or center).

Different PARSEC applications experience different performance with different application
mappings due to their different characteristics. The intermediate mapping provides the
best performance for all applications except canneal, for which a mapping to the center
is the best. Canneal is a memory-intensive application and has the most LLC accesses
per second among all PARSEC applications. Its performance is dominated by the memory
access latency. Therefore, the LLC latency has a much higher impact on its performance

33

4 Classical Heuristic Resource Management

than the power budget which eliminates all scope for any trade-off. Overall, this example
demonstrates that the application mapping needs to make a trade-off between maximizing
the power budget and minimizing the LLC latency.

Dynamic Power Budget Reallocation The execution of applications typically shows
distinct phases [129]. Fig. 4.5a shows the execution of two-threaded blackscholes. Its
execution comprises three phases denoted by A, B, and C. In Phase A, the master thread
prepares the work while the slave thread has not yet been spawned. Phase B starts when
the master thread spawns the slave thread. The slave thread processes the prepared data
while the master thread is idle. After the slave thread has finished execution, the master
thread resumes and completes the application execution in Phase C. Fig. 4.5a also shows
the power budgets of the threads if a uniform TSP budget is used. During Phase A, the
slave thread is not yet spawned and consequently, the master thread receives a high power
budget. During Phase B, master and slave threads both are mapped to a separate core,
reducing the power budget to prevent thermal violations. During Phase C, the master
thread is the only thread and its power budget returns to the same level as in Phase A. This
example uses two threads for the sake of simplifying illustrations. The same observations
also hold true for higher parallelism levels (higher number of slave threads).

With a uniform power budget, such as provided by TSP, both master and slave threads are
provided the same power budget in Phase B. However, the behaviors of these two threads
differ strongly. The slave thread is compute-intensive and would benefit from a higher
power budget, while the master thread is idle and cannot make use of its assigned power
budget. A non-uniform power budget would be beneficial instead. The power budget of
the master thread can be reduced to a minimum without sacrificing performance, thereby
allowing to increase the slave’s power budget while still being thermally safe. Figs. 4.5b
and 4.5c show the IPS with the uniform and non-uniform power budgets, respectively.
Reallocating the unused power budget from the master thread to the slave thread results
in a higher IPS for the slave thread and ultimately in a 5.0% reduction in the response
time of the whole application. Fig. 4.5d shows the observed speedups for all PARSEC
applications that support a parallelism level of two threads. Like observed with the
mapping of threads to cores, different applications respond differently to different policies.
The highest speedup is observed with fluidanimate (7.8%), the lowest with canneal (–0.4%).
The reason why canneal does not show any speedup is that it is memory-intensive and
cannot consume high power since the cores are stalled often while waiting for the memory.
Therefore, the power budget does not restrict canneal at all and reallocation has no effect.
The average speedup for these five applications is 5.0%.

Not only the threads of a single application can behave heterogeneously, but also threads
of different applications may show heterogeneous characteristics. Fig. 4.6 shows the peak
power consumption of a single thread for different PARSEC applications, when mapped to
the center of the many-core processor and operated at the maximum V/f level. Their peak
power consumption varies strongly. It is apparent that not all applications can utilize high
power budgets, e.g., canneal or x264. Fig. 4.7 shows an example of how this observation can
be exploited to boost the performance. Canneal, which is a memory-intensive application,

34

4.2 Motivational Examples

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Power Budget Wasted by the Master Thread

Potential to Increase Power Budget for the Slave Thread

A B C

Time [ms]

Po
w
er

Co
ns

um
pt
io
n
[W

]

Master Slave Uniform Power Budget

(a) Power Consumption of Blackscholes with Uniform Power Budget

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4
·109

Total Exec. Time: 89.9ms

Time [ms]

In
st
ru

ct
io
ns

pe
rS

ec
on

d
[s

–1
]

(b) IPS with Uniform Power Budget

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4
·109

Total Exec. Time: 85.6ms

Time [ms]

In
st
ru

ct
io
ns

pe
rS

ec
on

d
[s

–1
]

(c) IPS with Non-Uniform Power Budget

blackscholes canneal fluidanimate streamcluster swaptions

0

2

4

6

8

Ex
ec

.S
pe

ed
up

[%
]

(d)Obtained Speedups with Non-Uniform Power Budget

Figure 4.5:Using a uniform power budget for all threads results in wasted power budget. (a) shows that the
blackscholes master thread cannot use its power budget in Phase B, i.e., for most of the time. Reallocating this
power budget to the slave thread results in a higher performance (b and c). (d) shows the observed speedups
with a non-uniform (reallocated) power budget over a uniform power budget for all PARSEC applications that
support a parallelism level of two threads.

35

4 Classical Heuristic Resource Management

bla
cks

cho
les

bod
ytr
ack

can
nea

l
ded

up

flu
ida

nim
ate

stre
am

clu
ste
r

swa
pti
ons x26

4
0

1

2

3
Pe

ak
Po

w
er

[W
]

Figure 4.6: The peak power consumption of a single thread of different PARSEC applications differs strongly.

Blackscholes (Compute-Intensive)
Canneal (Memory-Intensive)
Idle Core
Power Budget Reallocation

Figure 4.7: Reallocation of unused power budget between heterogeneous applications increases the performance.
The response time of the compute-intensive blackscholes reduces from 97.8ms to 95.4ms while the response
time of the memory-intensive canneal does not change.

cannot make use of its assigned power budget. Blackscholes, on the other hand, is a
compute-intensive application and thereby could benefit from a higher power budget. To
prevent the impact of inhomogeneous LLC latency, all threads are pinned to cores with
the same AMD class. Reducing the power budget for the threads of canneal to a value
close to its actual power consumption allows to increase the power budget of the threads
of blackscholes. In this example, threads of the same application still receive the same
power budget. This allows us to separate the effects of power budget reallocation between
different applications and between threads of the same application. The performance
of canneal is unaffected by this reallocation since it was not able to make use of its
power budget in the first place. At the same time, the response time of blackscholes was
reduced from 97.8ms to 95.4ms (2.5%). Therefore, the overall performance is increased
by reallocating the unused power budget. Similar observations also hold true for other
combinations of applications, where one application is memory-intensive and another
application is compute-intensive. These examples show that power budget reallocation is
required to improve the performance over a uniform power budget.

36

4.3 Novel Contributions

4.3 Novel Contributions

The novel contributions of this chapter are as follows:

• The work presented in this chapter is the first to explore the trade-off between
power budget and LLC latency for application mapping on S-NUCA many-core
processors. We develop a method to determine all Pareto-optimal mappings using
an ILP.

• We present the first run-time application mapping algorithm that improves the
performance by exploiting this trade-off while considering previously mapped
applications.

• This algorithm is extended by a run-time component that dynamically reallocates
power budgets between threads to react to different application execution phases
and application heterogeneity. Both algorithms works in tandem.

4.4 Problem Definition

This chapter targets many-core processors with S-NUCA architecture, operating in an
open system [48], where new applications arrive in an unpredictable order at a priori
unknown times. We employ the one-thread-per-core model well suited for many-core
processors [40], as introduced in Section 1.1. We further assume rigid applications whose
threads cannot be migrated during their execution. The objective is to maximize the
performance without exceeding the thermal constraint Tcrit . The thermal constraint is
enforced by using per-core power budgets. This is achieved by application mapping
and power budget reallocation between active cores. The mapping is agnostic of the
applications, as the characteristics of an incoming application are not known before
starting it. The only available information about applications is their parallelism level, i.e.,
required number of cores.

Section 4.5 first introduces a Pareto-optimal mapping based on an ILP. This is too com-
putationally expensive to compute at run time and instead serves as a baseline for the
run-time heuristic mapping presented in Section 4.6. Finally, Section 4.7 presents the
run-time power budget reallocation algorithm.

4.5 Pareto-Optimal Application Mapping

Application-agnostic mapping of k threads to n cores has two conflicting optimization
goals: maximizing the power budget by TSP (and thus enabling operation at higher V/f
levels) and minimizing the maximum AMD (and thus reducing the LLC latency). As
explained in Section 4.1.3, these two metrics cannot both be simultaneously optimal.
Hence, the goal of this section is to find all Pareto-optimal mappings. We first present a
0-1 ILP to find the optimal mapping with respect to the power budget only, which is then
extended to also consider the LLC latency, and thus, find the Pareto-optimal mappings.

37

4 Classical Heuristic Resource Management

Only Power Budget The ILP formulation is based on the thermal model introduced in
Section 3.1. We consider the steady-state temperatures, as described by Eq. (3.2). None of
the steady-state core temperatures Tsteady,i may exceed the thermal constraint Tcrit for
thermally safe operation1. We additionally consider a global power budget PTDP . Idle
cores consume a constant power Pidle .

The optimization variables of the ILP are x = [xi]n , xi ∈ {0, 1}, where xi = 1 indicates that
core i is active (assigned to an application), whereas xi = 0 means that core i is idle. A
mapping and its associated power budget need to fulfill three constraints:

• Exactly k cores need to be selected.

• The global power budget PTDP must not be exceeded.

• There must be no thermal violations in the steady-state, i.e., the per-core power
budgets PTSP must not be exceeded.

Selecting exactly k cores is satisfied if
∑n

i=1 xi = k. For the remaining two constraints, we
introduce a helper variable H > 0 that allows us to express them as linear inequalities.
H is defined by

PTSP = Pidle + 1
H (4.4)

The value of 1
H corresponds to the difference between the power budget of active cores

and the power consumption of idle cores (static and leakage power). This value is the
same for all active cores, because we employ uniform TSP for the mapping. The power
budget is maximized if the helper variable H is minimized. The total power consumption
of the chip comprises k active cores, each consuming at most the power budget PTSP , and
n – k idle cores, each consuming the idle power Pidle . The total power consumption must
not exceed the global power budget PTDP :

k · PTSP + (n – k)Pidle ≤ PTDP (4.5)

Combining Eqs. (4.4) and (4.5) and solving for H results in:

H ≥ k
PTDP – n · Pidle

(4.6)

The steady-state is thermally safe if ∀i : Tsteady,i ≤ Tcrit . Using Eqs. (3.2) and (4.4), we
obtain:

Tsteady,i =
N∑
j=1

B–1
ij · (Pidle + xj ·

1
H

+ Tamb · Gj) ≤ Tcrit (4.7)

Solving for H :

H ≥
∑n

j=1 B
–1
ij · xj

Tcrit –
∑n

j=1 B
–1
ij · (Pidle + Tamb · Gj)

(4.8)

1 While we consider the steady-state temperature in the optimization, we measure the transient temperature in
the experimental evaluation in Section 4.8.1 and demonstrate few violations.

38

4.5 Pareto-Optimal Application Mapping

Putting all three constraints together, the power-budget-maximizing application mapping
and its power budget is obtained by solving the following ILP:

Minimize H
such that:

n∑
i=1

xi = k (4.9)

H ≥ k
PTDP – n · Pidle

(4.10)

H ≥
∑n

j=1 B
–1
ij · xj

Tcrit –
∑n

j=1 B
–1
ij · (Pidle + Tamb · Gj)

∀i ∈ [1 . . . n] (4.11)

Power Budget and LLC Latency This ILP does not yet account for the non-uniform LLC
latency in S-NUCA many-core processors. For a sufficiently high power budget, the
performance of PARSEC applications is dominated by the core with the maximum AMD
in this application’s mapping since the thread pinned to this core forms a bottleneck [60].
Therefore, we use the maximumAMD of all cores that execute the threads of an application
as a metric to optimize in the application mapping. Since the AMD values of the cores are
discrete and symmetric, there exist only a small number of unique values [60]. For example,
the 64-core many-core processor introduced in Section 3.1.2 has only 9 unique AMD values.
This enables us to find all Pareto-optimal mappings by fixing the maximumAMDAMDmax
in the mapping and maximizing the power budget for this value of AMDmax . Therefore,
we add a fourth constraint to the ILP that restricts the available cores in to cores with a
smaller AMD than the upper limit AMDmax .

xi = 0 ∀i : AMD(i) > AMDmax (4.12)

The resulting ILP is solved several times, once for each unique AMD limit AMDmax . This
process enables us to find all Pareto-optimal mappings.

Already Running Applications The above ILP implicitly makes the assumption that the
many-core processor is idle when k new cores need to be assigned to an incoming appli-
cation, which is in practice almost never the case. Let CU denote the set of cores that are
already assigned to other applications. The ILP needs to be modified slightly. Instead of
finding a mapping of k threads, a mapping of k + |CU | threads is searched while enforcing
that xi = 1 if core i ∈ CU . Fixing the already used cores accounts for application rigidity.

Solving this ILP is too computationally expensive for use at run time. For instance,
determining the optimal mapping of 8 cores on a 64-core many-core processor takes
8.7 s using MATLAB on an Intel Core i5-3470. This is much higher than the average
application execution time of 340ms determined in the experimental evaluation of this
chapter. Calculating the optimal mappings at design time and storing them in a lookup
table (LUT) is not feasible either since there are too many possible scenarios of already

39

4 Classical Heuristic Resource Management

Many-Core
Processor

Once per Application:
Application Mapping (Section 4.6)

New Application
Mapping

Periodically:
Dynamic Power Budget Reallocation
(Section 4.7)

Power,
Utilization

Power
Budgets

Figure 4.8: PCGov comprises two parts: application mapping and dynamic power budget reallocation. The
application-agnostic mapping is only called once per application. The dynamic power budget reallocation
periodically sets the power budgets according to the current power consumptions and core utilizations.

active threads and number of requested threads. This creates the need for an efficient
heuristic run-time algorithm to find mappings close to the Pareto-optimal ones, so-called
near-Pareto-optimal mappings. A near-Pareto-optimal has only an insignificantly lower
power budget than the Pareto-optimal mapping with the same maximum AMD of the
used cores. The heuristic algorithm is presented in the next section and its efficiency is
evaluated empirically against the optimal solutions found by the ILP.

4.6 Run-Time Application Mapping Algorithm

This section presents the run-time application mapping algorithm. It forms the first
part of the proposed algorithm PCGov, which is depicted in Fig. 4.8. Dynamic power
budget reallocation forms the second part and is described in Section 4.7. The mapping
algorithm needs to be application-agnostic. This is as the mapping is to be decided when
a new application arrives, and, hence, before the application starts execution. Since we
target unknown applications, no information except their number of threads is available.
The mapping algorithm comprises two steps. The first step finds near-Pareto-optimal
mappings. The second step selects one of these mappings that is expected to maximize
the performance.

4.6.1 Find Near-Pareto-Optimal Mappings

Algorithm 4.1 presents the heuristic algorithm to find near-Pareto-optimal mapping
candidates MC . Each mapping candidate should contain k cores. The set of cores that are
already in use by other applications is denoted as CU . The algorithm finds a near-Pareto-
optimal mapping M for each unique AMD value AMDmax where only cores that do not
exceed AMDmax are used. The k cores of each mapping M are selected greedily starting
with an empty mapping. The available cores are the idle cores that do not exceed the
AMD limit. For each of these cores, the resulting power budget is calculated, one at a time,

40

4.6 Run-Time Application Mapping Algorithm

Algorithm 4.1 Find Near-Pareto-Optimal Mapping Candidates
MC ← ∅
for all AMDmax ∈ Uniqe(AMD(i) | i ∈ [1 . . . n]) do

M ← ∅ ⊲ start with empty mapping
while |M | < k do ⊲ greedily select k cores

A← {i |AMD(i)≤AMDmax } \M \ CU ⊲ available cores
PTSP ,all ← {TSP(M ∪ {i} ∪ CU) | i ∈ A}
M ← M ∪ {argmaxi PTSP ,all (i)} ⊲ greedily add a core to M

MC ← MC ∪ {M }
return MC

in combination with the already selected cores. The core that results in the highest power
budget is added to the mapping M . This is repeated until k cores have been selected.

Calculating TSP for all available cores can be done in O(n2) by sharing intermediate
results across the individual calculations. Since this is to be done k times for each of the
O(n) unique AMD values, the total complexity for finding all these near-Pareto-optimal
mappings is O(k · n3).

4.6.2 Select One of the Near-Pareto-Optimal Mappings

After the near-Pareto-optimal mappings have been determined, one of them needs to be
selected. The impact of power budget and LLC latency on the performance differs for
different applications as shown in Fig. 4.4d. Selecting the mapping that maximizes the
performance for an application can only be accomplished with detailed profiling, which is
not available when the application arrives. Hence, the goal of the application-agnostic
algorithm PCGov is to select the mapping that is expected to result in high performance
for most applications.

Fig. 4.9 shows the Pareto-curve for mapping twelve threads on a 64-core many-core
processor. The highest performance of blackscholes or streamcluster is obtained with
neither the mapping with highest power budget nor the one with lowest LLC latency, but
with mappings that perform a trade-off between both metrics. Fig. 4.4d shows that similar
observations hold true for almost all other PARSEC applications. We use a weighted sum
of power budget TSP(M) and maximum AMD of the selected cores maxi∈M AMD(i) to
decide the selected mapping M★.

M★ = argmax
M∈MC

(
TSP(M) – U ·max

i∈M
AMD(i)

)
(4.13)

41

4 Classical Heuristic Resource Management

4 4.5 5 5.5 6 6.5 7
0.5

0.6

0.7

0.8

0.9

1.0

1.1
Best Performance
for Blackscholes

Chosen by
PCGov

Best Performance
for Streamcluster

Stale Values

Maximum AMD [#hops]

Th
er
m
al

Sa
fe

Po
w
er

Bu
dg

et
[W

]
Pareto-Optimal Mappings Non-Pareto-Optimal Mappings

Figure 4.9: Pareto curve of power budgets and maximum AMDs of different mappings of twelve threads to a
64-core many-core processor. The best performance for blackscholes and streamcluster is attained with mappings
that perform a trade-off between power budget and AMD. Our algorithm PCGov, which is designed to be
application-agnostic, selects the mapping that equally balances power budget and AMD.

The parameter U balances the impact of power budget and AMD on the selection. Without
application profiling, we aim to make a balanced trade-off between power budget and
LLC latency. We calculate U for each set of mapping candidates separately:

U =
maxM∈MC TSP(M) – minM∈MC TSP(M)

maxM∈MC maxi∈M AMD(i) – minM∈MC maxi∈M AMD(i)
(4.14)

This equation makes the selection independent of the scales that are used. Thereby, PCGov
selects the mapping with the highest distance to the dotted line in Fig. 4.9 that connects
the mapping with the highest power budget and the mapping with the lowest maximum
AMD. Selecting one of the mapping candidates has a time complexity of O(n), which
results in the total complexity O(k · n3) for application mapping. This algorithm is to be
run only once whenever a new application arrives.

4.7 Run-Time Dynamic Power Budget Reallocation
This section describes the run-time power budget reallocation algorithm, which forms the
second part of PCGov. It observes the current core utilization and power consumption
values of threads and adjusts their power budgets accordingly.

Fig. 4.10 shows the finite state machine (FSM) that is associated with each thread. It
comprises three states based on the core utilization and power consumption: Idle, Compute-

42

4.7 Run-Time Dynamic Power Budget Reallocation

Idle
Pb ← Pidle

Memory-Intensive

Pb ← min(P + X , Pb)

Compute-Intensive

Pb ← ReallocPower()

U = 0

P < PbP ≥ Pb – X

U = 0U > 0 U = 0

P ≥ Pb

P < Pb – X

Pb
P
U

Power Budget
Current Power Consumption
Current Core Utilization

Figure 4.10: FSM to track the state of a thread and reallocate power budgets. Each state has its own policy to
determine the power budget.

Intensive, and Memory-Intensive. A thread stays in the Compute-Intensive state as long
as its power consumption potentially could exceed the power budget if the core ran at
a higher V/f level. The DVFS control loop throttles the core to prevent a power budget
violation. Hence, the observed power consumption P will be slightly lower than the
power budget Pb . If a thread cannot exceed its associated power budget, i.e., if its power
consumption is significantly lower than its power budget, the FSM transitions to the
Memory-Intensive state. The parameter X prevents oscillations between states by com-
pensating small fluctuations in the power consumption. A thread transitions back to the
Compute-Intensive state if its power consumption increases again. If a thread is idle, i.e.,
its core utilization U is zero, the FSM transitions to the Idle state.

The policy to determine the power budget depends on the current state. Idle threads are
blocked and wait for an event before resuming operation. Their power budget is set to the
bare minimum Pidle , which forces the DVFS control loop to choose the lowest possible
V/f level for the associated core. This results in the highest possible surplus power budget
available for other threads. The power consumption of memory-intensive threads does
not reach their power budget. Hence, their power budget can safely be reduced to a value
slightly higher than their current power consumption to free the otherwise wasted power
budget. This does not degrade their performance even though their power budget is reduced,
but allows to reallocate the otherwise wasted power budget to threads that can make use
of it. Compute-intensive threads are the threads whose performance could increase with
a higher power budget. Hence, their power budget should be maximized.

It is important to notice that power budget that was freed on any thread cannot be simply
added to the power budget of another thread. Care must be taken to prevent thermal
violations. Therefore, the sum of all per-core power budgets may change if power is reallocated
to ensure thermal safety. Algorithm 4.2 increases the power budget for compute-intensive
threads in a thermal-aware fashion. First, the set CC of cores that receive power budget
is determined. These are all cores that execute compute-intensive threads. Then, the

43

4 Classical Heuristic Resource Management

Algorithm 4.2 ReallocPower: Reallocate Power Budgets
CI+M ← {i | Core i is idle or runs a memory-intensive thread}
CC ← {i | Core i runs a compute-intensive thread}
for all i ∈ Ci+M do

Pb,I+M (i)← Pb(i) ⊲ Read power budgets from FSMs
PC ← TSP(CC | Pb,I+M) ⊲ Comp. TSP for cores CC given power budget of other cores
for all i ∈ C do

Pb(i)← PC ⊲ Broadcaset power budgets of compute-intensive threads to corr. FSMs

thermally safe power budget for these cores is recalculated using TSP while considering
the already determined power budget for the other cores Pb,I+M . TSP supports thermal
nodes with known power consumption. To use this, we temporarily assume that the
power consumptions of idle and memory-intensive threads exactly match their power
budgets and, therefore, overestimate their power consumption at most by X .

The FSMs of the threads are mostly independent, which allows for a distributed imple-
mentation. One FSM instance is run on every core. These FSMs independently track the
state of their associated threads. However, the calculation of power budgets for compute-
intensive threads needs information exchange between the FSMs. To do this, all FSMs in
the Idle- andMemory-Intensive-state send their current power budget to a central manager
that calculates the power budget for compute-intensive threads applying Algorithm 4.2
and broadcasts it to all associated FSMs.

Each FSM of one thread has a time complexity O(1). Since TSP is to be recalculated
after reallocating the power budget, Algorithm 4.2 has a complexity of O(n2). However,
Algorithm 4.2 does not need to be run in every DVFS-epoch. This is only needed if the
number of threads in the system changes or if the state of the FSM of a thread changes.

4.8 Experimental Evaluation

The experimental evaluation uses the setup described in Section 3.1.2 with slight modifica-
tions. The many-core processor is modeled to be fabricated in the 10 nm technology. The
ambient temperature is 45℃ and the thermal constraint Tcrit is 80℃. TDP is set at 30W.
The power consumption of an idle core is set at 0.2W due to the use of its associated LLC
bank even when the core itself is idle. The parameter X is set at 50mW. We create and ex-
ecute 3 random workloads that each consist of 20 randomly selected PARSEC applications
with simsmall inputs. We use 8 of the 13 PARSEC applications: blackscholes, bodytrack,
canneal, dedup, fluidanimate, streamcluster, swaptions and x264. The application arrival
rates follow a Poisson-distribution with varying average arrival rate to trigger different
system utilization values.

44

4.8 Experimental Evaluation

4.8.1 Comparison to the State of the Art

The proposed run-time application mapping and power budgeting algorithm PCGov is
compared to the state-of-the-art algorithms Bubble Budgeting [64], and PAT++ [61], since
these algorithms address the same problem. This is the main experiment in this chapter.

Bubble Budgeting [64] is a run-time technique that aims to maximize performance under
the constraint of thermal safety, using application mapping and DVFS. The goal of the
mapping policy is to map threads of an application spatially compactly with idle cores
(bubbles) in between. The idle cores are used to dissipate heat to prevent thermal hotspots.
Threads are assumed to communicate point-to-point, where compactness reduces the
communication latency. The mapping is extended by a power budgeting algorithm that
uses a heuristic to determine the V/f levels of all threads and refines this heuristic in a
second step. To do this, the power consumption of threads at different V/f levels need to
be known in advance, which is not the case in open systems, as we study here.

PAT++ [61] is a run-time application mapping and power budgeting technique with similar
goals and application models as Bubble Budgeting. Authors propose a heuristic algorithm
to sparsely map threads of an application within a small region of the core. The motivation
is similar to the previous approach, where idle cores dissipate heat but increase the point-
to-point communication latency between threads. PAT++ further tries to maximize the
distance between threads of different applications to minimize the mutual thermal impact
of applications. This applicationmapping algorithm is extended by both a power budgeting
controller and a boosting controller. The power budget is calculated using pessimistic
TSP, which only considers the number of active cores instead of the full mapping. The
power budgeting controller reallocates surplus power budget according to applications’
priorities and network characteristics. Remaining thermal margin is exploited by the
boosting controller that allows threads to exceed their power budget for short periods
of time. The boosting technique proposed in [61] determines the application to boost
based on the current temperatures of the cores they are running on, i.e., boost the coldest
core. Both Bubble Budgeting and PAT++ neglect that different applications have different
characteristics which largely affect the benefits of boosting. We adapted Bubble Budgeting
and PAT++ to the used platform.

Fig. 4.11a compares the average response time of the applications for different arrival
rates for each of the three application mapping and DVFS policies. In these experiments,
the average (peak) system utilization varies from 4.3% (34%) for an arrival rate of 1 per
1000ms up to 34% (91%) for an arrival rate of 11 per 1000ms. The response times of
individual applications vary significantly from 24ms up to 2.3 s. In order to prevent
long-running applications from dominating the average response time, we compare the
geometric means of the response times. PCGov always achieves the lowest response time
and, hence, in the highest performance with up to 21% and 13% improvement over PAT++
and Bubble Budgeting, respectively. This is because PCGov considers not only the power
budget but also the LLC latency. PAT++ and Bubble Budgeting consider power budget
and application communication but assume message passing, which is not the case in
S-NUCA many-core processors. Hence, these approaches tend to map applications to the

45

4 Classical Heuristic Resource Management

1 3 5 7 9 11

1.0

1.1

1.2

Average Application Arrival Rate (per 1000ms)

N
or

m
.A

vg
.R

es
po

ns
e
Ti
m
e

PCGov PAT++ [61] Bubble Budgeting [64]

(a) Performance

1 3 5 7 9 11

1.00

1.05

1.10

1.15

Average Application Arrival Rate (per 1000ms)

N
or

m
al
iz
ed

En
er
gy

(b) Energy

1 3 5 7 9 11
0

10

20

30

Average Application Arrival Rate (per 1000ms)

Th
er
m
al

V
io
la
tio

ns
[%

]

(c) Temperature

Figure 4.11:Comparison of PCGov, PAT++ [61] and Bubble Budgeting [64] policies for random multi-program
workloads at different arrival rates. PCGov achieves a significantly lower response time, lower energy consump-
tion, and fewer thermal violations than PAT++ and Bubble Budgeting.

corners of the many-core processor and thus result in high LLC latencies and reduced
performance. These observations hold true for varying arrival rates.

Fig. 4.11b compares the average energy consumption per application for execution of the
workloads. The energy consumption shows similar trends as the performance. PCGov

46

4.8 Experimental Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.96

0.97

0.98

0.99

1.00

H
as

N
ot

O
cc
ur

ed
in

Ra
nd

om
W

or
kl
oa

ds

Number of Requested Cores k

Av
er
ag

e
Po

w
er

Bu
dg

et
Re

la
tiv

e
to

O
pt
im

um

Figure 4.12:Average power budgets of the near-Pareto-optimal mapping candidates obtained by PCGov are very
close to the Pareto-optimal mappings obtained by the ILP.

always achieves the lowest energy consumption for all arrival rates with up to 13% and
8.3% improvement over PAT++ and Bubble Budgeting, respectively.

Fig. 4.11c shows how often thermal violations occur during execution, comparing the
capabilities of the policies to prevent thermal violations. This mainly studies the effective-
ness of the power budgeting and DVFS algorithm, not of the application mapping. The
power budgeting policy of PCGov is designed to prevent thermal violations in the steady
state by considering the actual mapping. The resulting power budget is enforced on a
per-core basis. This results in very rare thermal violations in the transient temperature of
less than 0.4% of the time. Since we employ a reactive approach, thermal violations due to
sudden changes in the power consumption of threads cannot be fully avoided. PAT++ uses
a per-chip power budget, which cannot prevent thermal hotspots. Hence, the duration
of thermal violations is much higher (up to 5.2%). The thermal model used by Bubble
Budgeting determines the power budget of a core by considering its local neighborhood.
However, the model does not consider the location of the core on the chip. The cores in
the corners of the many-core processor have a significantly lower power budget compared
to other cores since they have fewer neighbors that can dissipate heat. Bubble Budgeting
cannot consider this and, hence, causes frequent thermal violations (up to 31%), mostly in
the corner cores.

Summarizing, PCGov achieves substantial improvements over both PAT++ [61] and Bubble
Budgeting [64]. It significantly reduces response time, energy consumption, and thermal
violations.

4.8.2 Evaluation of the Mapping Candidates of PCGov

The first step of the mapping algorithm of PCGov finds near-Pareto-optimal mappings. We
evaluate how close these mappings are to the Pareto-optimal mappings by extracting all
near-Pareto-optimal mappings that were obtained while executing the random workloads.
These are all the mapping candidates MC , not just the selected mappings. We compare
the power budget of each of these mappings to the power budget of the corresponding

47

4 Classical Heuristic Resource Management

5×5 6×6 7×7 8×8 9×9 10×10 11×11 12×12 13×13 14×14 15×15 16×16

10–3

10–2

10–1

100

101

102

Size of the Many-Core Processor [#cores]

O
ve

rh
ea

d
[m

s]
Application Mapping Power Budget Reallocation

Figure 4.13:Average overhead per execution for application mapping and dynamic power budget reallocation
depending on the size of the many-core processor.

Pareto-optimal mapping with the same maximum AMD. The Pareto-optimal mappings
are obtained using the ILP described in Section 4.5. Fig. 4.12 shows the results per each
number of requested cores k. Requesting k = 14 cores did not occur in the random
workloads. For small values of k, the mappings obtained by the greedy algorithm are
very close to optimal or even optimal. For larger values, the quality drops slightly. This is
because the search space increases combinatorially with the number of requested cores k,
and, hence, the likelihood for a greedy algorithm to find the optimal solution decreases.
Overall, the greedy algorithm determines near-Pareto-optimal mappings with a negligible
loss in power budget of less than 3.2% compared to the Pareto-optimal mappings, at an
overhead that is several orders of magnitude lower, as will be shown in the next section.

4.8.3 Run-Time Overhead

The run-time overhead of PCGov is evaluated w.r.t. two aspects, which are the impact on
the performance, and the impact on power and temperature.

Performance Impact Fig. 4.13 shows the average run-time overhead of PCGov. The
overhead is split into two components: applicationmapping and power budget reallocation.
Application mapping is done only once per application, while power budget reallocation
is done periodically. The overhead is reported per execution of the algorithms, i.e., per
application mapping and per power budget reallocation epoch, respectively.

The overhead of application mapping is measured by creating random scenarios, where
the number and location of already active cores is set randomly at a utilization of 50%
and a random number of requested cores k is selected between 1 and 16. The average
overhead increases with the number of cores from 67 µs on a 5×5 many-core processor up
to 101ms on a 16×16 many-core processor when running on a single core. It is important
to note that mapping is only performed once per application. The average execution time
of applications in the experiments in Section 4.8.1 is 340ms. This results in a relative

48

4.8 Experimental Evaluation

overhead of 30% for application mapping on a 16×16 many-core processor, which may be
impractical. However, up to 10×10 cores, the overhead is less than 1.3%. We conclude
that PCGov is suitable for many-core processors with up to 10×10 cores, but may be too
slow for larger processors. On the studied 8×8 many-core processor, application mapping
takes 1ms on average which results in an overhead of 0.3%.

When measuring the overhead of the power budget reallocation, it needs to be considered
that Algorithm 4.2, which calculates the power budget for compute-intensive applications,
does not need to be executed in every epoch. The less the power consumption of active
applications fluctuates, the less often this algorithm is executed. However, this depends
on the executed workloads. To account for this, we extract power and utilization traces
from the workloads executed in Section 4.8.1 to stimulate the power budgeting algorithm
and measure its execution time. Algorithm 4.2 had to be executed in less than 10% of
all power budgeting epochs. The overhead increases with the size of the many-core
processor from 0.7 µs on a 5×5 many-core processor up to 14.2 µs on a 16×16 many-core
processor. Considering the power budget reallocation epoch of 100 µs, this results in a
relative overhead of less than 0.1% for all studied sizes of the many-core processor, since
Algorithm 4.2 is executed on only one of the cores. The average overhead on the studied
8×8 many-core processor is 3.3 µs.

Power and Thermal Impact PCGov is executed at run time, i.e., in parallel to the executed
workload. Therefore, we need to also investigate its impact on power and temperature.
Executing application mapping (Algorithm 4.1 and selection of the best candidate) on
a single core results in a power consumption of up to 1.4W. This is comparable to the
power consumption of actual applications, which ranges from 1.1W to 2.8W, as has been
analyzed in Fig. 4.6. Therefore, it needs to be considered by the dynamic power budget
reallocation algorithm to maintain thermal safety. However, since the power budget
algorithm is agnostic of applications and simply considers threads independently, no
changes to the power budget reallocation algorithm are required. The thread that decides
the mapping can be treated exactly as a thread of any other application.

The power budget reallocation algorithm is executed periodically and, therefore, also runs
in parallel to the executed applications. As discussed earlier, the average execution time
of this algorithm is 3.3 µs every 100 µs on a single core. The peak power consumption
during its execution is 1.7W. Since the control epoch is small compared to thermal time
constants of a processor cooling system, the thermal impact can be treated as constant
and we only need to consider the average power consumption over the full control epoch,
i.e., including 96.7 µs idle time. The average power consumption is 0.25W, which is very
close to the idle power consumption of 0.2W. Therefore, the power budget reallocation
algorithm has a negligible thermal impact on the many-core processor.

4.8.4 Impact of the Hysteresis Parameter X

The goal of employing a hysteresis parameter X to the FSM is to reduce the run-time
overhead of the power budget reallocation. Without X , i.e., X = 0mW, the power budget

49

4 Classical Heuristic Resource Management

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

Hysteresis Parameter X [mW]

Ru
n-
Ti
m
e
O
ve

rh
ea

d
of

Po
w
er

Bu
dg

et
Re

al
lo
ca

tio
n
[μ
s]

Figure 4.14: Impact of varying the hysteresis parameter X on the performance and dynamic power budget
reallocation overhead. Setting X at 50mW allows to filter most of the noise in the power consumption.

of compute-intensive applications would have to be recalculated every time the power
consumption of a memory-intensive application changes. This is the case in every control
step due to noisy application and platform behavior leading to small fluctuations in the
power consumption. The hysteresis X avoids this by creating a corridor for the power
consumption. As long as the power consumption stays within this corridor, the power
budgets do not have to be recalculated. The wasted power budget, i.e., the difference
between power budget and actual power consumption, is bounded by X . Summarizing,
X should be high enough to filter fluctuations in the power consumption, but as low as
possible to bound the wasted power budget.

Fig. 4.14 shows the average overhead of power budget reallocation for different values of
the hysteresis X . The overhead is highest for X = 0mW where it is 16 μs per control epoch
when executed on a single core. The overhead reduces strongly with increasing X , but
only slightly decreases above 50mW. Therefore, we choose X = 50mW because this value
allows to filter out fluctuations in the power consumption, but still is small compared to
the absolute power consumption of applications of up to 2.8W as shown in Fig. 4.6.

4.9 Summary

This chapter presented a run-time application mapping and power budgeting algorithm
called PCGov . This algorithm exploits a trade-off between power budget and LLC latency
for application mapping on many-core processors with distributed shared LLC. It is based
on the observation that optimizing for power budget and optimizing for LLC latency
result in contradictory mapping decisions. Optimizing for only one of the two does
not provide the best application performance. Instead, a trade-off between the two is
most beneficial. Furthermore, PCGov exploits heterogeneity in the power consumption
both within threads of the same application and between threads of different applications.
Experimental evaluation with randommulti-program workloads shows that PCGov is very

50

4.9 Summary

effective in avoiding thermal violations while maximizing the performance. Furthermore,
the overhead of PCGov on a 64-core many-core processor is negligible.

The employed algorithms use simple heuristics that ignore relevant application charac-
teristics. The application mapping ignores any application characteristics and instead
aims at achieving a good performance on average. However, different applications depend
differently on the power budget and LLC latency, leading to a different trade-off per appli-
cation. This results in different optimal mappings, as can be seen in Figs. 4.4 and 4.9. The
optimal mapping can only be determined by considering the application characteristics.
In addition, different cooling would shift the trade-off, rendering the heuristic selection in
Eq. (4.14) suboptimal. In the extreme case, a very strong cooling would result in thermally-
safe operation with all mappings, rendering the heuristic ineffective. Solving this would
require additionally considering the cooling in the mapping heuristic. While the power
budget reallocation heuristic considers some characteristics of the applications, i.e., their
power consumption, it only reallocates unused power budget. More optimization would be
feasible when throttling memory-intensive applications to boost other applications even
more. However, such optimization would again depend on application characteristics,
such as the sensitivity of power and performance on the V/f levels.

The general challenge with classical heuristic resource management is that it can only
consider a limited amount of information. Moreover, the used information must be directly
observable. This is generally not the case with application characteristics. Application
characteristics contain many dimensions, such as instruction mix or intensiveness on the
different cache levels, interconnect, DRAM, etc. Abstract characteristics like memory-
intensiveness are only indirectly observable via several hardware performance counters.
Therefore, classical heuristic management is not capable to achieve near-optimal manage-
ment. This requires detailed modeling of the platform and applications, which can either
be done with analytical models or ML models. The following sections present techniques
that tackle the shortcomings of classical heuristic management.

51

5 Prediction-Based Application
Migration

This chapter presents ML-driven prediction-based application migration to maximize the
performance on thermally-constrained S-NUCA many-core processors. The presented
technique PCMig employs the pattern to predict the impact of a migration before executing
it, as introduced in Section 1.4.1. Employing an ML performance prediction model to
dynamically adjust the mapping according to the observations of the application charac-
teristics at run time enables coping with the limitations of the classical heuristic PCGov
introduced in the previous chapter, which ignores relevant application characteristics.
This chapter also develops analytical modeling based on CPI stacks, similar to the works
in [70, 71, 130], as a comparison to ML-based modeling.

5.1 Motivational Examples

This section presents three motivational examples, demonstrating the relevance of ap-
plication characteristics, system load changes, and execution phases to find the optimal
application migrations.

Application Characteristics As discussed in Section 4.1, application mapping on S-NUCA
many-core processors needs to make a trade-off between the power budget, which affects
the sustainable V/f levels, and the AMD of the cores to the LLC banks, which affects
the average LLC latency. The performance-maximizing trade-off between the power
budget and the AMD depends on the executed thread’s characteristics. Fig. 5.1 shows
the performance of PARSEC blackscholes master and slave threads at different AMD and
power budget values. The performance of both threads depends on both factors. However,
their characteristics differ. Lines a in Fig. 5.1 show their dependency on the AMD. With
increasing AMD, the master thread’s performance significantly drops, whereas the slave
threads’ performance is unaffected. The master thread is more memory-intensive and
performs more LLC accesses per instruction, whereas the slave threads are more compute-
intensive. This results in the master thread’s higher sensitivity to the AMD. In contrast,
Lines b in Fig. 5.1 show the impact of the power budget. The master thread’s performance

This chapter is mainly based on [6, 8].

53

5 Prediction-Based Application Migration

4
5

6
7

2

32.0

2.5

3.0

3.5

4.0

AMD [#hops]
Co

re
Po
we

r B
ud
get

[W
]

Pe
rf
or

m
an

ce
[I
PS
·1
09

]

Slave Threads

Master Thread

ab

c

Figure 5.1: The performances of blackscholes master and slave threads depend differently on the power budget
and AMD due to their different characteristics.

saturates early and increasing the power budget has little benefit, whereas the slave threads
can exploit a high power budget and benefits strongly from a higher power budget. The
master thread is memory-intensive, and, therefore, its performance does not depend as
strongly on the V/f level, and additionally, its power consumption is lower which renders
high power budgets not beneficial, as the peak V/f levels are reached early. The slave
threads, on the other hand, are compute-intensive. High V/f levels strongly increase the
performance and the power consumption is high, which makes a high power budget
beneficial because it enables operation at higher V/f levels. This examples shows that
thread characteristics must be considered to determine the performance-maximizing trade-off
between power budget and LLC latency.

However, thread characteristics are not available until the application has started execution.
Therefore, initial application mapping cannot consider these characteristics, and, hence,
cannot always select the optimal mapping. Application migration is required after the
application has started to adjust the mapping accordingly.

SystemLoadChanges The application arrivals and departures, as well as the applications
themselves, are not known in advance in open systems [48]. The resulting dynamic
workload changes require readjustments of the mapping using application migration to
maintain peak performance. Fig. 5.2 shows an example to illustrate this. Canneal, which
is memory-intensive, is mapped to cores close to the center of the many-core processor
to minimize the LLC latency, which is the optimal mapping for it. During its execution,
an instance of bodytrack arrives and is mapped in a way that trades off power budget
and LLC latency, which is also the optimal mapping w.r.t. the already mapped canneal.
After canneal terminates, migrating bodytrack to now free cores closer to the center of the
many-core processor improves its performance by 4% over a rigid mapping. Mappings

54

5.2 Challenges and Novel Contributions

Response Time.: 201ms

Response Time.: 193ms

Bodytrack
Arrives

Map
Bodytrack

Canneal
Terminates

Rigid

Mappin
g

MigrateBodytrack

Idle Core
Bodytrack

Canneal

Figure 5.2:Application migration after a system load change, e.g., due to a terminating application, improves the
performance.

that have been optimal once, can become suboptimal when other applications finish.
Similar observations hold true for new arriving applications. This example shows that
system load changes require adjusting the mapping via migration.

Application Execution Phases As discussed in the first motivational example, different
threads have different characteristics. Furthermore, even the characteristics of a single
thread may change over time with its execution phases. Fig. 5.3 presents an example in
which two applications are executed on the many-core processor. Swaptions is mapped to
cores close to the center but with a gap in the center to prevent a thermal hotspot. We
consider two mappings for single-threaded x264 as depicted in Fig. 5.3b. Core A is far from
swaptions and, therefore, has a high power budget but also has a high AMD. Core B is in
the center of the many-core processor and has minimal AMD but has a lower power budget
due to the proximity to swaptions. Fig. 5.3a shows that x264 has several distinct execution
phases. These phases come from different frames being encoded, resulting in different
computational and memory access patterns. Fig. 5.3c shows the performance per phase
with each mapping. The performance-maximizing mapping alternates between Core A
and Core B. Operating x264 at its best mapping improves its per-phase performance by up
to 14%. This example shows that the peak performance can only be achieved by dynamically
adjusting the application mapping to their changing characteristics.

5.2 Challenges and Novel Contributions
There are two main challenges in performance maximization on thermally-constrained
S-NUCA many-core processors. As has been demonstrated in the previous motivational

55

5 Prediction-Based Application Migration

0 50 100 150 200 250
0

1

2

3

4

1 2 3 4 5

Time [ms]

Pe
rf
or

m
an

ce
[I
PS
·1
09

]

(a) Execution phases of x264 (if running on Core A)

Core A:
AMD = 5.5
Pb = 2.74W

Core B:
AMD = 4
Pb = 2.07W

Idle Core X264 Swaptions

(b)Mappings of the applications

Phase 1 2 3 4 5

Core A:
IPS ·109

3.22
(+9.6%) 2.13 2.54 3.08

(+6.1%) 2.36

Core B:
IPS ·109 2.94 2.43

(+13.7%)
2.64

(+4.1%) 2.90 2.53
(+7.0%)

(c) Average IPS of the phases under different mappings

Figure 5.3:Migration x264 according to its execution phases increases the per-phase performance by up to 14 %.

examples, this goal can only be achieved through applicationmigration. The first challenge
is the inherent complexity in the performance of applications. The performance of a thread
depends on its power budget (which depends on the cooling and thermal constraint), on
the AMD of the core that it is running on, and on the characteristics of the thread, i.e., its
compute- and memory-intensiveness. The second challenge is that proactive management
is required because it is not clear in advance whether a migration would increase or
decrease the performance. In addition, there are many possible migrations at any point in
time, as any thread may be migrated to any free core.

These challenges are tackled with an ML-based prediction model that predicts the impact
of a migration. The novel contributions of this chapter are as follows:

• The work presented in this chapter is the first to explore the performance potential
of thread migrations on a many-core processor with distributed shared LLC.

• An analytical and an NN model are created to predict the power budget and LLC-
based performance impact of thread migrations. Both models are compared w.r.t.
accuracy and overhead, demonstrating the superiority of the NN-based model.

• A lightweight run-time application migration algorithm PCMig is proposed that
uses the performance-prediction model to improve the many-core processor’s
overall performance.

56

5.3 Problem Definition

5.3 Problem Definition

As demonstrated in themotivational examples, the performance of a thermally-constrained
S-NUCA many-core processor can only be maximized through application migration. The
challenge is how to decide which thread to migrate at which point in time to which core.
Migration changes the AMD of the migrated thread. Additionally, the change in the
mapping changes the thermal state and, therefore, also changes the thermally-safe power
budgets of all threads. Both AMD and power budget ultimately affect the performance of
the threads.

This chapter follows the pattern to predict the impact of a migration before executing it, as
introduced in Section 1.4.1, in order to assess whether a certain migration candidate should
be executed. With accurate predictions, selecting the best migration is straightforward. As
demonstrated in Section 5.1, the impacts of AMD and power budget on the performance
of a thread heavily depend on its characteristics.

Problem definition for performance prediction The goal of performance prediction is to
estimate the IPS of a thread after a migration of this thread or another thread. IPS may be a
misleading metric in multi-threaded workloads [131], e.g., due to the presence of spinlocks.
In this case, other metrics like application heartbeats [132] could be employed instead that
do not suffer from such inaccuracies but may require changes to the applications. However,
for our studied applications, IPS strongly correlates with the actual performance, which
justifies using it as a proxy variable to estimate the performance impact of application
migrations. It is important to mention already here that the evaluation is not performed
based on the IPS of applications, but by measuring the response time of applications.
The migration is characterized by the initial AMD and power budget, and the AMD
and power budget after the migration. The thread is characterized by its current cycle
stack. As explained in Section 3.1, the cycle stack can be obtained from run-time profiling
information obtained by hardware performance counters. In summary, the following
inputs are available for predicting the performance of a thread:

• AMD and power budget before migration

• AMD and power budget after migration

• Current cycle stack of the thread

• Current V/f level

We develop in this chapter several models for performance prediction on many-core
processors with distributed shared LLC. First, we build NN models that directly predict
the performance (IPS) of a thread after the migration. We train different models that make
different trade-offs between accuracy and overhead. Secondly, we build an analytical
model to serve as a comparison. We separately model the impact of AMD, the impact
of V/f level, and power. Similar to the state of the art [70], we base the analytical model
on the abstract concept of CPI stacks. Finally, we compare the overhead and prediction
accuracy of the NN models and the analytical model.

57

5 Prediction-Based Application Migration

5.4 Neural Network-based Prediction Model

This section describes how the NN-based IPS prediction models are created, including the
feature selection, training data generation, and the NN topology.

5.4.1 Feature Selection

An important step in designing any ML model is the feature selection. We require features
for the target core and the thread characteristics. As discussed in Section 4.1, cores
in an S-NUCA many-core processor differ in their AMD and the thermally-safe power
budget, which is determined by the mapping after migration. Therefore, we use these two
values as features for the target core.

The thread is characterized by features obtained from its current CPI stack. Firstly, we use
the current IPS before migration as a feature. This allows to capture that threads with a
high IPS on the source core are more likely to have a high IPS on the target core. However,
only IPS is not sufficient, as can be seen in Fig. 5.1. Blackscholes master and slave threads
have similar performance (IPS) when executed at a center core (AMD = 4 hops) at a power
budget of 1.5W (Point c in Fig. 5.1). Migrating them to other cores with different AMD
and power budget affects the two threads very differently. This is due to the different
LLC access characteristics of the two threads. We capture such differences in the thread
characteristics by adding cLLC B CPILLC /CPItotal as a feature. This feature captures the
relative performance loss because of LLC accesses. A higher value corresponds to a higher
susceptibility to AMD changes, and lower susceptibility to power budget changes. The
cLLC values of blackscholes master and slave threads at Point c in Fig. 5.1 are 0.49 and 0.09,
respectively. The current IPS and cLLC only gain expressiveness if the AMD and power
budget of the current core that executes the thread are known. Therefore, we add the
AMD and power budget of the current core as features. In total, we use the following six
features for the NN model:

1. AMD of the current core AMD0

2. Power budget of the current core (with the current mapping) Pb,0
3. AMD of the target core AMDm

4. Power budget of the target core (with the mapping after the migration) Pb,m
5. Current IPS of the thread

6. Current cLLC of the thread

5.4.2 Training Data Generation

Fig. 5.4 provides an overview of training and test data generation. We execute multi-
threaded PARSEC applications at different operating points and record traces of their IPS
and CPI stacks. Thereby, an operating point is a combination of an AMD value and a
power budget value. We use 30 operating points, which are combinations of five different

58

5.4 Neural Network-based Prediction Model

Simulation with
HotSniper [113]

Thread
Execution Traces

Benchmarks [47] Operating Points:
AMD + Power Budget

Training Data
Generation

Training / Test
Data

Training

IPS Model

Op. Point n
Op. Point 2
Op. Point 1

Slice k

Thread Characteristics Target Core Target
AMD0 Pb,0 IPS cLLC AMDm Pb,m IPS

6.25 1.5 2.2·109 0.11 4.0 2.5 3.4·109
6.25 3.0 3.1·109 0.43 5.0 2.0 2.3·109

… … …

Figure 5.4: Training data generation for the NN-based IPS prediction models.

mappings (five AMD values from 4 hops to 7 hops) and six power budgets between 1.0W
and 3.5W. Thereby, we obtain 30 multi-threaded traces per application.

These traces may have different lengths, even for the same application, because the
operating point affects the execution time of an application. We cut each trace into 100
slices and align the slices of different traces of the same application. Consequently, the
k-th slices of different traces of the same application execute the same instructions. We
create one training example from each pair of slices. This training example represents a
hypothetical migration from the operating point of the first slice to the operating point of
the second one. Thereby, up to 30 · 29 = 870 training examples are obtained from each
slice of each thread of each application. We filter out slices when a thread is idle, resulting
in 1,026,000 valid training examples in total.

5.4.3 Neural Network Topology

We use small fully-connected feedforward NNs with few hidden layers. Due to the smooth
shapes of the functions to learn (see Fig. 5.1), we use a sigmoid activation function for
hidden layers. The lowest prediction error is achieved with two hidden layers with 24
and 12 neurons, respectively. We use L2 regularization to improve the generalization and
use the Adam optimizer [133] to improve the training convergence.

59

5 Prediction-Based Application Migration

–6 –4 –2 2 4 6

0.5

1 sidmoid :
y =

1
1 + e–x

hard sigmoid :

y =

0 x ≤ –2.5
1 x ≥ 2.5
0.2x + 0.5 otherwise

Figure 5.5:Comparison of the two activation functions sigmoid and an approximate version fast sigmoid that
does not require calculating an expensive exponential term.

As discussed previously, the run-time overhead is an important factor to consider. Comput-
ing a sigmoid function requires calculating an exponential term, which is computationally
expensive. We, therefore, also test the hard sigmoid function, depicted in Fig. 5.5. It is a
piecewise linear variant of the sigmoid function, and has a much lower overhead [13]. We
also tested to use only one hidden layer and tested reducing the number of neurons in the
hidden layer. This greatly reduces the overhead but also reduces the accuracy. The results
for accuracy and run-time overhead of different topologies are described in the evaluation
of this chapter.

5.5 Analytical Prediction Model
Performance and power prediction based on CPI stacks is a common technique in the
literature [70, 71, 130]. Therefore, we base our analytical performance prediction model on
CPI stacks. We first separately investigate the impact of AMD and V/f level changes. Then,
we build a power model to estimate the power consumption at a given V/f level and CPI
stack. All these models are based on an analysis of the many-core processor’s architecture
to obtain formulas with parameters that are fitted using benchmark applications. Finally,
we combine all three models.

The CPI stack comprises two classes of components. These are components related to CPU
and L1 caches and components related to the NoC, LLC, and DRAM. CPU and L1 caches
operate at the same V/f level, which can be changed using DVFS. Consequently, the same
operation always takes the same number of CPU cycles, and related CPI stack components
are independent of the AMD and the CPU V/f level. The CPI stack components of the
other components are affected by the CPU V/f level and the mapping (AMD). Fig. 5.6
visualizes these observations using the bodytrack master thread.

5.5.1 Impact of the Last-Level Cache Access Latency

Only the LLC-related components of the CPI stack depend on the AMD. Calculations in
the CPU and accesses to the L1 cache do not traverse the NoC. DRAM accesses originate
in the LLC. Therefore, the average DRAM access latency (on top of the LLC latency) is

60

5.5 Analytical Prediction Model

0 0.5 1

LLC and DRAM:
significant changes

CPU and L1 cache:
almost constant

CPI Stack [Cycles/Instruction]

base branch/depend issue/dispatch mem-l1d ifetch mem-nuca mem-dram

f

1.0GHz

4.0GHz

1.0GHz

4.0GHz

Mapping (AMD)

Center (4 hops)

Center (4 hops)

Corner (7 hops)

Corner (7 hops)

Figure 5.6: Impact of the AMD and V/f level on the CPI stack of the bodytrack master thread. The components
related to the CPU and L1 cache are not affected by the AMD or V/f level. In contrast, the components related
to LLC and DRAM change significantly.

independent of the mapping of the thread. The latency of a single LLC access comprises
two parts. First, the memory access itself has a latency l0i . Second, each access to the LLC
needs to traverse the NoC twice. As explained in Section 4.1, the average hop count to
access the LLC from a core is characterized by its AMD. Let lhop denote the latency of a
single hop on the NoC. The average latency of an LLC access is described by:

lavgi (AMD) = l0i + 2 · AMD · lhop (5.1)

If a sequence of N instructions contains m accesses to the LLC, the CPI stack component
when operating at frequency f can be calculated as:

CPIi(AMD, f) =
m · f · lavgi (AMD)

N
(5.2)

=
m · f · 2 · lhop

N
·
(

l0i
2 · lhop

+ AMD

)
(5.3)

Let Ui B
l0i

2·lhop be one constant per LLC-related CPI stack component i. Migrating a
thread from a core with AMD1 to another core with AMD2, both operating at the same
frequency f does not affect m, N , and lhop , and consequently changes CPIi as follows:

CPIi(AMD2, f) =
Ui + AMD2
Ui + AMD1

· CPIi(AMD1, f) (5.4)

Solving Eq. (5.4) for Ui results in:

Ui =
CPIi(AMD1, f)·AMD2 – CPIi(AMD2, f)·AMD1

CPIi(AMD2, f) – CPIi(AMD1, f)
(5.5)

Eq. (5.5) can be used to calculate Ui from two traces of the same application at the same
V/f level but different AMD. The parameters Ui are ultimately obtained by averaging

61

5 Prediction-Based Application Migration

over many pairs of traces of different benchmark applications. This is repeated for every
LLC-related component of the CPI stack. It is important to notice that Eqs. (5.4) and (5.5)
implicitly consider shared resource contention because these effects are already considered
in the CPI stacks.

Memory-level parallelism (MLP) is a relevant parameter when estimating the performance
of out-of-order cores [70]. In our case, the microarchitectures of source and target core
are identical, the only architectural difference is the average LLC latency. By working on
the CPI stack, MLP is already considered. For instance, the performance of a workload
with high MLP only weakly depends on the LLC latency. Such a workload has small CPI
stack components for the caches and memory, and, therefore, predicted changes in the
CPI stack by our model are also small.

5.5.2 Impact of the Voltage/Frequency Level

The time spent waiting for the LLC and DRAM is not affected by the CPU V/f level because
the V/f levels of NoC, LLC, and DRAM are constant and independent of the CPU V/f level.
Consequently, changing the V/f level of a CPU core linearly affects the CPI for these
components, as can be seen in Eq. (5.3). All other components of the CPI stack are not
affected by a V/f level change.

However, our experiments demonstrated that simple linear behavior does not accurately
describe the system. Sniper [114], which is used to perform experiments in this chapter,
reports a single CPI stack component for fetching instructions. This is a combination
of L1-I, LLC, and DRAM accesses. The L1-I-related cycles are not affected by a V/f level
change, whereas the others are affected linearly. To capture the resulting combination of
linear and constant terms, we model the V/f level dependency as follows:

CPIi(AMD, f) = (Vi ·f + (1–Vi))
m · 2·lhop

N
· (Ui+AMD) (5.6)

The parameter Vi describes the relative sensitivity of CPIi on the frequency f . Changing
the CPU V/f level does not affect the executed instruction mix (m and N), and does not
affect the V/f level of the NoC, LLC, and DRAM (lhop and Ui). Therefore, changing the V/f
level from f1 to f2 affects CPIi according to the following equation:

CPIi(f2) =
Vi · f2 + (1 – Vi)
Vi · f1 + (1 – Vi)

· CPIi(f1) (5.7)

Solving Eq. (5.7) for Vi results in:

Vi =
CPIi(f2) – CPIi(f1)

CPIi(f2) – CPIi(f1) + f2·CPIi(f1) – f1·CPIi(f2)
(5.8)

Eq. (5.8) can be used to calculate Vi from two traces of the same application at the same
core (same AMD) but different V/f level. The parameters Vi are ultimately obtained by

62

5.5 Analytical Prediction Model

averaging over many pairs of traces of different benchmark applications. This is repeated
for every component of the CPI stack that is related to the NoC, LLC, or DRAM.

5.5.3 Power Model

Since we need to predict the performance of a thread under a certain power budget,
which is required to enforce the temperature constraint, we need a power model. A
major requirement for building this model is low overhead, i.e., relatively low complexity.
We, therefore, avoid modeling detailed behavior of individual microarchitectural parts
of the processor like McPAT [115] and instead, base our model on the well-established
activity-based power model:

P (V , f ,U) = Pleak + Pdynamic (5.9)

= Ileak · V + U · (V–Vth)2 · f (5.10)

The supply voltageV and the frequency f have an approximately linear relationship [134]:

f (V) = a · V + b (5.11)

Combining Eqs. (5.10) and (5.11) results in a cubic equation for the total power with
parameters W (0)(U) to W (3)(U) that depend on the activity U .

P (f ,U) = W (0)(U) + W (1)(U)·f + W (2)(U)·f 2 + W (3)(U)·f 3 (5.12)

The CPI stack of a set of instructions is a decomposition of the execution into different
actions. For instance, when waiting for the L1-D cache, the CPU stalls, while the L1-D
cache is active. We reflect this decomposition also in the power model by assigning a
switching activity Ui to every component of the CPI stack. This is equivalent to assigning
a different set of parameters W (0)i B W (0)(Ui), . . . ,W

(3)
i B W (3)(Ui) to every component. The

total power is a linear combination of these activities and their relative duration:

P =
∑
i

CPIi
CPItotal

(
W
(0)
i + W (1)i ·f + W (2)i ·f

2 + W (3)i ·f
3
)

(5.13)

The parameters W (0)i to W
(3)
i can be obtained by fitting this power model to application

traces at different V/f levels.

5.5.4 Algorithm for Analytical Performance Prediction

Migrating a thread affects the AMD and power budget of the core it is running on. Algo-
rithm 5.1 shows the performance prediction algorithm that combines the three analytical
models that have been constructed in the previous sections. Taking the impact of AMD
into account is straightforward by applying the AMD model FAMD . A change in the AMD
and power budget might necessitate switching to another V/f level to keep the power

63

5 Prediction-Based Application Migration

Algorithm 5.1 Performance Prediction using CPI Stacks
CPIAMD←FAMD(CPI0,AMD0→AMDm) ⊲ impact of AMD
for all fm ∈ BinarySearch(F) do ⊲ binary search on V/f level

CPIm ← Ff (CPIAMD, f0→fm) ⊲ impact of frequency
P ← FP (fm ,CPIm) ⊲ estimate power
sat← P ≤ Pb,m ⊲ power budget satisfied?
if sat then

IPSm ← fm/
∑

i CPIi
UpdateBinarySearchLimits(fm , sat)

return IPSm

Core Executing an Application
Idle Core

Current Mapping

…

Migration Candidates

Performance Prediction Model

NN Model

CPI Stack
Model

or

Execute Best Migration

…

Figure 5.7: PCMig performs run-time application migration using a performance prediction model.

consumption close to the power budget. However, it is not clear which V/f level will be
selected. Therefore, the frequency fm is determined using a binary search. Iteratively, the
CPI stack is calculated using the frequency model Ffreq and the power is estimated using
the power model FP to check for a power budget violation. If the V/f level is sustainable,
the IPSm after migration can be estimated as IPSm = f /CPItotal .

5.6 Run-Time Application Migration Algorithm

This section describes our proposed algorithm PCMig that performs application migration
based on a performance prediction model. Fig. 5.7 gives an overview. Application mi-
gration is invoked periodically and comprises three steps: creating migration candidates,
rating them, and executing the best migration.

64

5.6 Run-Time Application Migration Algorithm

Create Migration Candidates There are O(n|T |) possible migrations in a many-core pro-
cessor with n cores and a set of threads T . This number is too large to explore in its
entirety. Therefore, we limit PCMig to only migrate one thread at a time or swap two
threads. This reduces the number of migration candidates to O(n·|T |).

Ratingof theMigrationCandidatesusingPerformancePrediction Each of these migration
candidates needs to be rated to select the best one. Amigration of a single thread affects the
performance of this thread. Additionally, changing the mapping also changes the power
budgets of all other threads, potentially affecting their performance, as well. Therefore,
the performance of all threads needs to be predicted when rating a migration candidate.

Let M0 denote the mapping before migration. A migration candidate m is defined by the
mapping after the migration Mm . AMD and power budget values of all threads can both
be calculated directly from the mapping. Cycle stacks can be obtained from hardware
performance counters [70]. From these features, the following equation calculates the
relative performance improvement over all threads T based on the performance prediction
model IPS(t ,M) (either NN-based or analytical):

ΔIPS (m) =
∑
t∈T

(
IPS(t ,Mm)
IPS(t ,M0)

– 1
)

(5.14)

No actual migration is performed to calculate this metric.

Executed Best Migration Finally, the migration candidate with the highest predicted per-
formance improvement ΔIPS (m) is selected. This migration is only executed if ΔIPS (m) > X .
Migrations with ΔIPS (m) < 0 are predicted to reduce the overall performance. Migrations
with ΔIPS (m) ≥ 0 but ΔIPS (m) < X are also not executed because the small expected per-
formance improvement is likely outweighed by the performance penalty of the migration
itself. Also, it prevents oscillations due to small prediction errors. To further reduce the
overhead, we skip performance prediction if the AMD is unchanged and the power budget
changes by less than 0.1W, and assume that the performance does not change.

System Integration If a new application arrives at the system and needs to be mapped,
information about its characteristics (e.g., CPI stacks) is not yet available. Therefore,
the performance prediction models cannot be used. We adopt the application-agnostic
algorithm from Chapter 4 to decide the initial mapping for new applications.

L1 caches are private per core. Migrating an application from one core to another core,
therefore, results in cold L1 caches, and it takes some time until the thread’s working data
is present in the cache, which is known as cache warming. The performance of the thread
is reduced during this time. Fig. 5.8 shows that the performance of different PARSEC
threads saturates within 0.2ms after a migration We set the migration epoch to 10ms
which is small enough to react fast to changes but large enough to still maintain a low
overhead. With smaller migration epochs, the observed benefits in the performance of the

65

5 Prediction-Based Application Migration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.5

1.0

1.5

Ignored for decision
on the next migration

Time after Migration [ms]

N
or

m
al
iz
ed

IP
S

Figure 5.8: IPS of different threads after a migration. IPS values are normalized to the IPS at 0.8ms after migration.

workload are smaller than the increase in the overhead. The duration during which the
performance is reduced is less than 2% of the migration epoch. Therefore, the threshold X
should be set to a value > 2%. We set X = 3%. During the period of reduced performance
after a migration, performance counters do not reflect the true characteristics of the thread.
For instance, they report too many cache misses. We ignore the performance counters
during the first 0.5ms after a migration.

5.7 Experimental Evaluation

This section presents an empirical evaluation of the performance prediction models and
the application migration algorithm PCMig, which is based on such prediction models.
We first compare the different prediction models to select the best-suited one. Then, the
overall performance improvement of the system is evaluated with PCMig employing the
selected performance prediction model.

The experimental evaluation uses the setup described in Section 3.1.2. Ambient and
maximum temperature are set at 45 ◦C and 70 ◦C, respectively. TDP is set at 100W.
We execute the same applications from the PARSEC benchmark suite as in Chapter 4
with simsmall inputs: blacksholes, bodytrack, canneal, dedup, fluidanimate, streamcluster,
swaptions, and x264.

5.7.1 Comparison of the ML-based and Analytical Prediction Models

We start by comparing the trade-off between prediction accuracy and run-time overhead
of the different performance prediction models. We then evaluate costs related to creating
and storing the models. Based on this comparison, we select one model to employ in our
application migration algorithm PCMig.

A performance prediction model should have a low prediction error but at the same time
have a low run-time overhead. These two metrics form a trade-off. We first evaluate
the prediction accuracy of all models. The creation of the NN training data for different
applications is described in Section 5.4.2. In total, we obtained 1,026,000 training and

66

5.7 Experimental Evaluation

bla
cks

cho
les

bod
ytra

ck
can

nea
l

ded
up

stre
am

clus
ter

swa
ptio

ns x26
4

0.0

0.1

0.2

0.3

0.4

0.5

·109

Holdout Application

Pr
ed

ic
tio

n
RM

SE
[I
PS

]
… NNs with Varying Topologies Analytical Model

Figure 5.9: Prediction accuracy with the different models. Evaluation is done using k-fold cross-validation, in
which the model is trained with all benchmarks except one and then tested on the holdout benchmark.

test examples. To achieve independent training and test sets, training examples obtained
from one application are either used only for training or only for testing but never mixed
between training and testing. We then perform a k-fold cross-validation, in which a model
is trained on all applications except one holdout application. The model is then tested on
the holdout application. This is repeated until every application was used as the holdout
application.

Fig. 5.9 shows the achieved prediction accuracy for the NN-based models with different
topologies (Section 5.4) and for the analytical model based on CPI stacks (Section 5.5).
We report the root-mean-square error (RMSE) of the predictions. The analytical model
almost always has a higher prediction error than the NN models. This error stems from
accumulating inaccuracies of the individual models (AMD, V/f level, power). The only
exception is canneal, for which the analytical model yields a lower error. The NN models
differ in the employed topologies, which increase in complexity from left to right in the
figure. The topology of the most complex NN is described in Section 5.4.3 and uses two
hidden layers with sigmoid activation. The other three NNs only employ a single hidden
layer with 12, 18, or 24 neurons, respectively, and use hard sigmoid activation (see Fig. 5.5).
For some holdout applications, a rather simple model already achieves the best results.
For example, for x264, the most complex model shows the highest error. However, for
most holdout applications, a more complex topology decreases the prediction error.

The second metric to compare the models is the run-time overhead. The overhead is
measured by the average single-threaded execution time of performance prediction. We
execute the prediction on an intermediate core (AMD = 5.5 hops) of the simulated many-
core processor at 4.0GHz. The inference is computed in software and we do not assume
any special hardware or accelerator. Fig. 5.10 shows the resulting trade-off between
the run-time overhead and the prediction error. The analytical model has an average
overhead of 0.16 μs per prediction. The largest contributor is the repeated evaluation of

67

5 Prediction-Based Application Migration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
·109

Analytical Model
(CPI stack)

NNs with different topologies

Overhead (Average Execution Time per Prediction) [μs]

Ro
ot

M
ea

n
Sq

ua
re
d
Er

ro
r[

IP
S]

Selected Model

Figure 5.10:Comparison of the different models. NNs find a better trade-off between overhead and prediction
error than an analytical model based on CPI stacks.

the power model (up to five times per prediction). However, reducing the complexity
of the power model would increase the prediction error and, therefore, is not expedient
as the analytical model already has a much larger prediction error than the NN model.
The run-time overhead of the NN models strongly depends on the employed topology.
The most accurate model also has by far the highest overhead (0.77 μs). Especially the
sigmoid function is computationally expensive. The other NN models instead use the
hard sigmoid activation function, and use only one hidden layer. Thereby, their overhead
can be reduced to 0.10 μs, 0.17 μs, and 0.22 μs, respectively, at the cost of a slightly higher
prediction error. This demonstrates the advantage of NN-based models that allow for easy
exploration of different topologies, resulting in a different trade-off between overhead and
prediction error. Overall, NN-based modeling outperforms analytical modeling and finds
a better trade-off.

While the prediction accuracy and run-time overhead are the most important metrics
in our case, we also evaluate additional metrics. Fig. 5.11a shows the training overhead
of all models. We perform training of the NN-based models using the TensorFlow [135]
library on an Intel Core i5-3470. We train the NN models for 50, 000 steps with mini-
batches of size 32. The reported time does not include creating the training data (obtaining
profiling information as described in Section 5.4.2), as this step is also required for fitting
the parameters of the analytical model. We did not observe any overfitting because the
employed models are small and we use regularization as described in Section 5.4.3. The
training time only slightly increases with increasing model complexity. All NN models
can be trained in less than 1min. The analytical model has a much lower design-time
overhead of around 1 s. However, since this is a one-time overhead, even 1min is very
low and can be neglected. Fig. 5.11b shows that the number of parameters is also low for

68

5.7 Experimental Evaluation

0

20

40

60
Tr

ai
ni
ng

/F
itt

in
g
Ti
m
e
[s
]

… NNs with var. Topologies Analytical Model

0

100

200

300

400

500

St
or

ag
e
[#

Pa
ra
m
s.]

(a) Training Overhead (b) Storage Requirements

Figure 5.11:Comparison of training overhead and storage requirements of the models. The analytical model has
the lowest design-time overhead. However, since this is a one-time overhead, 1min for training the NN-based
models is still very low. All models have low storage requirements because the number of parameters is low.

all studied models. The most accurate NN model has 481 parameters, which are stored as
32-bit floating-point numbers, which results in a memory requirement of less than 2 kB.
All other models can be stored in less than 1 kB. Overall, all models have very low storage
requirements, which do not incur a significant overhead.

We select the NN model with 24 neurons in a single hidden layer to employ in PCMig
because it combines a low prediction error (0.13 ·109 IPS) with a low overhead (0.22 μs).
Reducing the prediction error further comes at a high cost in terms of run-time overhead.
Further optimizations like pruning or weight quantization potentially may reduce the
run-time overhead and memory requirements because they allow avoiding floating-point
operations and operate on reduced bit widths [136] but are beyond the scope of this
work.

In summary, this analysis has shown that ML-based modeling achieves a better trade-off
between accuracy and overhead than analytical modeling. Moreover, it achieves a flexible
trade-off by adjusting the NN topology.

5.7.2 Illustrative Example for Performance Prediction

This section presents an illustrative example of the prediction capabilities (generalization to
an unseen application) of the selected NN-based performance prediction model. Fig. 5.12a
presents the transformation of a full trace of a slave thread of PARSEC bodytrack across two
different operating points (each a combination of AMD and power budget). The trace is
captured at Operating Point A, which executes the thread on a center core (AMD = 4 hops)
with a power budget of 2.0W. The performance prediction model has not been trained
on bodytrack and is used to transform this trace to Operating Point B, which execute the
thread on a corner core (AMD = 7 hops) at a higher power budget of 3.0W.

During Phase I, the higher power budget of Operating Point B outweighs the increased
LLC latency, and the performance of the thread is higher. The model correctly captures

69

5 Prediction-Based Application Migration

0 50 100 150 200 250 300 350 400 450
0

2

4

6

·109

Time [ms]

Pe
rf
or

m
an

ce
[I
PS

]
Measurement: Operating Point A (Source)
Prediction: Operating Point B (Target)
Measurement: Operating Point B (Target)

(I)

(II)

(a) Prediction of a full trace. Measurements from Operating Point A are used to predict trace at Operating Point B.

4
5

6
7 1

2

3
2.0

2.5

3.0

·109

AMD [#hops]
Co

re
Po
we

r B
ud
get

[W
]

Pe
rf
or

m
an

ce
[I
PS
·1
09

]

Prediction
Measurement

Op. Point A

Op. Point B

(b) Prediction across many possible operation points at Phase II. Traces from Operating Point A are
used to predict all other IPS.

Figure 5.12:Demonstration of the prediction accuracy of the IPS model for the unseen bodytrack application.

this behavior but slightly underestimates the performance. During Phase II, the thread
becomes more memory-intensive and the increased LLC latency has a stronger impact
on the performance. The model correctly predicts a reduced performance compared to
Operating Point A in Phase II. In both cases, the performance prediction model correctly
takes the individual impacts of AMD and power budget into account. Fig. 5.12b plots how the
thread’s performance during Phase II depends on AMD and power budget. The predictions
of the performance model closely match the measurements. This further demonstrates that
the ML model generalizes well to the unseen PARSEC bodytrack across various operating
points.

70

5.7 Experimental Evaluation

5.7.3 Comparison to Classical Heuristics and to the State of the Art

This section compares the proposed application migration algorithm PCMig to classical
heuristic mapping and to the state of the art. This is the main experiment in this chapter.
We first investigate the achievable gains with application migration by studying the
PARSEC benchmark individually and then employ mixed workloads. We compare our ML-
based PCMig to two other application mapping/migration algorithms that are closest to our
technique. Firstly, Defrag [62] employs application migration to improve the performance
of applications running on a NoC-based message-passing architecture. Secondly, the
heuristic PCGov, which has been introduced in Chapter 4, is designed for performance
maximization of thermally-constrained many-core processors with shared LLC, and,
therefore, targets the same problem as this chapter. However, it is based on simple
heuristics that cannot take the application characteristics into account, forcing it to use an
application-independent static mapping of threads to cores which makes a static trade-off
between AMD and power budget.

Uniform Workloads We create workloads of several instances of the same PARSEC
benchmark application that result in full system utilization, i.e., 64 threads. This forces the
application mapping or migration algorithm to use all cores of the many-core processor
including the corner cores that have high AMD. All applications are started at the same
time and we report the time until the last application has finished (makespan).

Fig. 5.13a presents the results. Our ML-based PCMig improves the performance for almost
all benchmarks. Defrag is designed for message-passing and maps threads of the same
application close to each other. However, spatial proximity is not beneficial in the case of
a distributed shared LLC. It even increases the makespan because some applications are
squeezed into the corners of the many-core processor, which has two drawbacks. Firstly,
cores in the corner have a high AMD and, therefore, threads experience a high average
LLC latency. Secondly, mapping threads close to each other creates a thermal hotspot.
This reduces the power budgets, which requires to operate the cores at lower V/f levels.
The simple heuristic PCGov employs a static application-agnostic mapping and, therefore,
neither considers the actual application characteristics nor reacts to execution phases.
This is most visible with canneal. Its performance mainly depends on the performance
of its master thread. Furthermore, the master thread is very memory-intensive and its
performance is highly sensitive to the AMD but barely depends on the power budget.
Therefore, the application-agnostic trade-off between these two factors that PCGov makes
is suboptimal. PCMig starts with the same initial mapping but quickly migrates all master
threads to the center, which better considers the application characteristics and greatly
improves the performance, achieving a 20% lower makespan.

Streamcluster is a short-running application which has a short initial phase in which the
master is active, and then all slave threads are active. PCMig reacts to the initial phase
by migrating the master to the center of the many-core processor. This brings almost no
performance benefit because the master terminates shortly after. When the slave threads
are active, the center core with low AMD is occupied by the now idle master. It takes

71

5 Prediction-Based Application Migration

bla
cks

cho
les

bod
ytra

ck
can

nea
l

ded
up

flui
dan

ima
te

stre
am

clus
ter

swa
ptio

ns x26
4

1.0

1.1

1.2

N
or

m
al
iz
ed

M
ak

es
pa

n

PCMig PCGov (classical heuristic) Defrag [62]

bla
cks

cho
les

bod
ytra

ck
can

nea
l

ded
up

flui
dan

ima
te

stre
am

clus
ter

swa
ptio

ns x26
4

1.0

1.1

1.2

N
or

m
al
iz
ed

M
ak

es
pa

n

bla
cks

cho
les

bod
ytra

ck
can

nea
l

ded
up

flui
dan

ima
te

stre
am

clus
ter

swa
ptio

ns x26
4

1.0

1.1

1.2

N
or

m
al
iz
ed

M
ak

es
pa

n

(a) Tcrit = 70 ◦C

(b) Tcrit = 80 ◦C

(c) Tcrit = 90 ◦C

Figure 5.13: Performance with PCMig for isolated workloads. ML-based PCMig improves the performance by up
to 25% over classical heuristic management and the state-of-the-art. Observed benefits depend on the maximum
temperature. A different maximum temperature changes the power budgets and, thereby, shifts the trade-off
between power budget and LLC latency. Only adapting the mapping to the application characteristics maximizes
the performance.

72

5.7 Experimental Evaluation

some time until the master is migrated away to make room for a slave thread. Overall, this
temporary suboptimal mapping slightly reduces the performance over a static mapping,
which keeps the master in the corner. We verified this in an additional experiment with a
very low migration epoch, i.e., the mapping is adapted very fast. Faster migration would
reduce the makespan to 50.3ms, which is slightly lower than PCGov (50.6ms) but at the
cost of an increased run-time overhead.

The trade-off between power budget and average LLC latency lies at the heart of this
chapter. The power budget is determined by the thermal constraint Tcrit . A higher
maximum temperature increases the power budget with a certain mapping and, thereby,
changes the trade-off between power budget and average LLC latency. We perform
additional experiments with different thermal constraints. Fig. 5.13b and 5.13c show
the results for a thermal constraint of 80 ◦C and 90 ◦C, respectively. The advantage of
ML-based PCMig over classical heuristic PCGov increases with increasing temperature.
The reason is that PCMig can adapt the mapping to the changed trade-off by employing
a performance prediction, while PCGov uses an application-agnostic static mapping.
Similarly, the advantage over Defrag increases. Most importantly, this is achieved without
retraining the model.

These experiments show that application-agnostic heuristic mapping (like PCGov) results
in a performance loss of up to 20%. It furthermore demonstrates that the optimal mappings
depend on the application characteristics. Because application characteristics can only be
observed when the application is running and are not known at mapping time, application
migration is required to fine-tune the mapping. Our ML-based PCMig achieves a high
performance for all applications because it can adapt the mapping to the application
characteristics. We also demonstrate that PCMig generalizes well to different thermal
configurations without the need to retrain the model.

MixedWorkload To evaluate the average performance gains, we conduct an additional
experiment in which we execute a random workload consisting of 20 randomly sampled
PARSEC applications with random parallelism level. To model an open system, we sample
the times between application arrivals from a Poisson distribution with varying arrival
rates. Thereby, the average (peak) system utilization varies between 9% (33%) and 36%
(86%). Finally, we report the average response time for each resource management
algorithm. We set the thermal constraint back to 70 ◦C.

Fig. 5.14 present the results. Across all application arrival rates, ML-based PCMig yields
the highest performance, i.e., lowest average response time. It outperforms Defrag by up
to 18%. This is because Defrag has been designed for a message passing architecture, as
has been discussed in the previous experiment. The classical heuristic PCGov has been
designed for many-core processor with distributed shared LLC but does not consider ap-
plication characteristics. It has to find mappings that result in good average performance
for many applications, and cannot react to individual application characteristics. Further-
more, it does not react to changing application execution phases or changing system load.
Therefore, PCMig outperforms PCGov by up to 7.3%, where some applications experience

73

5 Prediction-Based Application Migration

2 4 6 8 10

1.00

1.05

1.10

1.15

1.20

Average Application Arrival Rate (per 1000ms)

N
or

m
.A

vg
.R

es
po

ns
e
Ti
m
e

PCMig PCGov (classical heuristic) Defrag [62]

Figure 5.14:ML-based PCMig improves the average performance with mixed random workloads by up to 7.3 %
over classical heuristic PCGov, and by up to 18.4 % over state-of-the-art Defrag.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

Utilization of the Many-Core Processor [%]

O
ve

rh
ea

d
[μ
s]

Create Migration Candidates Rate Migration Candidates

Figure 5.15: Parallelized run-time overhead of PCMig.

a reduction in the response time of up to 19.4%, while other applications experience almost
no speedup.

5.7.4 Run-Time Overhead

This section evaluates the run-time overhead of PCMig to decide the next migration.
Deciding the next migration comprises creating migration candidates and rating each
one. The overhead mainly depends on the number of migration candidates. Therefore, we
study different utilization values (number of active cores) of the many-core processor.

Fig. 5.15 presents the overhead per invocation of PCMig if parallelized to run on all
cores. There are two types of migration candidates. Firstly, migrations that migrate a
thread to an idle core, and secondly, migrations that swap two threads. The number
of migrations depends on the number of threads |T | and the number of cores n in the
many-core processor. There are |T | · (n – |T |) migrations to an idle core, and 1

2 · |T | · (|T | – 1)
migrations that swap two threads.

74

5.8 Summary

Creating migration candidates consists mainly of calculating the new power budgets after
the migration. Migrations that swap two threads do not change the location of active cores
and, therefore, do not change the power budgets. The maximum number of migrations of
a thread to an idle core is observed at |T | = n

2 , i.e., at a 50% system utilization. Calculating
the power budgets requires solving linear equation systems. The size of the involved
matrices increases with |T |. Therefore, the maximum overhead for creating migration
candidates is observed at a 60% system utilization.

After creating migration candidates, each of them needs to be rated. Swapping two
threads only affects the AMD and power budget of these two threads. Therefore, only two
invocations of the performance prediction model are required per migration candidate.
Migrating a thread to an idle cores affects the power budgets of all threads, potentially
requiring performance prediction for each thread (if the power budget changes by more
than 0.1W). This results in O(|T |) invocations per migration candidate. In total, |T | · (|T | –
1) + O(|T |2 · (n – |T |)) predictions are performed. The overhead of performance prediction
also peaks at 60% system utilization. The total overhead of the proposed application
migration algorithm PCMig is less than 52 μs. Migrations are invoked every 10ms, which
results in a negligible maximum overhead of 0.5%.

5.8 Summary
This chapter presented PCMig, which performs application migration with the help of
an ML model to predict the impact of a migration before executing it. This pattern allows
to build proactive resource management where no action is executed without predicting its
impact first. Two fundamentally different methods have been studied to create the model:
analytical modeling and ML-based modeling. The ML based model with an NN achieves a
better trade-off between error and overhead, without requiring detailed knowledge about
the internals of the platform. PCMig, which employs the NN model, significantly increases
the performance of mixed workloads with unseen applications. In addition, we showed
that PCMig can cope with different thermal constraints without requiring retraining of
the model.

The main challenge observed in this chapter is that it requiring separate inference calls
per each candidate action potentially incurs a high run-time overhead. This could be
solved in PCMig by employing a small NN model, and by restricting the set of candidate
actions. Additionally, PCMig performs DVFS with the help of per-core power budgets,
which greatly reduces the complexity of the resource management, but prevents further
optimization. When studying more complex optimizations, such as per-core DVFS, as
will be studied in the next chapter, or joint application migration and DVFS, as will be
studied in Chapter 7, employing the pattern of predicting the impact of potential resource
management actions would likely result in an unaffordable overhead.

75

6 Smart Boosting by Estimating
Hidden Application Properties

DVFS has a major impact on the performance and power of applications, which is why it
is implemented in virtually all modern processors. In contrast to the previous chapters,
which indirectly controlled the V/f levels via a power budget, the technique presented in
this chapter directly controls the V/f levels to achieve a more fine-grained optimization.
This chapter targets the problem of boosting, i.e., maximizing the performance under a
thermal constraint using DVFS. The developed technique implements the pattern to use
an ML model to estimate hidden properties of applications, which has been introduced in
Section 1.4.2. In particular, predictions about the sensitivity of performance and power to
V/f changes are required to perform boosting optimization. Considering the sensitivity of
the power and temperature within the boosting optimization also enables to proactively
estimate the thermal safety of boosting decisions. The developed ML-based management
is compared to both simple heuristic management and management based on analytical
modeling.

Processor manufacturers developed boosting techniques like Intel TurboBoost [56] or
AMD Turbo Core, which employ simple heuristics that upscale the V/f levels of all active
cores simultaneously if thermal margin exists. These techniques perform boosting without
specific knowledge of the applications running on the cores. However, diverse applications
benefit differently from boosting. For instance, compute-intensive applications benefits
strongly, while memory-intensive applications benefits to a lesser degree. This observation
has been exploited in prior works that perform the boosting decision based on the IPS
of the running applications [67]. Particularly, high-IPS applications are boosted while
low-IPS applications are throttled, assuming that compute-intensive applications have
high IPS, while the memory-intensive ones have low IPS. However, this is not always the
case as will be demonstrated in the following examples.

6.1 Motivational Examples

This section presents two motivational examples that demonstrate the difficulties and
important aspects in boosting.

This chapter is mainly based on [5].

77

6 Smart Boosting by Estimating Hidden Application Properties

0

2

4

6

8

210ms

413ms

Pe
rf
or

m
an

ce
[I
PS
·1
09

]
lu-cont radix Temperature

141ms

422ms

0

1

2

Po
w
er

[W
]

0 0.1 0.2 0.3 0.4

50

60

70

80

Time [s]

Te
m
pe

ra
tu
re

[◦
C]

0 0.1 0.2 0.3 0.4
Time [s]

Same Peak Temperature During Shared Execution

(a) Without Boosting (b) With Boosting

Figure 6.1:Motivational example for boosting. Boosting the application with low IPS significantly improves the
overall performance. This appears counter-intuitive at first sight but is a key observation contributing to the
efficiency of our smart boosting.

Boosting In Fig. 6.1, a high-IPS high-power application (lu.cont) and a low-IPS low-
power application (radix) from the SPLASH-2 benchmark suite are running in parallel. In
Fig. 6.1a, both applications operate at the same V/f level of 2.0GHz. The peak temperature
is 58 ◦C. Fig. 6.1b illustrates that boosting radix (low IPS) and throttling lu.cont (high IPS)
leads to significant improvements in the overall system performance, which is defined
as the average response time of all running applications in the system. Particularly, the
execution time of radix is reduced by 33% and the execution time of lu.cont increases by
only 2%, without affecting the peak temperature.

This is unlike what is expected. There are two reasons for it. Firstly, the power consumption
of the applications significantly impacts the performance benefits of boosting. Specifically,
throttling a high-power application (lu.cont) by a little change in the V/f level, i.e., by
100MHz, enables to boost a low-power application (radix) by a big change in the V/f
level, i.e., 1.0GHz, while the peak temperature remains almost the same. This leads to
a significant increase in the overall system performance. This observation has not been
exploited before. Secondly, radix, despite having low IPS, is compute-intensive, and thus

78

6.1 Motivational Examples

1 1.5 2 2.5 3 3.5 4

109

1010

+59%

+33%

+71%

Frequency [GHz]

Pe
rf
or

m
an

ce
[I
PS

]
lu.cont canneal radix

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

+4.4W

+0.9W

Frequency [GHz]

Po
w
er

[W
]

Figure 6.2:V/f sensitivities of performance and power consumption vary widely from one application to another,
due to their different characteristics.

significantly benefits from an increased V/f level. The reason for the low IPS of radix is
that it has many operations that depend on the result of previous operation, which leads
to many stall cycles in the CPU pipeline. This example demonstrates that considering only
the performance of the applications during the boosting optimization is suboptimal, power
needs to be considered, too.

V/f Sensitivites of Performance, Power, andTemperature Involving the absolute values of
performance and power may be beneficial for boosting, as discussed above, but considering
their sensitivities to V/f changes is more relevant. Fig. 6.2 shows an example. The three
applications SPLASH-2 lu.cont, PARSEC canneal, and SPLASH-2 radix have widely varying
absolute IPS. Their V/f sensitivities of the performance, i.e., how the performance changes
with a V/f change, are also very different, where the memory-intensive canneal benefits the
least, and the compute-intensive radix benefits the most. Importantly, these two metrics
are not interchangeable. Radix has the lowest absolute IPS but the highest sensitivity
of the performance. Canneal has a similar low absolute IPS but a low sensitivity of the
performance. Hence, the sensitivity of the performance is the important metric to be
included into the boosting optimization instead of the absolute IPS. Additionally, the V/f
sensitivity of the power is illustrated in Fig. 6.2, where large variations between different
applications can be seen. The power consumption of lu.cont increases by 4.4W when
boosting from 2.0GHz to 3.5GHz, while the power consumption of canneal and radix
increases by only 0.9W. The sensitivity of the power consumption follows different trends
then the sensitivity of the performance. Canneal and radix have very different sensitivities
of the performance, but almost indistinguishable power. While the V/f sensitivity of
the performance has been adopted in some of the state-of-the-art boosting techniques,
e.g., [72], none of them includes also the V/f sensitivity of the power into the boosting
optimization.

In addition to the performance and power, temperature also needs to be included into
the boosting optimization. The reason is that also temperature and power are not inter-
changeable. The same power consumption on different cores can result in very different

79

6 Smart Boosting by Estimating Hidden Application Properties

temperatures, e.g., because of the location of the cores on the chip, or because of the power
consumption of other cores. Therefore, the cores on the chip have different sensitivity
of the temperature. In summary, three metrics need to be included into the boosting opti-
mization: the application-dependent V/f sensitivities of the performance and power, and the
core-dependent sensitivity of the temperature.

6.2 Challenges and Novel Contributions

Developing a boosting technique that involves all the aforementioned three metrics
requires tackling the following key challenges:

1. V/f sensitivities of performance and power depend on the vary between applications
but cannot be directly measured. Hence, they need to be estimated at run time.
The estimation method needs to work for unknown applications that arrive on an
open system and with the consideration of their varying and diverse characteristics
(memory accesses, data dependencies, etc.).

2. All three metrics need to be integrated within a comprehensive boosting optimiza-
tion. However, these metrics may be contradicting. For instance, one application
may have a higher sensitivity of the performance, but also a higher sensitivity of
the power compared to another application.

The first challenge is tackled by employing an NN model, which is capable of learning
complex problems and—if designed and trained well—generalize to unknown applications,
as discussed in Section 1.3. The second challenge could be addressed by considering all
three metrics consecutively, i.e., first consider one metric, then another, to finally reach
a boosting decision. However, such an approach would lead to suboptimal decisions.
Instead, we jointly involve all three metrics within the optimization, by deriving one
boosting metric that integrates them all.

Therefore, this chapter introduces a smart, yet lightweight, boosting technique that, for
the first time, jointly involves the V/f sensitivities of performance, power, and temperature
within the optimization. This technique not only throttles applications when required
to prevent thermal violations but also throttles applications to enable boosting another
application if this increases the overall performance. This smart boosting is enabled by
the following novel contributions:

• We derive a novel boosting metric that integrates the application-dependent V/f
sensitivities of performance and power, and the core-dependent sensitivity of the
temperature. It indicates the efficacy to boost an application.

• For that, a single multi-task NN model is designed and employed to predict the
varying V/f sensitivities of performance and power of unknown applications.

• Based on the new boosting metric and the developed NN model, we build a smart,
yet lightweight, run-time boosting technique for multi-threaded applications.

80

6.3 Problem Definition

6.3 Problem Definition

The technique developed in this chapter targets a homogeneous (bus-based) many-core
processor with n cores. It targets an open system, where unknown multi-threaded appli-
cations arrive at a priori unknown times, and the one-thread-per-core model common
in many-core processors [40]. The many-core processor supports per-core DVFS. The
objective is to maximize the system performance under a thermal constraint Tcrit . The
overall system performance is measured by the average response times of the applications,
which captures their end-to-end performance. This goal is tackled using DVFS-based
boosting because it is an always-available low-overhead means with a large impact on
performance, power and temperature [137].

We divide the problem in two parts. First, jointly considering power, performance, and
temperature within the boosting optimization is achieved by introducing a novel boostabil-
ity metric. Second, the required inputs for this metric, i.e., sensitivities of performance and
power of applications, are estimated with an ML model because they cannot be measured
at run time.

6.4 Boosting Metric: Boostability

As argued earlier, three parameters need to be integrated in the boosting optimization:
the V/f sensitivities of performance, power, and temperature. The sensitivities of per-
formance and power depend on the application characteristics. Applications comprise
several threads with potentially different characteristics. In the following, we first model
the sensitivities at the granularity of threads and then extend it to multi-threaded applica-
tions.

6.4.1 Boostability of Single Threads

Because our performance metric is the applications response time, the sensitivity of the
performance is not related to the absolute IPS change upon a V/f change, but to the relative
change w.r.t. the current IPS of the thread:

sperf =
mIPS
mf
· 1
IPSc

, unit: %/GHz. (6.1)

IPSc is the thread’s IPS in its current execution phase and V/f level. Its unit is %/GHz,
indicating by how much the performance changes per frequency change.

We consider an absolute temperature limit. Temperature is affected by absolute power
values, so we need to consider the absolute power changes in the V/f sensitivity of a
thread’s power consumption P :

spw =
mP
mf

, unit: W/GHz. (6.2)

81

6 Smart Boosting by Estimating Hidden Application Properties

Its unit is W/GHz, indicating by how much the power of this thread changes per frequency
change.

The sensitivities of performance and power depend on the V/f level but also on the
thread characteristics that vary between threads and over time with the execution phases.
These sensitivities cannot be measured directly at run time via the available performance
counters, and, therefore, an ML model is employed to predict them as will be elaborated
in Section 6.6.

Finally, the sensitivity of the temperature needs to be considered. We employ the well-
established RC-thermal model [44] that has been introduced in Section 3.1. Changing the
V/f level fi of a single thread running on core i changes the power consumption according
to its current sensitivity of the power spwi , which changes one element Pi of the power
vector P , and, therefore, changes every steady-state temperature Tsteady,j , as defined in
Eq. (3.2), of every thermal node j:

mTj
mfi

=
m

(∑N
k=1 B

–1
jk · Pk + Tamb

)
mfi

= B–1
ij · s

pw
i (6.3)

Considering the steady-state temperature allows to reduce the complexity of the optimiza-
tion. We demonstrate in the evaluation in Section 6.7.1 that our technique is also effective
in preventing thermal violations in the transient temperatures.

To maximize the system performance under a thermal constraint, the thread whose
performance increases the most for the available thermal margin should be boosted.
Therefore, we build a single metric that we simply call boostability b. It integrates the
sensitivities of performance, power, and temperature into a single metric to indicate
the change in the performance per peak temperature change. The peak temperature is
determined by the core with the highest temperature, which forms the thermal hotspot.
We denote its index h = argmaxj Tj . The boostability b of a thread running on core i is
described by:

b =
sperf

B–1
ih · s

pw , unit: %/◦C. (6.4)

The best boosting benefit is obtained by boosting the thread with the highest value of the
boostability. When throttling is required to avoid potential thermal violations, the thread
with the lowest boostability value should be throttled first because that will minimize
the performance penalty to restore thermal safety. Note that the boostability needs to be
recomputed at every iteration of the boosting algorithm, because the thermal hotspot or
the application characteristics might change.

6.4.2 Boostability of Multi-Threaded Applications

Optimizing the performance of individual threads may not increase the application per-
formance because that might lead to running the individual threads of an application at
different V/f levels, potentially leading to synchronization stalls between the threads [131].

82

6.5 Neural Network Model for Sensitivity Prediction

Therefore, boosting should be performed at the level of applications. The sensitivities of
power, performance, and temperature are properties of the threads and the cores they are
running on. We need to combine them into a single metric per each application.

The combined sensitivities of power and temperature simply need to be added because the
individual impacts of the threads accumulate on the thermal hotspot. For the sensitivity
of the performance, it matters whether the application should be boosted or throttled. The
thread with the smallest sensitivity of the performance is affected the least by boosting and
determines the application’s overall sensitivity of the performance. In contrast, the thread
with the highest sensitivity of the performance is affected the most by throttling, and,
hence, needs to be considered for throttling. In summary, Eq. (6.4) needs to be extended
to define the boostability of an application for boosting (b↑) and throttling (b↓) based on
the sensitivities of all its threads A:

b↑ =
mini∈A sperfi∑
i∈A(s

pw
i · B

–1
ih)

, b↓ =
maxi∈A sperfi∑
i∈A(s

pw
i · B

–1
ih)

(6.5)

6.5 Neural Network Model for Sensitivity Prediction

Our algorithm SmartBoost is based on the boostability metric derived in the previous
section. Calculating the boostability per application requires knowledge about their V/f
sensitivities of performance and power of each of their threads. However, these metrics
cannot be measured directly at run time. Measuring the V/f sensitivities at run time
would require changing the V/f level during operation of the thread and observing how
its power and performance change. This would need to be done for all threads because
different threads have different characteristics. Additionally, this would need to be done
periodically because thread characteristics may change over time with the application’s
execution phases. Overall, the induced overhead would be unaffordable. Since we target
an open system executing unknown applications, design-time profiling information is also
not available. The only metrics observable at run time are hardware performance counters,
which provide information about the thread characteristics but require interpretation.
Therefore, we develop an NN-based model to estimate the sensitivities of performance
and power from the performance counters. This model generalizes to unseen applications
because it is lightweight, i.e., low number of parameters, which prevents overfitting. A
simpler model could be employed for the prediction, but with a lower accuracy, as will be
shown in Section 6.7.3.

6.5.1 Feature Selection

Many potential features are available per thread: the current V/f level and the performance
counters. The performance counters are represented as CPI stacks that map the cycles
to execute a certain set of instructions to the microarchitectural components (caches,
DRAM, branch predictor, etc.) that cause them, as explained in more details in Section 3.1.
They form a very concise representation of the application characteristics. We select the

83

6 Smart Boosting by Estimating Hidden Application Properties

Simulation with
HotSniper [113] Benchmarks [47, 49] ParallelismV/f Level

Execution Traces
(IPS, Power, Performance Counters)

For all Benchmarks,
Parallelism Settings,
and V/f levels

Trace at frequency f1 Trace at frequency f2

Training / Test
Data

Training

Sensitivity Model

Figure 6.3: Training the NN model for SmartBoost at design time comprises profiling benchmarks, dividing
traces into slices, creating training data, and performing the actual training.

current V/f level as the first feature because it has the highest impact on the sensitivities of
performance and power. For instance, a small V/f level increase has a higher impact on the
performance if the application is operated at a low V/f level, and a higher impact on the
power if the application is already operated at a high V/f level. A crucial characteristic of
a thread is its memory-intensiveness. The more memory-intensive a thread is, the lower
are its sensitivities of performance and power. We select the ratio of all memory-related
CPI stack parts over the total CPI as a second feature. This feature describes the fraction
of cycles spent waiting on memory.

6.5.2 Training Data Generation

Fig. 6.3 shows the flow to create training and test data for the NN model. We first record
execution traces, which comprise IPS, power, and performance counters, of benchmark
applications from the PARSEC and SPLASH-2 benchmark suites at different V/f levels.
Each application is executed at different levels of parallelism to increase the diversity of
application characteristics. To capture execution phases, we follow a similar approach as
in Section 5.4.2 and divide the traces of every thread of every application into 20 slices
with the same number of executed instructions. We generate training/test examples by
comparing slices that only differ in the V/f level but execute the same application, same
parallelism, and same instructions. We restrict these comparisons to pairs where the
difference in the V/f levels is small, i.e., ≤ 500MHz. Every pair contains information about

84

6.6 Smart Boosting Algorithm

Sensitivity
Model

Per Thread:
V/f level,

Performance Counters
Boost to Exploit Thermal Margin (Algorithm 6.3)

Throttle to Avoid Thermal Violations (Algorithm 6.2)

Throttle One Application to Boost Another (Algorithm 6.4) Pe
rio

di
c
Lo

op

Figure 6.4:Overview of SmartBoost management at run time.

a potential V/f change that is used to calculate the sensitivities of performance and power
to use as labels in the training data.

sperf =
IPS(f2) – IPS(f1)
(f2 – f1) · IPS(f1)

, spw =
P (f2) – P (f1)

f2 – f1
(6.6)

The features for each training/test example are taken from the first trace at f1.

6.5.3 Neural Network Topology

An intuitive approach to predict the V/f sensitivities of performance and power would
be to employ two separate models. However, despite being not interchangeable, these
two metrics are still to some degree related. For instance, a thread with a low sensitivity
of the performance is more likely to also have a lower sensitivity of the power. Building
two separate models for the two metrics would result in similar internal features being
learned by the models. Therefore, to reduce the inherent replication and decrease the
run-time overhead, we build a single model with two outputs to predict both metrics
simultaneously. Such an approach is known as multi-task learning [138]. A small fully-
connected feedforward NN with two hidden layers of 16 and 8 neurons, respectively,
achieves a high accuracy, while keeping a low overhead. The NN is trained once at design
time and used only for inference at run time.

6.6 Smart Boosting Algorithm

Our SmartBoost algorithm (Fig. 6.4) integrates the NN sensitivity model and the boostability
metric to perform boosting optimization. Its inputs are 1) the current power consumption
per core, 2) the current per-core V/f levels, and 3) the performance counter measurements
per thread required for the sensitivity model. Its outputs are the per-application V/f levels
for the next epoch.

Algorithm 6.1 shows the overall algorithm. It first estimates the performance and power
sensitivities of each thread i based on its V/f level fi and performance counter measure-
ments Ci using the NN sensitivity model M . In the next step, it sets the V/f level bounds
for each application j for the optimization in the current epoch. We only allow for a
change of up to k V/f levels in each epoch because the sensitivities of performance and

85

6 Smart Boosting by Estimating Hidden Application Properties

Algorithm 6.1 SmartBoost

for each thread i do
(sperfi , spwi)← M (Ci , fi) ⊲ sensitivity predictions of threads

for each application j do
(f min
j , f max

j)← (clip(fj – k · Δf), clip(fj + k · Δf))
T ← Tamb + B–1P ⊲ initialize steady-state temperature
ThrottleToAvoidThermalViolations() ⊲ Algorithm 6.2
BoostToExploitThermalMargin() ⊲ Algorithm 6.3
ThrottleAppToBoostAnother() ⊲ Algorithm 6.4

Algorithm 6.2 Throttle to Avoid Thermal Violations
while max T > Tcrit do

h← argmaxi Ti ⊲ position of the hotspot
for each application j do

cj ← Δf ·∑i∈Aj

(
spwi · B

–1
ih

)
⊲ reduction of Th per V/f level

b↓j ←
maxi∈Aj s

perf
i

cj ⊲ boostability of application j

t ← argminj:fj>f min
j

b↓j ⊲ application to throttle

X ← min
(
ft – f min

t ,Δf ·
⌈
max T–Tcrit

ct

⌉)
⊲ V/f level change

ft ← ft – X ⊲ set new V/f level
T ← T – X ·∑i∈At

(
B–1
i · s

pw
i

)
⊲ update steady-state temperature

power depend on the V/f level. Therefore, the estimations which are obtained at the
current V/f level, are only valid for small V/f changes. The estimate of the steady-state
temperature is initialized based on the current power consumption. Three cases may
occur at run time that require action: 1) a thermal violation is about to happen, or 2) there
is a thermal margin that can be exploited, or 3) V/f levels are suboptimal, where throttling
an application to boost another increases the system performance. Each of these phases
is implemented in a separate algorithm. The following three sections describe each of
them.

Throttle ToAvoidThermal Violations Algorithm 6.2 throttles applications until the steady-
state temperatures of all cores are safe, i.e., below Tcrit . As explained in Section 6.4, the
boostability depends on the hotspot location. Therefore, we calculate the boostability
of each application given the current hotspot location. We throttle the application with
the lowest boostability b↓ that is not already at its minimum V/f level, which could
either be overall minimum V/f level or the lower V/f level bound determined for the
current epoch. The V/f level is reduced such that the thermal violation is resolved, or the
minimum V/f level is reached. Then, the steady-state temperatures are updated based

86

6.6 Smart Boosting Algorithm

Algorithm 6.3 Boost to Exploit Thermal Margin
while True do

h← argmaxi Ti ⊲ position of the hotspot
for each application j do

cj ← Δf ·∑i∈Aj

(
spwi · B

–1
ih

)
⊲ reduction of Th per V/f level

b↑j ←
maxi∈Aj s

perf
i

cj ⊲ boostability of application j

t ← argmaxj:fj<f max
j

b↑j ⊲ application to boost
if no target application t found then

return
ft ← max

{
f ≤f max

t : Tcrit>T+ (f –ft) ·
∑

i∈At

(
B–1
i · s

pw
i

)}
if ft not changed then

return
T ← T + X ·∑i∈At

(
B–1
i · s

pw
i

)
⊲ update steady-state temperature

on the predicted power changes using the sensitivities of the power of all threads of the
application. The loop iterates until the thermal violation in the steady-state temperature is
resolved. Since the hotspot position may change, the boostability needs to be re-calculated
in each iteration.

Boost to Exploit Thermal Margin Algorithm 6.3 exploits potential thermal margin. It
selects the application with the highest boostability b↑ and then determines its maximum
V/f level that does not result in a thermal violation on any core. It updates the steady-state
temperatures according to the predicted power change from the sensitivity of the power.
The loop terminates when the application with the highest boostability cannot be boosted
further without violating the thermal constraint.

Throttle one Application to Boost Another Algorithm 6.4 addresses the case when there is
no thermal margin but V/f levels are selected in a suboptimal way. In such a case, throttling
an application with a low boostability b↓ may allow to boost another application with a
high boostability b↑. If the differences between the applications are large, this potentially
improves the overall system performance. The algorithm first selects the two applications
with minimum and maximum boostability. Then, it iteratively searches for the highest
V/f level for the boosted application that can be made thermally safe by throttling the
other application and results in an improvement of the overall performance. Since this is
the last step of the boosting optimization, the estimates of the steady-state temperatures
do not need to be updated.

Computational Complexity The computational complexity of the initialization in Algo-
rithm 6.1 is O(n), where n is the number of cores, because at most n threads are executed
on the system. The loop in Algorithm 6.2 can be executed at most once per application,

87

6 Smart Boosting by Estimating Hidden Application Properties

Algorithm 6.4 Throttle an Application to Boost Another Application
h← argmaxi Ti ⊲ position of the hotspot
for each application j do

cj ← Δf ·∑i∈Aj

(
spwi · B

–1
ih

)
⊲ reduction of Th per V/f level

b↑j ←
mini∈Aj s

perf
i

cj ⊲ boostability (up) of application j

b↓j ←
maxi∈Aj s

perf
i

cj ⊲ boostability (down) of application j

t ← argmaxj:fj<f max
j

b↑j ⊲ application to boost (target)

v ← argminj:fj>f min
j

b↓j ⊲ application to throttle (victim)
if no v found or no t found or v = t then

return ⊲ no transfer possible
for f ′t ∈ {f max

t , f max
t – Δf , . . . , ft + Δf } do ⊲ try maximizing ft

ΔTt ← (f ′t – ft)
∑

i∈At

(
B–1
i · s

pw
i

)
⊲ T change if boosting to f ′t

⊲ throttle victim to compensate target boosting (avoid thermal violation)

f ′v←max
{
f : max

(
T + ΔTt – (fv – f) ·∑i∈Av

(
B–1
i · s

pw
i

))
≤ Tcrit

}
⊲ check whether throttling to restore thermal safety is feasible

if f ′v exists and f ′v ≥ f min
v then

ΔPerf←
(
mini∈At s

perf
i

)
· (f ′t – ft) +

(
maxi∈Av s

perf
i

)
· (f ′v – fv)

if ΔPerf > 0 then
(ft , fv)← (f ′t , f

′
v) ⊲ found good boosting solution, apply it

return ⊲ stop search

and each iteration needs to update all elements of the steady-state temperature, which is
each in O(n), resulting in a complexity of O(n2) for Algorithm 6.2. Similarly, since the
application to boost changes in every iteration, the loop in Algorithm 6.3 is also traversed
at most once per application. Every iteration needs to calculate a steady-state for up to k
V/f levels. In total, the complexity of Algorithm 6.3 is O(kn2). Finally, the complexity of
the search in Algorithm 6.4 is O(k2 · n2) because the outer loop is executed O(k) times and
finding a single f ′v is in O(k · n2). The number of V/f levels per epoch k is constant and
does not depend on the number of cores. The overall complexity of SmartBoost is O(n2).

6.7 Experimental Evaluation

This section evaluates the accuracy of the sensitivity model, the overall performance
gains with SmartBoost and its run-time overhead, and provides a comparison to the
state-of-the-practice and state-of-the-art boosting techniques. We use the setup described
in Section 3.1.1 for the experimental evaluation. It simulates a 64-core homogeneous
many-core processor. The ambient and maximum temperature are set at 45 ◦C and 80 ◦C,

88

6.7 Experimental Evaluation

Boost:
Select Application

Select V/f Level

Throttle:
Select Application

Select V/f Level

Sensitivity of:
Performance

Power

Temperature

Sensitivity of:
Performance

Power

Temperature

Boostability

DTPM [72] SmartBoost

Figure 6.5: SmartBoost (right) comprehensively considers all the sensitivities, while the state of the art, DTPM [72],
considers them only partially.

respectively. TDP is set at 100W. Boosting is invoked every 1ms [56]. We set themaximum
V/f change per epoch at k = 5 levels, i.e., 500MHz, to maintain a low prediction error.
This value has been inferred from the model evaluation.

We execute the following applications from the PARSEC benchmark suite with simmedium
input sizes, each at different levels of parallelism: blackscholes, bodytrack, canneal, dedup,
fluidanimate, streamcluster, swaptions and x264. We also execute the following applica-
tions from the SPLASH-2 suite with large inputs at different levels of parallelism: barnes,
cholesky, fft, fmm, lu.cont, lu.ncont, ocean.cont, ocean.ncont, radiosity, radix, raytrace,
volrend, water.nsq, and water.sp. These benchmark suites have realistic multi-threaded
applications, designed to be representative by covering different domains such as computer
vision, video encoding, or financial analyses.

SmartBoost is compared to two boosting techniques. The first technique is based on the
state-of-the-practice Intel TurboBoost [56]. TurboBoost uses a simple heuristic that does
not consider any application characteristics and boosts/throttles all applications at the
same time based on whether there is a thermal violation in the transient temperatures on
any core. The second technique is DTPM [72], which is the state-of-the-art performance-,
thermal-, and power-aware boosting technique. It considers performance, power, and
temperature by using analytical models of performance and power. However, the difference
to our work is how these parameters are involved in the optimization, as shown in Fig. 6.5.
When there is a thermal margin that allows boosting, DTPM does not consider any
application characteristics and increases the V/f levels of all applications step by step until
the peak V/f levels are reached or a thermal violation occurs. When throttling is required
to mitigate a thermal violation, DTPM selects the application to throttle only based on
the sensitivities of the performance. In contrast, SmartBoost uses our boostability metric,
which integrates the sensitivities of performance, power, and temperature, for selecting
the application in both boosting and throttling.

6.7.1 Comparison to the State of the Art

This section evaluates the overall performance gains with SmartBoost. This is the main
experiment in this chapter. We evaluate all techniques on an open system with a random
workload of 20 applications that are randomly selected from PARSEC and SPLASH-2 with

89

6 Smart Boosting by Estimating Hidden Application Properties

4 8 12 16 20 avg

1

1.1

1.2

1.3

Average Application Arrival Rate (per Second)

N
or

m
.A

vg
.R

es
po

ns
e
Ti
m
e

SmartBoost (our) DTPM [72] TurboBoost [56]

our [72] [56]

50

60

70

80

90

Te
m
pe

ra
tu
re

[◦
C]

Outliers
99%-Quant.
75%-Quant.
Median
25%-Quant.
1%-Quant.
Outliers

(a) Performance (b) Temperature

Figure 6.6:Comparing the overall system performance/temperature for a random workload of 20 applications at
various arrival rates (thereby varying system utilization). SmartBoost ’s average performance gains are 21 % and
25% over the state-of-the-art DTPM [72] and the state-of-the-practice TurboBoost [56]. SmartBoost and DTPM
only have <0.2 % thermal violations, while TurboBoost violates the temperature during 10 % of the execution.

random levels of parallelism. The arrival times of the applications are sampled from a
Poisson distribution with varying arrival rate to reach different system utilization values.
Thereby, the average system utilization throughout the execution time varies between
16% and 44%, while the resulting peak system utilization varies between 78% and 100%.
The higher the utilization, the harder it gets for boosting techniques to improve the
performance, as the thermal margin decreases. To enable a fair comparison and to be
independent of a specific mapping technique, we employ the same random mapping for
all techniques.

Fig. 6.6a and Fig. 6.6b show the average response time and hotspot temperature distribution
with the three techniques, respectively. We calculate the geometric mean of response
times to give the same weight to each application despite their widely-varying individual
response times, which range from 56ms to 1.6 s. SmartBoost outperforms the state-of-
the-art DTPM and the state-of-the-practice TurboBoost by 21% and 25%, on average.
TurboBoost has the lowest performance because it employs a simple heuristics that ignores
the application characteristics. It additionally violates the temperature constraint during
10% of the execution because it reacts on the transient temperature, which may be too
slow to prevent thermal violations. SmartBoost and DTPM both make decisions based on
the steady-state temperature. SmartBoost additionally proactively determines the thermal
impact of a V/f change before executing it. Consequently, it violates the temperature
during less than 0.2% of the execution. SmartBoost achieves the highest performance by
considering all relevant parameters in all phases of the boosting optimization. In addition,
SmartBoost throttles applications to boost another if it increases the overall performance.
These smart decisions let SmartBoost outperform the state of the art.

90

6.7 Experimental Evaluation

0.00 0.05 0.10 0.15 0.20 0.25
1

2

3

4

5

III

IV

Time [s]

Fr
eq

ue
nc

y
[G

H
z]

(b) DTPM [72]

40

50

60

70

80

Te
m
pe

ra
tu
re

[◦
C]

0.00 0.05 0.10 0.15 0.20 0.25
1

2

3

4

5

I

II

Time [s]

Fr
eq

ue
nc

y
[G

H
z]

Temperature Constraint Tcrit Hotspot Temperature
Frequency lu-cont Frequency radix

(a) SmartBoost

40

50

60

70

80

Te
m
pe

ra
tu
re

[◦
C]

lu-cont (288ms)
radix (114ms)

lu-cont (281ms)
radix (157ms)

Figure 6.7:An illustrative example showing the benefits of SmartBoost. It selects better V/f levels (Windows I
and III), and enables faster increase of the V/f levels (Windows II and IV) than the state-of-the-art DTPM [72].

6.7.2 Illustrative Example

To provide deeper insights into the reasons for the benefits of SmartBoost compared
to the state-of-the-art DTPM, Fig. 6.7 visualizes the impact of their decisions on both
performance and temperature based on an illustrative example, in which two applications
with different characteristics run in parallel. The two applications are lu.cont and radix,
as in the motivational example in Section 6.1. Both applications have a high sensitivity
of the performance but lu.cont has much higher absolute power and sensitivity of the
power than radix. Therefore, its core forms the thermal hotspot, which also leads to a
higher sensitivity of the temperature. Before radix arrives at the system, both techniques
employ similar V/f levels. Two main differences can be observed during the execution of
radix, which arrives after 100ms. Firstly, DTPM, which only considers the sensitivity of
the performance to select applications, employs a similar V/f level for both applications

91

6 Smart Boosting by Estimating Hidden Application Properties

canneal x264 barnes fft average
0

1

2

3

4

RM
SE

in
Se

ns
iti
vi
ty

of
Pe

rf
or

m
an

ce
[%

pe
rV

/f
le
ve

l] Performance (our NN) Performance (DTPM) Power (our NN) Power (DTPM)

0

20

40

60

80

RM
SE

in
Se

ns
iti
vi
ty

of
Po

w
er

[m
W

pe
rV

/f
le
ve

l]

Figure 6.8: Prediction RMSE in the sensitivity of performance and power for both our NN model and for the
models of DTPM [72].

(Window III). In contrast, SmartBoost exploits that radix has lower sensitivities of both
power and temperature, and slightly throttles lu.cont to be able to boost radix to the
maximum V/f level (Window I). Secondly, DTPM does not use information about the
power during boosting and increases the V/f level step by step, which is slow (Window VI).
SmartBoost can increase the V/f level much faster (Window II) because it employs the
sensitivity of power and temperature to proactively determine the thermal safety of a V/f
level increase. These differences result in a significantly higher overall performance. Radix
executes 38% faster, while lu.cont experiences only a 2% slower execution.

6.7.3 Prediction Accuracy of our Sensitivity Model

We evaluate the accuracy of our sensitivity model only for the unseen applications,
i.e., applications that are not used in the training phase. These are x264 and canneal
from PARSEC , and barnes and fft from SPLASH-2 . These applications have been selected
as they are representative for various characteristics. They comprise applications that
are memory-intensive (e.g., canneal) or compute-intensive (e.g., barnes), have high IPS
(e.g., fft) or low IPS (e.g., barnes), have few long-running phases (e.g., canneal) or fast-
changing phases (e.g., x264). We compare our model to the analytical performance and
power models used in DTPM. DTPM employs a linear performance model that divides
the execution of a workload into a V/f level-dependent and a V/f level-independent part.
The CPU utilization determines the V/f level-dependent part. The power model of DTPM
independently models voltage-dependent leakage power and V/f-dependent dynamic
power. While leakage power is modeled in detail, it uses V 2f scaling of the dynamic
power assuming that the switching activity does not change with the V/f level.

The comparison of the model errors is shown in Fig. 6.8, in terms of % per V/f level and mW
per V/f level for predictions of the V/f sensitivities of performance and power, respectively.
For the sensitivity of performance, the RMSE of our NN ranges from 0.57%/level to
1.06%/level. The average is 0.80%/level. In comparison, the average RMSE of the model
of DTPM is 2.15%/level. Similar improvements can be observed for the power, where the

92

6.8 Summary

NN model of SmartBoost achieves an average error of 13mW/level, while the average
error of the model of DTPM is 56mW/level. These experiments demonstrate the benefits
of a more powerful NN-based model over simpler analytical models. At the maximum V/f
change of k = 5 levels, the prediction error of our NN is 4.0% and 66mW for performance
and power, respectively. Such low errors allow SmartBoost to make boosting decisions
that maximize the performance while achieving thermal safety.

6.7.4 Run-time Overhead

Finally, we evaluate the run-time overhead of SmartBoost. Since the run-time overhead de-
pends on the number of active applications and cores, we consider the highest application
arrival rate of 20 applications/s, which represents the hardest case, i.e., the overhead would
be lower in an average scenario. The average run-time overhead is 8.1 μs if SmartBoost
is only executed on a single core. More than half of the overhead (4.6 μs) originates in
the inference of the sensitivity model. The remainder is required for the three boosting
phases shown in Algorithms 6.2 to 6.4. Since boosting is invoked every 1ms, the resulting
total overhead is 0.81%. Note that the policy is using only one core out of 64. The over-
head within the overall system is, therefore, negligible. As discussed in Section 6.6, the
complexity of SmartBoost is O(n2), i.e., the overhead grows slowly with a larger number
of cores than the studied 8×8 cores.

6.8 Summary
This chapter presented SmartBoost, which is a boosting technique that optimizes the per-
formance of thermally-constrained many-core processors using DVFS. This is a complex
problem that requires to jointly consider the sensitivities of performance, power, and
temperature within the boosting optimization. Moreover, the sensitivities of performance
and power depend on the compute-intensiveness and instruction mix of applications, and
can not be directly measured at run time. We tackle the first challenge algorithmically
with a novel boostability metric that integrates all three sensitivity values into a single
metric that can be used for the optimization. The second challenge is tackled with ML
by training an NN model that estimates the application-dependent sensitivities of perfor-
mance and power at run time based on performance counter readings. The estimations
of the sensitivity of the power and temperature also enable proactive management, in
which the impact of a V/f change on the temperature is estimated before executing the
change. SmartBoost significantly increases the performance of mixed workloads with
unseen applications compared to both simple heuristic management and state-of-the-art
analytical management.

93

7 Learning Optimal Management
with Imitation Learning

Elevated on-chip temperature accelerates aging mechanisms in processors, and thereby
degrades the system reliability. This has been tackled in the previous sections by enforcing
a thermal constraint. However, in mobile devices, elevated on-chip temperature also may
adversely affect the user experience by increasing the device’s skin temperature [139].
This makes temperature minimization of paramount importance. The two main means to
manage the temperature are application migration, to dynamically change the mapping
of applications to cores, and DVFS. However, using these means without considering
the QoS targets, i.e., their required performance, of applications also degrades the user
experience [140].

This section develops a lightweight run-time application migration and DVFS technique
TOP-IL to minimize the temperature under QoS targets. This technique employs the
pattern to directly learn resource management decisions, as introduced in Section 1.4.3,
because this allows to tackle the involved challenges, as will be discussed in Section 7.2.
We target heterogeneous multi-core processors, which are commonly employed in mobile
devices. To this end, we use the evaluation platform described in Section 3.2, which
features a smartphone SoC with an Arm big.LITTLE CPU. We compare TOP-IL to both
simple heuristic management and RL-based management.

Thermal optimization without considering the application characteristics of all running
applications misses significant optimization opportunities. The reason is that the impact
on performance and power when migrating an application between clusters differs from
one application to another, as illustrated in Fig. 1.1 for the performance. Similarly, the
sensitivities of performance and power to DVFS also vary between applications, which has
been exploited already in Chapter 6. The following motivational example demonstrates
the role of application characteristics for thermal optimization.

7.1 Motivational Examples
In Scenario 1 in Fig. 7.1, one application, either adi or seidel-2d from the Polybench [141]
suite, is executed on an Arm big.LITTLE CPU. Their QoS target is selected as 30% of the

This chapter is mainly based on [1, 2].

95

7 Learning Optimal Management with Imitation Learning

Scenario 1: single application

LITTLE big

Application

Application LITTLE big

Scenario 2: parallel applications

BG BG

LITTLE big

Application

Application LITTLE big

adi 48.1 ◦C 45.7 ◦C
seidel-2d 45.1 ◦C 46.8 ◦C

adi 58.9 ◦C 59.6 ◦C

Figure 7.1:OnArm big.LITTLE, the optimal mapping of applications with QoS targets varies between applications,
and with other parallel applications (BG). The clusters are operated at the lowest V/f levels that still satisfy all
QoS targets.

performance, measured in IPS, that is reached at the highest V/f level on the big cluster.
The clusters are operated at the lowest V/f levels that satisfy the QoS target. Intuitively,
executing the applications on the LITTLE cluster should minimize the temperature, as
the in-order CPUs on the LITTLE cluster are optimized for energy efficiency. However,
this is not always the case. For adi, executing it on the big cluster instead minimizes
the temperature. The reason is that adi requires 1.8GHz when mapped to the LITTLE
cluster to reach its QoS target, but only 0.7GHz on the big cluster. In contrast, seidel-2d
reaches its QoS target already at 1.2GHz on the LITTLE cluster, and requires 1.0GHz
on the big cluster. This results in a similar temperature on both clusters, with a small
advantage of the LITTLE cluster. The reason for the different V/f level requirements
of the two applications at different clusters is that the applications benefit differently
from the out-of-order execution and larger caches on the big cluster. Consequently, the
different application characteristics render different mappings optimal. Optimal thermal
management needs to consider the characteristics of the running applications and their QoS
targets.

Scenario 2 studies adi with the same QoS target as in Scenario 1 but now, additional
background applications with high QoS targets are running on both clusters. Intuitively,
mapping adi to the big cluster should still minimize the temperature, as in Scenario 1.
However, both clusters need to be operated at the peak V/f levels to satisfy the QoS targets
of the background applications. Since this platform has per-cluster DVFS, adi is also
executed at the peak V/f level. In this case, mapping adi to the LITTLE or big cluster results
in almost the same temperature, unlike what has been observed in Scenario 1. Hence, per-
cluster DVFS affects the optimal mapping w.r.t. temperature when several applications run
in parallel. Optimal thermal management needs to perform global optimization considering
the characteristics and QoS targets of all running applications.

96

7.2 Challenges and Novel Contributions

7.2 Challenges and Novel Contributions

There are several challenges in temperature optimization on heterogeneous multi-core
processors under QoS targets. Firstly, as has been discussed in Section 1.2, there is
high complexity in all involved aspects of the platform and applications. As shown in
Fig. 1.1, the performance of applications depends on their instruction sequence, the CPU
microarchitecture and the memory architecture. In addition, it is greatly affected by the
V/f levels. The power consumption of applications also depends on all these factors. The
temperature depends on the power density, floorplan, and cooling. Secondly, as has also
been discussed in Section 1.2, the workload, i.e., the executed applications and their arrival
times, is commonly not known at design time. Therefore, the management policy must
not be specific to selected applications but achieve good management for any unseen
workload. Thirdly, per-cluster DVFS runs all applications on the same cluster at the
same V/f level, requiring global optimization. Finally, there is limited access to physical
measurements of the platform. For instance, most platforms, such as the one studied in
this chapter, feature no power sensors and only few temperature sensors.

Some of these challenges can be solved with models for individual aspects such as power,
performance, or temperature. For instance, the techniques presented in Chapters 5 and 6
employed ML models for performance and power. Other techniques based on analytical
and ML models are discussed in Sections 2.1.3 and 2.2.3, respectively. However, building
such models requires access to measurements of processor-internal properties like power,
which may not be available on any platform. This can be solved by performing end-to-end
learning of resource management decisions based on the available measurements, as has
been introduced in Section 1.4.3. The two main methods to achieve this are RL and IL. In
both methods, NN learning can be used to cope with the high platform and application
complexity.

As discussed in Section 2.2.1, RL suffers from several problems. Instability in the learning
may lead to suboptimal management and online learning may lead to a high run-time over-
head. However, run-time thermal minimization under QoS targets requires a lightweight,
yet near-optimal optimization to effectively minimize the temperature, and a stable policy
to avoid abrupt QoS violations and jumps in the temperature. IL is the only method that
provides these capabilities. In particular, it enables using the optimality of an oracle policy,
yet at low run-time overhead, by design-time training of an NN model from oracle demon-
strations. Training at design time until convergence also provides stability. However,
since IL does not perform run-time retraining, the model must be trained such that it is
capable to cope with the different unseen scenarios that may happen at run time. This
includes most notably different workloads, but also different cooling settings.

Motivated by the advantages of IL, researchers have started to apply IL in resource
management, as discussed in Section 2.2.2, but they all target power or energy optimization.
This significantly differs from temperature optimization, which is subject to spatial (heat
transfer) and temporal (heat capacity) effects that do not exist in power/energy. The work
presented in this chapter is the first to employ IL for temperature optimization.

97

7 Learning Optimal Management with Imitation Learning

Few works have proposed their own specific ML accelerators [77, 142] to accelerate
ML-based resource management. However, relying on a specific accelerator incurs addi-
tional area overhead to the used platform and limits the applicability of the techniques
to platforms that feature this specific accelerator. Recently, generic NN accelerators,
e.g., NPUs or digital signal processors (DSPs), became common in end devices such as
smartphones [143] to increase the performance and energy-efficiency of user applications
that perform NN inference. Despite their increasing spread and benefits, these existing
accelerators have never been used to speed up NN-based resource management, and the
work presented in this chapter is the first to do that.

This chapter makes the following novel contributions:

• We design, train, and employ NN-based IL for temperature optimization under
QoS targets, as it enables near-optimal decisions at a low run-time overhead. Our
solution, TOP-IL, employs application migration and DVFS on heterogeneous multi-
core processors.

• We accelerate TOP-IL using an existing generic NN accelerator (an NPU) on a real
platform.

• We develop an RL-based thermal optimization technique and show that IL outper-
forms RL in terms of achieving the target objective and run-time stability.

• We demonstrate that the learned policy with IL generalizes to unseen workloads
and different cooling settings than what is used during training.

7.3 Problem Definition

This chapter targets a heterogeneous multi-core processor with per-cluster DVFS, where
Fx is the list of frequencies of cluster x and fx is its current V/f level. The platform
comprises two clusters, LITTLE and big, i.e., x ∈ {l, b}, but our solution is compatible with
any number of clusters. The platform executes parallel applications, each with its own
QoS target Qk and current QoS qk , which are expressed in terms of the IPS. The processor
is employed in an open system, where a priori unknown applications arrive at a priori
unknown times. Our solution does not rely on run-time power measurements, as they are
often not available on real-world platforms [121].

The objective is to minimize the on-chip temperature, while maintaining the QoS of all
running applications. This is achieved by dynamically changing the application-to-core
mapping via application migration, and by per-cluster DVFS.

We split the problem into two parts: 1) dynamic application-to-core mapping (via applica-
tion migration), and 2) per-cluster DVFS. Decisions on application migrations are made
with NN-based IL. DVFS is implemented using a simple control loop. While it would
be intuitive to train a single NN for both application migration and DVFS, performing
only migration with the model reduces the complexity of creating training data, the NN
topology, and the inference overhead. V/f level information is provided as an input for

98

7.4 Imitation Learning-Based Application Migration

Table 7.1: The selected features for IL-based migration cover a) the characteristics of the AoI, b) its QoS target,
and c) information about other applications (background).

Feature Count Feature Count

AoI QoS (a) 1 AoI QoS target (b) 1
AoI L2D accesses (a) 1 f̃x\AoI /fx (c) 2

AoI current mapping (a) 8 Core utililizations (c) 8

migration decisions to still achieve near-optimal decisions. We accelerate the run-time
inference of the NN with an NPU. The design-time training and run-time migration
technique are described in Sections 7.4 and 7.5.1, respectively. Section 7.5.2 describes the
DVFS control loop.

7.4 Imitation Learning-Based Application Migration

Employing IL requires to select features, create oracle demonstrations, and train the NN
model that is used at run time. These steps are described in the following sections.

7.4.1 Feature Selection

The features need to accurately describe the state of the platform and applications to be
able to make near-optimal migration decisions, and need to be observable at run time. As
shown in the motivational example in Fig. 7.1, the optimal mapping of an application of
interest (AoI) depends on a) its characteristics, which affect its power and performance
on the different clusters, b) its QoS target, which determines the suitable clusters and the
required V/f levels, and c) other (background) applications, which determine the available
cores, the required V/f levels per cluster to satisfy the QoS targets of the background
applications, and affect the temperature distribution.

Table 7.1 lists the selected features. They cover all three aspects (a-c) discussed above. The
characteristics of the AoI (a) comprise its current QoS, measured in IPS, and its number of
L2-D cache accesses per second. The cache accesses indicates the memory-intensiveness
of the AoI. We use the Linux perf API to read hardware performance counters for IPS and
L2-D accesses. The current mapping of the AoI provides information about its current
core and cluster, and thereby provides context to the performance counter readings. It is
represented as one-hot encoding of all cores (in our platform: 8 cores). The QoS target (b) is
represented in terms of the required IPS. The background (c) is represented by the current
per-core utilization values, as well as by the estimated per-cluster V/f changes if the AoI
would not be executed. The latter indicate potential temperature reductions on the cluster
if the AoI would be migrated to another cluster. This is calculated by first estimating the
minimum V/f level f̃k,min of each running application k that is required to satisfy its QoS
target Qk . During design-time training data generation, f̃k,min can be determined from
execution traces. At run time, no traces from other V/f levels are available, as we target

99

7 Learning Optimal Management with Imitation Learning

unknown applications. Linear scaling from the current V/f level fx(k) of its cluster x(k) is
performed instead:

f̃k,min = min
{
f ∈ Fx(k) : qk · f /fx(k) ≥ Qk

}
(7.1)

This estimate is calculated based on the current QoS qk in the current execution phase of
application k, i.e., f̃k,min does not need to be known at design time and may change over
time. Finally, the required V/f level without the AoI is determined per cluster x as the
maximum among all other applications running on it:

f̃x\AoI = max
{
f̃k,min : app. k mapped to x ∧ k ≠ AoI

}
(7.2)

All features are normalized to be usable with an NN.

7.4.2 Oracle Demonstrations (Training Data)

The training data need to indicate the optimal migration w.r.t. temperature and QoS for a
variety of scenarios. To this end, we collect measurements of temperature and hardware
performance counters (traces) of benchmark applications in various scenarios and extract
training data from these traces.

Collect Traces The upper part of Fig. 7.2 depicts the process to collect traces. Since this
is the most time-consuming part of training, redundant executions must be avoided. The
straightforward approach to collect traces would be to select a scenario, i.e., a combination
of AoI, its QoS target, and background applications with QoS targets, and execute it
once per mapping of the AoI to each free core, which is not occupied by the background.
However, this results in redundant executions. The reason is that with per-cluster DVFS,
only the application with the highest QoS target, i.e., the highest required V/f level,
determines the V/f level of the cluster. As a result, scenarios that differ only in the QoS,
may result in the same selected V/f levels, and, therefore, the same execution.

We avoid redundancy by first obtaining traces for different combinations of per-cluster
V/f levels and only afterwards select different QoS targets that match the V/f levels to
create training data. This approach requires a constant QoS of the benchmarks that are
used to create the training data, i.e., no execution phases. At run time, TOP-IL supports
also applications with execution phases, and we use such applications in the experimental
evaluation. To further accelerate collecting traces, we stop traces when the AoI has
executed 1010 instructions, which is large enough to observe significant differences in
the temperature between traces but still reduces the time to collect each trace. At run
time, TOP-IL supports applications with any number of executed instructions. Finally,
we obtain traces for a reduced set of V/f levels, but still use all available V/f levels at
run time. We start the background applications 2min before starting the AoI to ensure
a consistent initial temperature. We randomize the order of executions to avoid any
remaining systematic error. We use active cooling with a fan while collecting these traces
because it prevents triggering dynamic thermal management (DTM), which would throttle

100

7.4 Imitation Learning-Based Application Migration

LITTLE big

Free cores F

Select random background applications + mapping: BG Select random AoI

for each free core c ∈ F
for each (fl , fb) ∈ (Fl × Fb)

RunExecution(BG,AoI→ c, fl , fb)

Traces
DB

repeat

for each combination (BG,AoI) ∈ DB

for each (QAoI , f̃l\AoI , f̃b\AoI) ∈ (Qtrain × Fl,train × Fb,train)

Evaluate free cores cj ∈ F

c1 c2 … ckMap AoI→ cj

fl,1, fb,1, PC1 fl,2, fb,2, PC2 fl,k , fb,k , PCkfl,j , fb,j based on Qi : Eq. (7.3)

T1 T2 TkTemperature

l1 l2 lkLabels: Eq. (7.4) (low Tj → high lj)

feat1 feat2 featkCreate features

Features
feat1
…

featk

Labels
[0, l1, l2, 0, l3, 0, 0, l4]

…
[0, l1, l2, 0, l3, 0, 0, l4]

Training data

repeat fil
lw

ith
0
fo
rc
∈
BG

Figure 7.2:Design-time training data generation for IL-based application migration.

the V/f levels unpredictably, polluting the training data. The evaluation shows that the
trained NN can be used for different cooling, i.e., without a fan, without retraining.

Figs. 7.3a and 7.3b present an illustrative excerpt of the collected traces including the AoI
performance and the peak temperature for a single selection of background applications
and AoI (seidel-2d). In this example, only the two cores 3 and 6 are free, while the other
cores are running background applications.

Extract Training Data The lower part of Fig. 7.2 shows the steps to extract training data
from the collected traces. We first select a combination of background and AoI from the
traces. Then, we sweep the values of the QoS targets of AoI and background. The QoS
target QAoI of the AoI is represented explicitly in terms of the IPS, while the QoS targets
of the background is represented by the required V/f levels per cluster f̃l\AoI , f̃b\AoI . Next,

101

7 Learning Optimal Management with Imitation Learning

Performance fb
(MIPS) 0.7GHz 1.2GHz 1.5GHz …

fl
0.5GHz 137 140 139 …
1.4GHz 366 363 373 …
1.8GHz 471 478 479 …

Peak Temp. fb
(◦C) 0.7GHz 1.2GHz 1.5GHz …

fl
0.5GHz 35.8 42.3 50.7 …
1.4GHz 40.5 46.2 53.7 …
1.8GHz 42.5 49.6 56.1 …

(a) Trace results (running AoI on core 3)

Performance fb
(MIPS) 0.7GHz 1.2GHz 1.5GHz …

fl
0.5GHz 256 455 563 …
1.4GHz 255 455 563 …
1.8GHz 256 454 562 …

Peak Temp. fb
(◦C) 0.7GHz 1.2GHz 1.5GHz …

fl
0.5GHz 38.0 46.2 52.2 …
1.4GHz 38.4 46.6 56.5 …
1.8GHz 39.5 48.8 57.0 …

(b) Trace results (running AoI on core 6)

AoI on core 3 AoI on core 6 Labels
QAoI f̃l\AoI f̃b\AoI fl,3 fb,3 T3 fl,6 fb,6 T6 l0 . . . l7
(MIPS) (GHz) (GHz) (GHz) (GHz) (◦C) (GHz) (GHz) (◦C)

400 1.4 0.7 1.8 0.7 42.5 1.4 1.2 46.6 0 0 0 1.00 0 0 0.02 0
200 1.4 1.2 1.4 1.2 46.2 1.4 1.2 46.6 0 0 0 1.00 0 0 0.65 0
400 0.5 1.5 1.8 1.5 56.1 0.5 1.5 52.2 0 0 0 0.02 0 0 1.00 0
500 0.5 0.7 – 0.7 – 0.5 1.5 52.2 0 0 0 –1 0 0 1.00 0
… … … … … … … … … …

(c) Examples for calculating the labels

Features Labels
fl fb qAoI QAoI AoI curr. map. Core utils. f̃l\AoI /fl f̃b\AoI /fb l3 l6

(GHz) (GHz) (MIPS) (MIPS)

1.8 0.7 471 400 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0.76 1.00 1.00 0.02
1.4 1.2 455 400 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1.00 0.56 1.00 0.02
1.8 0.7 471 500 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0.28 1.00 –1 1.00
0.5 1.5 563 500 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1.00 0.46 –1 1.00
… … … … … … … … …

(d) Training data examples

I

I

I

I

I

I

II

II

II

II

Figure 7.3: Illustrative example of training data generation. Only cores 3 and 6 are free for the AoI. (a) and (b)
show the trace results (AoI performance and peak temperature) for the two free cores and selected combinations
of frequencies fl and fb . (c) demonstrates the calculation of the labels for a given AoI QoS target QAoI and
minimum required frequency to satisfy the QoS of the background (f̃l\AoI and f̃b\AoI). For each mapping, first the
minimum frequencies that satisfy all QoS targets are selected to determine the corresponding temperature for
each potential mapping. Labels are calculated with Eq. (7.4). (d) lists selected training examples.

we need to find the corresponding trace when mapping the AoI on core j with the selected
QoS targets. The V/f levels fl , fb of this trace are the lowest V/f levels to satisfy all QoS
targets QAoI , f̃l\AoI , and f̃b\AoI :

fl , fb = argmin
f ′l ,f

′
b

(
f ′l ≥ f̃l\AoI ∧ f ′b ≥ f̃b\AoI ∧ qAoI (f ′l , f

′
b) ≥ QAoI

)
(7.3)

102

7.4 Imitation Learning-Based Application Migration

Next, the peak temperature for each mapping of the AoI to each free core j is determined
from these traces. We observe that in many cases, several mappings result in a similar
temperature. An example are mappings to different LITTLE cores. In our experiments,
there is on average one additional mapping that is within 1 ◦C of the temperature obtained
with the optimal mapping. Therefore, we create a soft label lj ∈ [0, 1], indicating the
quality of mapping the AoI to core j:

lj =

0 core j occupied by a background application
–1 core j cannot meet QAoI

e–U ·(Tj–minj′ Tj′) otherwise
(7.4)

Cores that run a background application get lj = 0. Mappings that violate the QoS
target of the AoI at the highest V/f level get lj = –1. The mapping with the lowest
temperature gets lj = 1. For all other mappings, the higher the temperature is compared
to the optimum, the closer lj gets to 0. The parameter U determines a trade-off between
tolerating higher temperatures and susceptibility to temperature measurement noise. We
empirically set U = 1. Fig. 7.3c lists selected illustrative examples. For instance, when
selecting QAoI = 400·106 IPS, f̃l\AoI = 1.4GHz, and f̃b\AoI = 0.7GHz (Line I), the minimum
frequencies of the LITTLE/big cluster to satisfy all QoS targets are 1.8GHz/0.7GHz and
1.4GHz/1.2GHz for a mapping of the AoI to cores 3 and 6, respectively. The respective
temperatures are 42.5 ◦C and 46.6 ◦C, i.e., a mapping to core 3 is cooler. Therefore, the
labels for cores 3 and 6 are 1 and 0.02, respectively. Fig. 7.3c also lists examples where the
two cores result in a similar temperature, where core 6 is beneficial, and where core 3
cannot reach the QoS target of the AoI at the highest V/f levels (Line II).

After creating the labels, the features that describe the execution of the AoI with the
selected QoS and background are determined from the traces as described in Section 7.4.1.
One training example is created for each free core, on which the AoI could be executed at
run time, i.e., each source of a migration. Fig. 7.3d illustrates this with a few examples for
the examples I and II discussed earlier. By creating one training example for every free
core for each selection of QAoI , f̃l\AoI , and f̃b\AoI , the training data is already exhaustive
because the policy is trained to recover from each potential mapping of the AoI at run time.
This is the reason why the DAgger [89] algorithm, which initially only trains the policy on
the optimal sequence of management decisions, and only gradually adds training data to
recover from suboptimal decisions to increase the robustness of the model, is not required.
19,831 training examples are created from 100 combinations of AoI and background.

7.4.3 IL Model Creation and Training

We employ a fully-connected NN model and find the optimal topology (number of layers
and neurons) by neural architecture search (NAS). Fig. 7.4 shows the result of the grid
search to determine the depth (number of layers) and width (number of neurons per layer)
of the NN. The optimal topology uses 4 hidden layers with 64 neurons, each. The hidden
layers use ReLU activation, the output layer with 8 neurons does not use any activation

103

7 Learning Optimal Management with Imitation Learning

1
2

4
8 16

32
64

128
256

512
0.80

0.85

0.90

Depth [# Hidden Layers] Width
[# N

euro
ns/

Hid
den

Lay
er]

M
od

el
Q
ua

lit
y

(A
vg

.L
ab

el
of

Se
le
ct
ed

M
ig
ra
tio

n)

Optimal Topology

Figure 7.4:Visualization of the grid search results for the NN topology. The optimal topology uses 4 hidden
layers with 64 neurons, each.

LITTLE big NPU

App 1 App 2

App 3

App 4

f̃1,min f̃2,min f̃3,min f̃4,min

DVFS DVFS

Model
Input

(Features)

Find
Maximum

Improvement

Accelerated

Parallel Prediction for All Applications (Batch Inference)

Per-App.
Samples

Per-App.
Pred. Migration

DVFS
every 50ms

Migration
every 500ms

Figure 7.5: Illustration of TOP-IL at run time. IL-based application migration uses the NPU to accelerate the
inference for predicting the best migration per each application.

function. We use Adam optimizer with momentum, where the exponentially decaying
learning rate is set at 0.01·0.95(epoch). We use mean squared error (MSE) loss and stop the
training when the model has not improved for 20 epochs (early stopping). Three models
are trained that are initialized with different random seeds. This allows to demonstrate
that the training is robust to the weight initialization, as will be shown in the evaluation.

104

7.5 Run-Time Temperature and QoS Management

7.5 Run-Time Temperature and QoSManagement
The run-time part of TOP-IL integrates the IL-based application migration with a per-
cluster DVFS control loop. It is illustrated in Fig. 7.5.

7.5.1 Application Migration with NPU-Accelerated IL

If K applications run in parallel, each should be migrated to its optimal core w.r.t. temper-
ature and QoS considering all other applications. However, migrating several applications
at once results in a high number of potential combinations to chose from and the impact
of several migrations at once would be difficult to predict. We solve this by migrating only
one application at a time, but we find in each control epoch the optimal migration among
all possible migrations of all applications. The NN migration model has been trained for
one AoI, which is migrated, and several other background applications, i.e., it requires
selecting an AoI. Therefore, we perform parallel inference, where each application is used
as the AoI once. The inference output is a matrix, where each entry lk,c contains the rating
of mapping application k to core c. The optimal migration maximizes the improvement in
the rating compared to the current mapping c(k):

k̂, ĉ = argmax
k′ ,c′

(
lk′ ,c′ – lk′ ,c(k′)

)
(7.5)

The result of this optimization is to migrate application k̂ to core ĉ if it is not already
mapped to it. The migration policy is executed each 500ms. This is fast enough to adapt
to potential workload phases of the applications, which run for several minutes, but still
allows to maintain a low overhead.

To further reduce the overhead of the NN inference, we employ the existing NPU of
the Kirin 970 SoC. The available parallelism in the NPU allows performing the parallel
inference for all applications simultaneously in a single batch. The NPU is accessible via
the HiAI DDK, which originally is designed for Java applications, i.e., to speed up user
apps. We develop a C++ binary that runs in user space, uses the Linux perf API to read
the hardware performance counters, and uses the /proc filesystem to read information
about running applications and the system utilization. It employs the NPU for inference
via the HiAI DDK with a non-blocking call, and uses the Linux affinity feature to migrate
applications.

Since, we perform migration each 500ms, the migration overhead, e.g., for transferring the
context to the target core or due to cold caches, is negligible. We perform experiments to
quantify the worst-case overhead of application migration, i.e., periodically migrating an
application between the big and LITTLE cluster in each migration epoch. The migration
overhead m is calculated by:

m =
1
2 ·

(
1
tbig + 1

tLITTLE

)
1

tmigrate

– 1 (7.6)

105

7 Learning Optimal Management with Imitation Learning

blac
ksch

oles

bod
ytra

ck
cann

eal dedu
p

face
sim ferre

t

fluid
anim

ate
swa

ptio
ns

aver
age

–2

0

2

4
M
ig
ra
tio

n
O
ve

rh
ea

d
[%

]

Figure 7.6: The impact of periodic migration of an application on its performance is negligible.

The numerator calculates the average performance of the big and LITTLE clusters, while
the denominator represents the measured performance with periodic migration. We
repeat this experiment three times with several PARSEC applications. Fig. 7.6 plots the
average and standard deviation of the migration overhead per application. The overhead
differs between applications because of their different cache intensity. Some applications,
i.e., dedup, facesim, experience a negative overhead, which we interpret as follows. If an
application has different execution phases that benefit differently from the features of the
big cluster, potential correlation between the migration epoch and the execution phases
improves the performance, and thereby results in a negative overhead. The maximum
worst-case migration overhead is less than 4% and the average worst-case migration
overhead is 0.1%, which is negligible.

7.5.2 Control Loop for Per-Cluster DVFS

The IL-based migration is integrated with a DVFS control loop that selects the per-cluster
V/f levels. The control loop utilizes the estimated f̃k,min per application k, as defined in
Eq. (7.1), which is an estimate of the minimum required V/f level to reach the QoS target
of this application. It then determines the minimum required V/f level per each cluster x
to satisfy the QoS target of all applications running on it:

f̃x = max
{
f̃k,min : application k mapped to cluster x

}
(7.7)

Since the run-time estimates of f̃k,min are based on linear scaling, they are only accurate
for small V/f changes. Therefore, we adjust the current V/f level fx of each cluster by only
one step towards f̃x and call this control loop more frequently than migration, i.e., every
50ms. This control loop is skipped in two iterations, one when application migration is
executed and one directly after a migration, to account for transient effects of cold caches
that result in spurious QoS violations. Idle clusters are throttled to the lowest V/f level.
The control loop is embedded into the same C++ application that also performs migration,
and uses the Linux userspace governor to set per-cluster V/f levels.

106

7.6 Reinforcement Learning-Based Application Migration

LITTLE big

App 1 App 2

App 3

App 4

DVFS (same as in Fig. 7.5 and Section 7.5.2)

Agent 1 Agent 2 Agent 3 Agent 4
Q-table

a1 a2 a3 a4

Mediator

a r

Figure 7.7:Overview of RL-based application migration. One agent is instantiated per application. All agents
share the same Q-table. A mediator selects the executed action a from all per-agent actions ai (in this example
from Agent 3). Only the agent whose action has been selected updates the Q-table based on the reward.

The combination of IL-based application migration and a simple DVFS control loop
enables us to achieve temperature optimization under QoS targets, as will be evaluated in
Section 7.7.

7.6 Reinforcement Learning-Based Application Migration

As discussed in Section 1.4.3, RL is another method for end-to-end learning and directly
making management decisions, like IL. However, IL outperforms RL in terms of quality
and stability of the learned policy. To demonstrate this in a quantitative comparison,
there is a need to implement an RL-based technique Therm-RL with the same goal as
our IL-based TOP-IL. However, there is no state-of-the-art technique that employs RL
for application mapping/migration or DVFS for temperature minimization and considers
heterogeneous cores with per-cluster DVFS running parallel applications. Therefore, this
section develops an RL-based application migration policy, motivated by the state of the
art, to serve as a baseline for the IL-based policy described in Section 7.4. To enable a fair
comparison between RL and IL, we also perform only application migration with RL and
employ the same DVFS control loop described in the previous section.

TOP-IL copes with a varying number of running applications by performing independent
inference per each running application, denoted the AoI, to find the optimal migration.
RL additionally requires to perform training at run time, which requires maintaining
information about the previous state. Therefore, one agent is instantiated per application.
This has the additional benefit of maintaining state and action spaces at a reasonable size.
Fig. 7.7 depicts the overall structure of Therm-RL.

107

7 Learning Optimal Management with Imitation Learning

State The state space used for the RL agents comprises the same features as also used for
the IL model. In particular, these are the QoS, number of L2-D accesses, and the current
mapping of the AoI, as well as the V/f levels and utilization values of the big and LITTLE
clusters. All these features are quantized to maintain a reasonable size of the Q-table.
For instance, the information about the QoS of the AoI is represented by a binary signal
indicating whether or not the QoS target is met.

Action The action space is selected the same as with the IL technique, which is also
the same as in [79]. There is one action per core, indicating a migration to this core, i.e.,
8 actions in total. The Q-table contains 2,304 entries, which is similar in size to what is
reported in the related work, e.g., in [77].

Reward The reward function needs to combine the objective, i.e., temperature minimiza-
tion and constraint, i.e., QoS targets, into a single scalar value. The objective the same as
in [79], which only rewards a low temperature T : r = 80◦C – T . We extend it to penalize
QoS violations:

r =

{
80◦C – T if ∀i : qi ≥ Qi

–200 otherwise (QoS violation)
(7.8)

We have empirically tuned the negative reward of –200 for a QoS violations in order to
achieve a good trade-off between low temperature and low QoS violations.

Multi-Agent Learning for Parallel Applications As discussed earlier, one RL agent is
instantiated per application. Therefore, mediation between the agents is required to
avoid 1) contradicting decisions by different agents, and 2) further instability in the
learning. Contradicting migration decisions could happen if two agents decide to perform
a migration at the same time to the same core. Such decisions should be not executed,
because applications sharing a core would likely violate the QoS targets. Moreover, even
two migrations to different cores should not be executed at the same time, as simultaneous
migrations might nullify the benefits of each other. Additionally, a change in temperature
when performing two migrations at once, which is represented in the reward signal, can
not be traced back to either of the two, causing further instability in the learning.

We solve this by implementing a mediator between the agents, similar to [144]. The
mediator selects the best action among the individual actions selected by each agent based
on the highest Q-value. After having executed this action, the reward obtained in the next
control step should only be used to perform learning about this action, not about actions
from other agents that have not been selected and executed. Therefore, the mediator
forwards the reward signal only to the agent selected in the previous step to perform
learning. Fig. 7.7 illustrates this mediation process. All agents share a single common
Q-table to improve generalization to different applications, and to immediately start with
a trained policy when a new application arrives to the system.

108

7.7 Experimental Evaluation

Training We select the training parameters similar to [79]. We employ an n-greedy
policy with n = 0.1, a discount factor W = 0.8, and a learning rate U = 0.05. As the
Q-table is initialized with constant values, the initial performance of an RL policy is
not representative. A high-quality RL policy is only obtained after significant training.
Therefore, we irst train a policy until convergence (∼3 h) on a different random workload
from what is used later in the evaluation. The resulting Q-table is stored and loaded at the
beginning of each evaluation run. To reduce the impact of randomness on the evaluated
policy performance, three policies are trained from scratch with different random seeds,
like with the IL model.

7.7 Experimental Evaluation

This section presents an experimental evaluation of TOP-IL. The evaluation uses the
setup described in Section 3.2, which employs a HiSilicon Kirin 970 smartphone SoC
that implements the common Arm big.LITTLE architecture, and comes with an NPU to
accelerate NN inference.

TOP-IL is compared with the RL-based technique Therm-RL presented in Section 7.6, as
well as with state-of-the-practice solutions, Linux GTS, paired with either ondemand or
powersave governors. GTS assigns applications to a cluster depending on their computa-
tional requirements, i.e., mostly-idle and performance-hungry applications are migrated to
the LITTLE and big cluster, respectively. Ondemand aims at providing a high performance
but saving power when applications are mostly idle. It scales the V/f levels based on the
CPU utilization, where V/f levels are upscaled if the utilization exceeds a fixed threshold,
and downscaled if it falls below a second threshold. Powersave minimizes the power
consumption by always operating the clusters at the lowest V/f levels, irrespective of the
associated performance losses. These Linux policies are not aware of detailed application
characteristics like memory-/compute-intensity or QoS targets. GTS/ondemand is the
default resource management that is shipped with Android 8.0 on HiKey 970 .

The following experiments demonstrate that TOP-IL and the employed NN model can
cope with:

1. Unseen applications that have not been used for training.

2. Different cooling: We perform experiments also with passive cooling (without a
fan) instead of the active cooling used for training data generation.

3. Randomness in the training and at run time: We train three models with different
random seeds to demonstrate the robustness to weight initialization. We then
repeat the experiments three times, where each repetition uses a different model,
and report average and standard deviation of results. This demonstrates robustness
to run-time variability due to workload fluctuations.

In addition, we demonstrate the stability of the learned policy.

109

7 Learning Optimal Management with Imitation Learning

7.7.1 Illustrative Example

This section presents an illustrative example comparing the migration decisions of IL and
RL. We study the same case as presented in the motivational example in Fig. 7.1, i.e., we
run the two applications adi and seidel-2d . Fig. 7.8a plots the selected cluster (mapping) of
adi. As has been shown in Fig. 7.1, a mapping to the big cluster is optimal for adi. TOP-IL
always selects the optimal mapping. Therm-RL also mostly maps adi to the big cluster
but infrequently migrates adi to the LITTLE cluster. With both techniques, adi reaches
its QoS target. Their temperature is also similar, as they select the same mapping most
of the time. Fig. 7.8b shows the mappings with seidel-2d, for which the LITTLE cluster is
optimal. TOP-IL again consistently selects the optimal mapping. In contrast, Therm-RL
is more unstable and migrates seidel-2d irregularly between the clusters. This results in
an unnecessarily high QoS during the time on the big cluster, which also increases the
temperature during these periods. These experiments illustrate that the policy learned
with IL is stable and consistently selects the optimal mapping, in contrast to RL, which is
more unstable. This ultimately results in a lower temperature with TOP-IL. The instability
of RL leads to even worse results, such as frequent QoS violations, with more realistic
workloads with multiple parallel applications, as will be shown in the next section.

7.7.2 Parallel MixedWorkload

We now evaluate the capabilities of all techniques to minimize the temperature under QoS
targets. This is the main experiment in this chapter. We create a mixed workload of 20 ran-
domly selected applications from blackscholes, bodytrack, canneal, dedup, facesim, ferret,
fluidanimate, and swaptions from PARSEC , and adi, fdtd-2d, floyd-warshall, gramschmidt,
heat-3d, jacobi-2d, seidel-2d, and syr2k from Polybench. Only the Polybench applications
(except jacobi-2d) have been used for training in TOP-IL and Therm-RL. All other applica-
tions are unseen. We create a random QoS target for each application. The arrival times
are distributed by a Poisson distribution with varying arrival rate to test different system
load values. With TOP-IL, the average/peak system utilization varies from 13 %/38 % to
37 %/75 %, for the minimum and maximum arrival rate, respectively. We let the board cool
down for 10min between subsequent experiments. All experiments are performed three
times with different models for TOP-IL and Therm-RL, as explained earlier.

Figs. 7.9a and 7.9b show the results (mean and standard deviation for three repetitions) for
the cooling with a fan, i.e., same as during training data generation, and without a fan, i.e.,
different from the training data, respectively. TOP-IL reduces the average temperature
during executing the workload by up to 17 ◦C compared to GTS/ondemand at only slightly
more QoS violations. GTS/powersave achieves the lowest average temperature but the
majority of applications violate their QoS target. Finally, the temperatures with Therm-RL
and TOP-IL are similar. However, TOP-IL achieves 63 % to 89 % fewer QoS violations than
Therm-RL. In summary, TOP-IL is the only technique to achieve temperature minimization
at few QoS violations. This result is independent of the cooling setting.

110

7.7 Experimental Evaluation

big*

LITTLE

TOP-IL Therm-RL

150

200

250

300

350

QoS target QQ
oS

q
[M

IP
S]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

42

43

44

Time [s]

Te
m
pe

ra
tu
re

[◦
C]

(a) adi (*optimal mapping: big)

big

LITTLE*

TOP-IL Therm-RL

150

200

250

300

350

QoS target Q

Q
oS

q
[M

IP
S]

0 10 20 30 40 50 60 70 80 90 100 110 120

41

42

43

Time [s]

Te
m
pe

ra
tu
re

[◦
C]

(b) seidel-2d (*optimal mapping: LITTLE)

Figure 7.8: Illustrative example demonstrating the mappings chosen by TOP-IL and Therm-RL with the two
applications adi and seidel studied already in the motivational example (Fig. 7.1). TOP-IL consistently selects the
optimal mapping for both applications. Therm-RL in general shows a similar trend but is unstable, selecting also
suboptimal mappings. The QoS targets are reached in all cases. However, the unstable mappings of Therm-RL
cause a higher temperature with seidel-2d.

111

7 Learning Optimal Management with Imitation Learning

0.2 0.4 0.6 0.8 1
30

40

50

60
Av

er
ag

e
Te

m
pe

ra
tu
re

[◦
C]

TOP-IL Therm-RL GTS/ondemand GTS/powersave

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Application Arrival Rate [1/min]

Av
er
ag

e
Q
oS

V
io
la
tio

ns
[#

A
pp

lic
at
io
ns

]

(a)With a fan (same as for oracle demonstrations)

0.2 0.4 0.6 0.8 1
40

50

60

70

80

Av
er
ag

e
Te

m
pe

ra
tu
re

[◦
C]

TOP-IL Therm-RL GTS/ondemand GTS/powersave

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Application Arrival Rate [1/min]

Av
er
ag

e
Q
oS

V
io
la
tio

ns
[#

A
pp

lic
at
io
ns

]

(b)Without a fan

Figure 7.9: TOP-IL significantly reduces the temperature, while achieving few QoS violations. This is the case
both when running with a fan, i.e., same as when recording the traces for the oracle demonstrations, but also
without the fan, demonstrating the generalization of the NN model. The bars show mean and standard deviation
over three experiments. TOP-IL and Therm-RL use models trained with different random seeds.

112

7.7 Experimental Evaluation

5

10
TOP-IL Therm-RL GTS/ondemand GTS/powersave

0.509 1.018 1.210 1.402 1.556 1.690 1.844
0

1

2

Frequency [GHz]

CP
U

Ti
m
e
[h

]

(a) LITTLE cluster

5

10

0.682 1.018 1.210 1.364 1.498 1.652 1.863 2.093 2.362
0

1

2

Frequency [GHz]

CP
U

Ti
m
e
[h

]

(b) big cluster

Figure 7.10:Distribution of the total CPU time (among all arrival rates and repetitions) per technique to the
clusters and V/f levels in the experiments with a fan (Fig. 7.9a).

To explain these results we analyze the selected mappings and V/f levels by the techniques.
Fig. 7.10 plots the distribution (mean and standard deviation for the three repetitions) of
the total CPU time for executing the workload at all arrival rates according to the cluster
and selected V/f level for the experiment without a fan. The CPU time is counted only
during executing an application. GTS favors the big cluster and ondemand selects high V/f
levels when applications are executed. As a result, GTS/ondemand uses most CPU time at
the highest V/f level on the big cluster, explaining it low QoS violations. However, this also
leads to high temperature and ultimately even causes thermal throttling by DTM, forcing
GTS/ondemand to occasionally reduce the V/f levels. In contrast, powersave always selects
the lowest V/f level. This reduces the performance, and, hence, increases the number
of simultaneously running applications. This forces GTS to also use the LITTLE cluster.
As a result, GTS/powersave uses most CPU time on both clusters at the lowest V/f level,
leading to the lowest temperature but many QoS violations. Therm-RL uses most CPU

113

7 Learning Optimal Management with Imitation Learning

blac
ksch

oles

bod
ytra

ck
cann

eal dedu
p

face
sim ferre

t

fluid
anim

ate
swa

ptio
ns

30

35

40

45

50
Av

ge
ra
ge

Te
m
pe

ra
tu
re

[◦
C]

TOP-IL Therm-RL GTS/ondemand GTS/powersave

blac
ksch

oles

bod
ytra

ck
cann

eal dedu
p

face
sim ferre

t

fluid
anim

ate
swa

ptio
ns

0

1

2

3

#
Q
oS

V
io
la
tio

ns
in

th
e
3
Re

pe
tit

io
ns

Figure 7.11: TOP-IL is the only technique to achieve no performance violations, yet low temperature for all single
application workloads. All applications are unseen, i.e., not used for training.

time on the LITTLE cluster at the highest V/f level and on the big cluster at the lowest
V/f level. When executing on the big cluster at the lowest V/f level, likely a migration to
the LITTLE cluster would be beneficial to reduce the temperature. More severely, when
the DVFS control loop selects the highest V/f levels on the LITTLE cluster, it is likely the
case that the QoS target of an application is missed, explaining the high number of QoS
violations. In both cases, a migration to the other cluster would likely have been beneficial.
The reason for the suboptimal mapping decisions of Therm-RL are policy instability due
to continual exploration in online learning and combining objectives and constraints
into a single scalar reward, as discussed earlier. In contrast, TOP-IL uses more time on
the big cluster at rather low V/f levels, which allows it to meet the QoS target at a low
temperature, as reported in Fig. 7.9. We also did this analysis for the experiment with a
fan and found similar results. The only difference is that a fan prevents thermal throttling
even with GTS/ondemand . In summary, TOP-IL is the only technique to achieve temperature
minimization and low QoS violations. This is achieved for mixed workloads with unseen
applications, for different cooling setting than used during training, and is reproducible for
models trained with different random initialization.

114

7.7 Experimental Evaluation

7.7.3 Single-ApplicationWorkloads

The mixed workloads used in the previous section contain both seen and unseen applica-
tions. To further demonstrate the generalization of TOP-IL, we perform experiments with
only unseen applications from PARSEC . The QoS targets of the applications are set such
that they can be met at the highest V/f level on the LITTLE cluster. As in the previous
section, we repeat each experiment three times with different models. Fig. 7.11 visualizes
the average temperature and QoS violations for different applications. As in the previous
experiments, GTS/ondemand reaches the highest average temperature. The other three
techniques all achieve in a similar low temperature. There is only one application per
workload, which can either reach or violate its QoS target. Therefore, Fig. 7.11 reports the
number of executions with a QoS violation instead of the average number of applications
that violate their QoS. As expected, GTS/powersave violates almost all QoS targets, as it
selects the lowest V/f levels. The only exception is canneal, which is memory-intensive
and its performance depends less on the V/f level. Therm-RL also violates the QoS target
in 33 % of the executions. The reason is that the policy learned with RL suffers from insta-
bilities, which causes frequent migrations, as observed in Fig. 7.8. After each migration,
the DVFS control loop requires a few iterations to determine the required V/f level, as
idle clusters are throttled to the minimum V/f level. During this period, the QoS may be
temporarily violated, potentially resulting in a global QoS violation among the whole
execution. TOP-IL is the only technique that achieves both a low temperature and no
QoS violations. These experiments demonstrate again the capabilities of TOP-IL to effec-
tively minimize the temperature under a QoS target, but most importantly demonstrate
the generalization capabilities of TOP-IL to unseen applications.

7.7.4 Model Evaluation

This section evaluates the NNmodel of TOP-IL. We split the training/test data into training
and test based on the AoI, where seven out of nine (78 %) benchmarks are only used for
training (same as in the previous sections), and others (22 %) only for testing. As discussed
earlier, our goal is to select any near-optimal mapping in case several mappings result in a
similar low temperature. The following numbers report the mean and standard deviation
across three models trained with different random seeds. Our model selects a mapping
within 1 ◦C of the optimum in 82±5 % of the test examples. The selected mapping is, on
average, only 0.5±0.2 ◦C hotter than the optimal mapping. This demonstrates that the
training process of TOP-IL is robust and consistently creates models that make near-optimal
decisions.

7.7.5 Run-Time Overhead

The results in Figs. 7.8 to 7.11 already inherently contain the run-time overhead in terms of
additional CPU load and induced temperature of TOP-IL, as it is running in parallel to the
workload. We perform in this section additional experiments to explicitly report the over-
head of our technique. We study different system utilization values, i.e., different numbers

115

7 Learning Optimal Management with Imitation Learning

1 2 3 4 5 6 7 8
0

5

10

15

Number of Running Applications

To
ta
lO

ve
rh

ea
d
[m

s/
s]

Application Migration (2×/s) DVFS Control Loop (16×/s)

Figure 7.12:The run-time overhead of the DVFS control loop increases with the number of executed applications,
whereas batch inference allows to maintain a constantly low overhead for the application migration policy.

of running applications, ranging from 1 to 8 parallel applications. Fig. 7.12 presents the
results. The DVFS control loop is invoked 16 times per second. Its overhead increases with
the number of applications. The main component is reading the performance counters,
which scales linearly with the number of applications. In contrast, the overhead of the
migration policy, which is executed twice per second, barely changes with more parallel
applications. This is as its main component is the NN inference, which uses parallel
inference of the NN using the NPU, and thereby maintains a constant low latency. In the
worst case, the DVFS control loop and migration policy have an overhead of 8.7ms/s and
8.6ms/s (0.54ms and 4.3ms per invocation), respectively. The total run-time overhead of
TOP-IL is less than 1.7%, and, therefore, negligible. It is important to notice that TOP-IL
uses a single-threaded implementation, i.e., the overhead only affects a single core.

7.8 Summary
This chapter presented TOP-IL, which performs temperature minimization under QoS
targets on heterogeneous clustered multi-core processors using application migration
and DVFS. We showed that optimization can only be achieved by jointly considering the
diverse characteristics and QoS targets of all running applications, and, hence, is a complex
problem. We tackle this complexity with NN-based IL, which enables us to combine the
optimality of the oracle policy with a low run-time overhead. In addition, this is the first
work to employ an existing NPU of a smartphone SoC to accelerate the run-time inference
of NN-based resource management. We also implemented RL-based management, which
is a popular method to achieve end-to-end learning of resource management actions.
The evaluation showed that RL suffers from instability in the learning due to continuous
exploration and online learning at run time, and due to requiring to combine objective
and constraints into a single scalar reward. In contrast, IL-based management offers stable
near-optimal management. TOP-IL generalizes to different workloads and cooling settings
than what have been used for training.

116

8 Resource-Adaptive On-Device Training

The techniques presented in the previous chapters all perform training at design time.
While this is for instance beneficial to maintain a low run-time overhead, gathering
representative training data for all possible scenarios that may happen at run time is
challenging. This could be solved by performing continuous training at run time based on
training data that is collected at run time. However, as discussed earlier, run-time training
may greatly increase the run-time overhead. This chapter targets run-time training of
an NN with limited available computational resources.

Training an NN model may require more resources in terms of computation and data
than are available on a single device. Therefore, distributed training is commonly per-
formed, which leverages the computational resources and data of many devices, such as
smartphones or IoT nodes. A prime use case is FL, which has already been introduced
in Section 3.3. FL has proven effective in large-scale real-world systems [37, 145, 146].
However, training of a deep NNmodel is resource-hungry in terms of computation, energy,
time, etc. [147], and it is rather unrealistic to assume that all devices that participate in
an FL system can perform all types of training computations all the time, especially if the
training is distributed on edge devices. The reason is that the computational capabilities
of devices participating in an FL system may be heterogeneous, e.g., different hardware,
different generations, availability of an NN accelerator [145]. More importantly, the re-
sources available on a device for training may change over time. This may for instance be
due to shared resource contention [148], where CPU time, cache memory, energy, etc. are
shared between the learning task and parallel tasks. This is illustrated with the following
two examples.

8.1 Motivational Examples

Edge Computing for Real-Time Video Analytics Edge computing is already employed in
ML-based real-time video analytics, where each edge device processes images from several
camera modules [149]. Currently, these edge devices mostly perform inference, but there
is a clear trend towards additionally performing distributed learning via FL [150]. This
results in the learning task and the inference task sharing computational resources. The
workload induced by the inference task depends on the activity in the video streams and,

This chapter is mainly based on [3].

117

8 Resource-Adaptive On-Device Training

therefore, changes over time, as processing may be skipped for subsequent similar images
to save resources [149]. These changes happen fast, i.e., within seconds [151], while FL
round times may be minutes [145]. In addition, the moments when changes happen are
unpredictable and uncorrelated to the FL round times.

Mobile Computing for Next-Word Prediction Google GBoard [152] trains a next-word-
prediction model using FL on end users’ mobile phones. This model is used by the
keyboard application to provide suggestions to the user for faster typing. To avoid slowing
down other user applications, and thereby degrading the user experience, training is
currently performed only when the device is charging and idle, and aborted when these
conditions change. This introduces a bias towards certain devices and users, degrading
the achievable model accuracy [152]. This could be resolved by allowing training also
when the device is in use, but only using free resources. Smartphone workloads change
within seconds [153], which is faster than the GBoard round time of several minutes,
changing the free resources for training fast. In addition, workload changes originate in
user activity, which is independent of the FL round times.

In both examples, the learning task is subject to changing resource availability. In particu-
lar, resources may change faster than the FL round times and at any time, unpredictable to
the FL system.

8.2 Challenges and Novel Contributions
While several works study the problem of static resource heterogeneity across devices [154,
155], time-varying resource availability has so far been neglected. This chapter introduces
a distributed, resource-aware, adaptive, on-device learning technique, DISTREAL, which
enables local training on each device to fully exploit and efficiently utilize the available
resources, dealing with all these types of heterogeneity. Our objective is to maximize the
accuracy that is reached after limited training time, i.e., the convergence speed. To fulfill
this goal, we need to C1) fully exploit the available, limited, resources on a device. This
requires fine-grained adjustability of the training on a device, and a method to instantly
react to changes; and C2) efficiently use the available resources on a device, to maximize
the accuracy improvement and, hence, the overall convergence speed. Specifically, the
work presented in this chapter provides the following novel contributions:

• We introduce and formulate the problem of heterogeneous time-varying computa-
tional resource availability in FL.

• We propose a dropout technique to dynamically adjust the resource requirements
of training the model. Thereby, each device locally decides the dropout setting
which fits its available resources, without requiring any assistance from the server,
addressing C1.

• We show that using different per-layer dropout rates achieves a better trade-off
between the resource requirements and the convergence speed, compared to using
the same rate at all layers as the state of the art, addressing C2. We present a DSE

118

8.3 Problem Definition

technique to automatically find the Pareto-optimal per-layer dropout rates for a
given NN at design time.

We implement DISTREAL in an FL system, in which the availability of computational
resources varies both between devices and over time. We show through extensive evalua-
tion that DISTREAL significantly increases the convergence speed over the state-of-the-art
techniques, and is robust even to rapid changes in resource availability at the devices,
without compromising on the final accuracy.

8.3 Problem Definition

We target synchronous FL, as introduced in Section 3.3. Our objective is to maximize the
convergence speed, i.e., the reached accuracy after a certain number of rounds, under
heterogeneous resource availability between devices and over time.

Our technique to perform resource-aware training of NNs comprises two parts. At
run time, DISTREAL dynamically drops parts of the NN using an adapted version of
dropout [51]. By changing the dropout rates per layer, a fine-grained trade-off between
resource requirements and convergence speed can be achieved. The Pareto-optimal vectors
of dropout rates are obtained at design time using a DSE.

8.4 Dropout to Reduce Computations In Training

Dropout has been originally designed as a regularization method to mitigate overfit-
ting [51]. It randomly drops individual neurons during training with a certain probability
called the dropout rate. This results in an irregular fine-grained pattern of dropped neurons.
The major deep learning libraries perform dropout by calculating the output of all neurons
and multiplying the dropped ones with 0 [135, 156]. This wastes computational resources.
It would be more efficient to instead not calculate values that are going to be dropped. Con-
volutional and fully-connected layers are implemented as matrix-vector or matrix-matrix
operations that are heavily optimized with the help of vectorization [135, 156]. Skipping
the calculation of individual values would result in sparse matrix operations, which breaks
vectorization, increasing the required resources instead of decreasing them [157].

8.4.1 Filter-based Structured Dropout

To reduce the number of computations, the dropout pattern needs to show some regularity
that still allows performing vectorization of dense matrix operations. This is achieved by
dropping contiguous parts of the computation [111]. ModernNNs consist of many different
layer types such as convolutional, pooling, fully-connected, activation, and normalization
layers. Many of these layers are computationally lightweight (e.g., pooling, activation),
while some contain the majority of computations (convolutional and fully-connected
layers). Fig. 8.1 shows how the number ofMACs for the forward pass is distributed between
fully-connected and convolutional layer types for different state-of-the-art convolutional

119

8 Resource-Adaptive On-Device Training

VGG
-16

ResN
et-50

Efficient
Net-B0

Efficient
Net-B7

Mobile
Net

Mobile
Net-V2

106
107
108
109
1010
1011

Co
m
pu

ta
tio

ns
[M

A
Cs

]
Convolutional Layers Fully-Connected Layers

Figure 8.1:Convolutional layers account for the majority of MAC operations in CNNs.

Layer i – 1 Layer i

… …

Dropped filters (randomly sampled in every mini-batch)

Figure 8.2: Filter-based structured dropout in a convolutional layer significantly reduces the required computa-
tions while still maintaining regularity in the calculations.

neural networks (CNNs). We observe that for all architectures, the convolutional part
requires orders of magnitude more MACs in total than the fully-connected part. Therefore,
a technique to save computations needs to target the convolutional layers. Fig. 8.2 depicts
filter-based structured dropout in a convolutional layer, as we apply in this chapter:
instead of dropping individual pixels in the output, whole filters are dropped stochastically.
This technique reduces the number of computations while allowing to keep existing
vectorization methods.

However, dropout also changes the convergence speed. A higher dropout rate means that
in each training update, a smaller fraction of each layer’s weights is updated, thereby
slowing down the training. Consequently, the dropout rate determines a trade-off between
the resource requirements and the convergence speed. The dropout rate should always
be selected as low as is affordable with the available resources. To adjust to changing
resource availability, we propose to dynamically change the dropout rate at run time. The
inference uses always the whole model.

120

8.4 Dropout to Reduce Computations In Training

[0, . . . , co–1] Vo

X

X ′

(a) Begin sparse part

Vo

Sub-
sampling

W

B

∗ –

VoVi

W ′ B′

I ′ O′

(b) Sparse convolution

Vi Vo

Op.I ′ O′

(c)ReLU, pooling, etc.

Reconstruct

Vi

X ′

X

(d) End sparse part

Figure 8.3: The building blocks for sparse NN that implement filter-based structured dropout.

8.4.2 Efficient Implementation of Structured Dropout

This section summarizes our implementation of structured dropout in PyTorch [156],
which is publicly available1.

Convolutional layers A convolutional layer performs the following computation:

O = I ∗W + B (8.1)

where O ∈ IRb×co×wo×ho is the output activation (b samples per mini-batch, co output
feature maps with widthwo and height ho), I ∈ IRb×ci×wi×hi is the input activation (ci input
feature maps with width wi and height hi), W ∈ IRco×ci×kw×kh (width kw and height kh of
the convolutional kernel) are the weights and B ∈ IRco are the bias.

Structured dropout drops some of the filters from the computation, i.e., some of the output
feature maps in O contain only 0. Dropout in a preceding layer results in some of the input
feature maps in I to contain only 0. To benefit from dropout in terms of computational
requirements, unnecessary computations need to be avoided. This is achieved by excluding
dropped parts from the computations by performing structured sparse convolution.

Let Vi denote the set of the indices of valid (not dropped) feature maps in the input I of the
convolutional layer. Vo denotes the set of the indices of valid feature maps in the output O
and is obtained from a Bernoulli process with the dropout rate d . O′ ∈ IRb×|Vo |×wo×ho

represents the valid output feature maps in O and I ′ ∈ IRb×|Vi |×wi×hi represents the valid
output feature maps in I . It follows that

O′ = I ′ ∗W [Vo ,Vi , :, :] + B[Vo] (8.2)

where W [Vo ,Vi , :, :] represents the parts of W that are obtained by keeping only valid
columns and rows according to Vo and Vi (same for B[Vo]). Thereby, a structured sparse
convolution is replaced by a dense convolution on the subsampled inputs, weight, and bias.

1 https://git.scc.kit.edu/CES/DISTREAL

121

https://git.scc.kit.edu/CES/DISTREAL

8 Resource-Adaptive On-Device Training

Subsampling of W and B needs to be done at run time in every mini-batch because Vi
and Vo may change in every mini-batch. However, if the subsequent layer is aware of
Vo , the full output O does not need to be reconstructed from O′, and O′ can simply be
forwarded to the next layer, along with Vo containing the indices of valid filters. By
operating on sparse representations of O and I in the form of tuples (O′,Vo) and (I ′,Vi),
our implementation avoids copying input and output activations. Fig. 8.3b depicts a
structured sparse convolutional layer for structured dropout with rate d .

PyTorch stores weights and activations in tensors, i.e., multi-dimensional matrices. Tensors
in PyTorch are stored in memory with fixed strides. Subsampling the weights W and B
according to Vi and Vo would results in an irregular stride pattern, and, therefore, our
implementation requires copying the underlying data in memory. These copies could
be avoided by extending the backend to be aware of Vi and Vo , and still providing the
fullW and B to the backend. However, PyTorch supports several backends, some of which
(e.g., CUDA) comprise proprietary code, and, hence, cannot be modified easily. It is also
important to notice that the weight and bias tensors in convolutional layers are much
smaller than the input and output activation, reducing the copy overheads.

The backward pass needs to propagate the gradient to the full weight tensors W and B
and cannot operate directly on the subsampled copies because the optimizer may have an
internal state (e.g., momentum). This is supported by PyTorch’s autograd feature, which
is fully-compatible with the employed subsampling of weights and bias.

Dropout Traditional dropout performs two operations during training: it replaces
dropped values by 0 and scales up non-dropped values by a factor 1

1–d . Our implementa-
tion of structured dropout separates these two operations. The first operation is replaced
by passing the indices of feature maps to compute Vo to the preceding convolutional layer
(potentially with other layers like batch normalization in between), which consequently
skips computations of filters that would be dropped. Scaling needs to be done by the
dropout layer, and is implemented as with traditional dropout.

Other layers Many layers, such as activation, pooling, etc., process the individual feature
maps independently. As a result, these operations can directly be applied to the subsampled
valid feature maps I ′. The indices of the valid feature maps of the output Vo are the same
as of the input Vi , as depicted in Fig. 8.3c. We implement two additional layers that begin
and end the sparse part of the NN, respectively. The beginning layer (Fig. 8.3a) annotates
the activation with the information that all feature maps are valid (Vo = [1, . . . , co – 1]),
which does not require any copy. The end layer (Fig. 8.3d) fills in zeros at the positions
of invalid feature maps, which requires copying tensors from the valid feature maps.
However, this layer is only required once near the end of the NN. We did not implement
sparse fully-connected layers but similar concepts as for the convolutional layers could be
applied.

Performance Fig. 8.4a depicts how the number of MACs of the forward pass evolves
when applying different vectors of per-layer dropout rates for DenseNet-40 [158]. These

122

8.4 Dropout to Reduce Computations In Training

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

25

50

75
No Dropout: MACs

Ratio of Dropped Filters

M
ill
io
n
M
A
Cs

0

15

30

45
No Dropout: Mini-Batch Time

M
in
i-B

at
ch

Ti
m
e
[s
]

MACs Mini-Batch Time

(a) Number of MACs and training time over the ratio of dropped filters.

0 20 40 60 80
0

15

30

45

Increase ratio
of dropped filters

from 0 to 0.5

Million MACs

M
in
i-B

at
ch

Ti
m
e
[s
]

No structured dropout (reference)
With structured dropout
Linear regression

(b) Training time over number of MACs.

Figure 8.4: (a) The number of MACs and mini-batch time of training DenseNet-40 on a Raspberry Pi 4 decrease
almost quadratically with the ratio of dropped filters. (b) The mini-batch training time of DenseNet-40 for
different dropout vectors on a Raspberry Pi 4 shows a linear relationship with the number of MACs in the
forward pass.

vectors are determined by applying the DSE technique introduced in this chapter. The
x-axis shows the resulting ratio of dropped filters. Multiple vectors may results in the
same ratio of dropped filters, while providing different convergence / resource requirement
trade-offs, explaining why for some ratios there are multiple MACs. We observe that the
number of MACs decreases almost quadratically with the ratio of dropped filters. We
also report the training time of a single mini-batch (size 128) on a Raspberry Pi 4, which
serves as an example for an IoT device, using our implementation of structured dropout
in 32-bit PyTorch 1.7.1. A training step including forward pass, backpropagation, and
weight updates requires about 2× more MACs than the forward pass alone [159]. The
training time shows a similar trend as the number of MACs but with an offset. This is
because we do not modify the backend of PyTorch to be aware of this dropout, which
results in copy operations of weight tensors to repack them, as discussed earlier. As a
consequence, the achieved benefits are smaller than what is theoretically achievable. In
summary, this experiment demonstrates that structured dropout significantly reduces the
required computational resources.

Suitability of MACs/s as Resource Metric The work presented in this chapter is based
on the framework presented in Section 3.3, which expresses the resource availability as
MACs/s. This paragraph describes why this abstract metric 1) is still accurate, i.e., is
strongly correlates with the underlying limited resource, and 2) is a practical abstraction,
i.e., it is possible to determine the available MACs/s at run time. We follow the use cases
presented in Section 8.1, where the CPU time is the limited resource.

123

8 Resource-Adaptive On-Device Training

Fig. 8.4b plots the mini-batch training time (forward and backward pass) over the number
of MACs in the forward pass for the same setup used in Fig. 8.4a. The mini-batch training
time shows a clear linear relationship with the number of MACs. Consequently, the
number of MACs in the forward pass is a good representation of the actual resource
requirements during training. Hence, it can be used in the DSE to evaluate a dropout
vector and at run time to represent the available resources. Note that in a general case,
estimating the resource requirements from the total number of MAC is inaccurate [160]
because different layer types may result in a different relationship between resource
requirements and the theoretical number of MACs. This is for example the case if different
layers cause different data movement between the DRAM and the CPU, or if different
layers benefit differently from vectorization. However, we use the number of MACs only
to compare different configurations (dropout vectors) of the same topology, i.e., we do not
compare different topologies. Therefore, the number of MACs accurately represents the
resource requirements.

Due to its strong correlation with the training time, the number of available MACs for
training can also be derived at run time. In the example of CPU time as the main limited
resource, the FL training is one of several tasks that compete for CPU time. The OS
scheduling decides the time during which each application is executed based on many
factors, such as fairness or priorities. The amount of CPU time available for training
is, therefore, known at the OS level and can be made available to the applications. The
time per mini-batch can be calculated from the available CPU time and the required
throughput to satisfy the FL round time. Finally, the number of MACs can be derived from
the mini-batch time as in Fig. 8.4b. This shows the practicality of the chosen abstraction.

8.5 Design-Time: Find Pareto-Optimal Dropout Vectors

The resource requirements for training (MACs) and convergence speed both depend on
the dropout rates of each layer. Prior works restrict themselves to applying the same
dropout rate to all layers [112]. Relaxing this restriction opens up a larger design space,
where each dropout rate of each layer may be adjusted towards a better trade-off between
resource requirements and training convergence. However, this design space is too large
to be explored manually. For instance, DenseNet-100 has 99 convolutional layers that each
need to be assigned a dropout rate. Some works apply simple parametric functions of
the depth of a layer to similar problems [161]. However, this only works in case of a
homogeneous NN structure, where properties of layers (e.g., MACs) change monotonically
with the depth. This is not generally the case. For instance, layers in DenseNet alternate
between computationally lightweight and complex, rendering a simple parametric function
suboptimal. This section describes the required automated DSE technique to efficiently
explore such a large design space. The DSE is performed only once at design time.

Specifically, the design space contains all combinations of dropout values per each layer.
We select dropout values from the continuous range [0, 0.5] because higher values reduce
the final achievable accuracy, as we observe in our experiments, as well as indicated in

124

8.5 Design-Time: Find Pareto-Optimal Dropout Vectors

Table 8.1: Expected number of MACs of the forward pass of individual layers with structured dropout.

Layer Type MACs

Convolution (1–d)·|Y |·
(
(1–dp)·ci ·kw ·kh + b

)
where d Dropout rate in this layer

|Y | Number of output pixels
dp Dropout rate in the preceeding conv. layer
ci Input channels

kw ,kh Kernel width and height
b 1 if bias is used, 0 otherwise

Batch Normalization, (1 – dp) · x
Activation, Pooling where dp Dropout rate in the preceeding conv. layer

x Number of MACs without dropout

previous works [51]. The design space for an NN with k convolutional layers is [0, 0.5]k .
We have two contradicting objectives: low resource requirements and high convergence
speed.

8.5.1 Calculate the Resource Requirements

As discussed in Section 3.3, the number of MACs is an implementation-independent
representation of the resource requirements. The previous section additionally showed
that it is a suitable abstraction. Dropout is a probabilistic process, i.e., the number of
MACs varies between different update steps because a different number of filters may be
dropped in every mini-batch. Table 8.1 shows for the most important layers in a CNN
how the expected number of MACs in the forward pass depends on the dropout rate d .
For a convolutional layer, the number of MACs depends not only on the dropout rate of
this layer but also on the dropout rate of the preceding convolutional layer because a
reduced number of filters (dropout of this layer) is applied to a reduced number of input
feature maps (dropout of previous layer). In the specific case that both dropout rates are
the same, the expected number of MACs reduces almost quadratically with the dropout
rate. Most other layers (batch normalization, activation, pooling) process each feature
map independently. Their expected number of MACs reduces linearly with the dropout
rate. As convolutional layers account for the majority of MACs, the overall reduction of
the expected number of MACs is almost quadratic.

8.5.2 Measure the Convergence Speed

The convergence speed with a certain dropout vector is measured by observing the
accuracy change when training with this vector. Exploring the design space would take
too long if a full training with every candidate dropout vector would be performed. Instead,
we assess the accuracy change after a short training, similar to learning curve extrapolation
methods used in NAS [162]. We train for 64 mini-batches with batch size 64, which allows
us to explore many candidate dropout vectors in reasonable time. This corresponds to the

125

8 Resource-Adaptive On-Device Training

Create Initial Population

Population of Dropout Vectors

With Several Rand.
Seeds: Train for
Few Mini-Batches

Avg. Acc. Change:
ΔAcc(d)

Number of MACs:
MACs(d)

Update Population (NSGA-II)

DSE

Repeat

Dynamic NNStatic NN

Pareto-optimal Dropout Vectors

LUTD

Device i

Resource-Aware Training (Algorithm 8.1)

Periodically Adjust Dropout Vector
According to Available Resources

FL Server

Weighted Averaging based on
Accumulated Computational Resources

(Algorithm 8.2)

At Design Time At Run Time

Figure 8.5: Efficient resource-aware training with DISTREAL comprises the DSE to find Pareto-optimal vectors of
dropout rates per layer w.r.t. the computational resources (number of MACs) and convergence speed (accuracy
change after few batches of retraining), resource-aware training on each device at run time, and resource-aware
weight aggregation on the server at run time.

amount of data collected by few devices. To reduce the impact of the random initialization,
the NN is not trained from scratch but from a snapshot after partially training it on a
distorted version of the dataset. For instance, we reduce the brightness, contrast, and
saturation to 0.5 of the original value for CIFAR-10/100 . The DSE, therefore, does not
require access to the devices’ data, but only access to a small amount of similar data. We
repeat this with three different random seeds to further reduce the impact of random
variations. The convergence speed is represented by the average accuracy improvement
after short training.

8.5.3 Evolutionary Design Space Exploration

Fig. 8.5 shows the DSE flow. The problem of finding the Pareto-optimal dropout vectors is
a multi-objective optimization. This is a well-studied class of problems with a plethora
of established algorithms. Evolutionary algorithms have successfully been employed for
NAS [163], which is related to the problem studied in this chapter. Note that we are not
searching for a new NN topology, but tune parameters of a given topology. The output
of the DSE is the Pareto-front of per-layer dropout vectors. To have a large variety of

126

8.5 Design-Time: Find Pareto-Optimal Dropout Vectors

20 40 60 80
0.00

0.05

0.10

0.15

0.20

0.25

A
cc
ur

ac
y
Ch

an
ge

/M
in
i-B

at
ch

[%
]

20 40 60 80
Resource Requirements [Million MACs]

Dominated Samples Pareto-front Same Dropout Rate Per Layer

20 40 60 80 20 40 60 80

(a) Generation 0 (random) (b) Generation 5 (c) Generation 20 (d) Generation 50 (final)

Figure 8.6: The Pareto-front for DenseNet-40 significantly outperforms setting the same rate for all layers.

options to chose from at run time, but also keep a low number of vectors to be stored, the
Pareto-front should be approximately equidistantly represented. We use the NSGA-II [164]
genetic algorithm from the pygmo2 library [165]. NSGA-II explores the design space by
crossover, which creates new dropout vectors by combining two dropout vectors of the
current population, and mutation, which applies random changes to dropout vectors,
and is designed to obtain an equidistant representation of the Pareto-front. Thereby, an
individual is one dropout vector of per-layer dropout rates. For our largest studied NN,
DenseNet-100, each individual contains 99 float values between 0 and 0.5. A population is a
set of individuals. We use a population size of 64. A generation performs one optimization
step on the population with the goal to find a new population closer to the true Pareto-
front. The optimization minimizes a two-dimensional fitness function f (d) for a dropout
vector d that normalizes the values of the resource requirementsMACs(d) and convergence
speed ΔAcc(d) to the range [0, 1]:

f (d) =
©«

MACs(d)–MACs({0.5,...,0.5})
MACs({0,...,0})–MACs({0.5,...,0.5})

ΔAcc({0,...,0})–ΔAcc(d)
ΔAcc({0,...,0})–ΔAcc({0.5,...,0.5})

ª®®®¬ (8.3)

Fig. 8.6 plots the evolving population of dropout vectors for DenseNet-40. The initial
population comprises 62 random dropout vectors and two samples, where all dropout
values are 0 or 0.5, respectively, to accelerate the exploration of the Pareto-front by
leveraging the crossover operation in NSGA-II. After 50 generations of NSGA-II, the Pareto-
front has fully evolved and finds a continuous trade-off between resource requirements
and convergence speed. Importantly, the Pareto-front found by the DSE provides a
significantly better trade-off between the resource requirements and the convergence
speed than using the same dropout rate for all layers.

127

8 Resource-Adaptive On-Device Training

Algorithm 8.1 Each Selected Device i (Client) in DISREAL

Require: D: LUT of Pareto-optimal dropout vectors (from DSE)
receive \init from server
\ ← \init , c ← 0
for each b ∈ Xi do ⊲ iterate over mini-batches from local data

r ← ri(t) ⊲ current resource availability
d ← D[r] ⊲ resource-aware dropout vector
Update dropout values of local NN with d
\ ← \ – [m

m\
L(b;\) ⊲ update step

c ← c + MACs(d) ⊲ accumulate computations
send (\–\init , c) to server ⊲ weight update and computations

Algorithm 8.2 Server in DISREAL

\0 ← random initialization
for each round t = 1, 2, . . . do

K ←select n devices
broadcast \t–1 to selected devices K
receive (d\i , ci) from devices i ∈ K
C ← ∑

i∈K ci ⊲ total number of computations
dΘ← ∑

i∈K ci ·d\i ⊲ weighted sum
d\ ← dΘ/C ⊲ weighted average
\t ← \t–1 + d\

8.6 Run Time: Resource-Aware Training of Neural Networks

After finding the Pareto-optimal dropout vectors, they are stored in a LUT D, along with
the corresponding number of MACs. The LUT is small in size (e.g., 25 kB for DenseNet-100
for storing 64 dropout vectors with 99 dropout values and the corresponding number of
MACs, each in 32-bit float format) and stays constant for all rounds. At run time, a device
selects the dropout vector d that best corresponds to its current resource availability. When
the resource availability changes at the device, the used dropout vectors can be adjusted
to these changes at almost zero overhead before every mini-batch. No recompilation,
repacking of weights, etc. is required for adapting the resource requirements at run time.

In an FL setting running DISTREAL, each device selects its dropout vector at run time
according to its current resource availability, as shown in Algorithm 8.1. This is done at the
granularity of single mini-batches, i.e., devices can quickly react to changes. Additionally,
the server does not need to know the resource availability at each device at the beginning of
the round or during the round, reducing signaling overhead, and avoiding the requirement
to predict resource availability ahead of time. This enables scalability with the number
of devices. At the end of each round, the devices send the weight updates and the
computational resources they put into training (number of MACs, as stored in the LUT)

128

8.7 Experimental Evaluation

Table 8.2: System configuration for FL.

FEMNIST CIFAR-10 CIFAR-100

#Devices 3,550 100 100
#Samples/device 181±70.7 500 500
Devices/round 35 10 10
NN topology Simple CNN DenseNet-40 DenseNet-100

Resources variability 3× 4× 4×

to the server. The server (Algorithm 8.2) performs a weighted averaging of the received
updates by the devices’ reported computational resources. Thereby, updates from devices
that have trained with lower dropout rates (high resources), are weighted stronger. This
is an extension of FedAvg [122], which performs weighted averaging only based on the
amount of data (number of mini-batches) per device. In the case of the same resource
availability on all devices, our coordination technique behaves the same as FedAvg. As
the type of data exchanged between the devices and the server is not changed compared
to FedAvg, we can still apply and adopt techniques that mitigate communication aspects,
such as compression and sketched updates [123].

8.7 Experimental Evaluation

The evaluation uses the setup described in Section 3.3, which implements a synchronous
FL system. It tests the classification accuracy of the synchronized model at the end of
each round. The main performance metric is the convergence speed, i.e., the test accuracy
achieved after a certain number of rounds, but we also report the final accuracy after
convergence to demonstrate that the gains in convergence speed do not come at the cost
of a lower final accuracy.

The experiments use three datasets: Federated Extended MNIST (FEMNIST) [166] with
non-independently and identically distributed (non-iid) split data, similar to LEAF [167],
and CIFAR-10/100 [168]. FEMNIST contains 641,828 training and 160,129 test examples,
each a 28×28 grayscale image of one out of 62 classes (10 digits, 26 upper-case and 26
lower-case letters). The experiments with FEMNIST distribute the data among 3,550
devices, demonstrating the scalability of our solution. CIFAR-10 contains 50,000 training
and 10,000 test examples, each a 32×32 RGB image of one out of 10 classes such as airplane
or frogs. CIFAR-100 is similar to CIFAR-10 but contains images from 100 classes. We use
100 devices for CIFAR-10/100 . For FEMNIST , we use a similar network as used in Federated
Dropout [112], with a depth of 4 layers. It requires 4.0 million MACs in the forward
pass. We use DenseNet [158] for CIFAR-10 and CIFAR-100 with growth rate k = 12 and
a depth of 40 and 100, respectively. This results in 74 million MACs for CIFAR-10 and
291 million MACs for CIFAR-100 in the forward pass, respectively. Table 8.2 summarizes
these configurations.

129

8 Resource-Adaptive On-Device Training

DISTREAL is compared to four baselines:

1. Full resource availability. This baseline assumes that all devices have the full
resources to train the full NN in each round. This is a theoretical baseline, which
serves as an upper bound.

2. Small network. The NN complexity is statically reduced to fit the device with the
lowest resources. Thereby, each device can train the full (reduced) NN in each
round. For CIFAR-10 and CIFAR-100 , we reduce the depth of DenseNet to 19 and 40,
respectively. Because the network of FEMNIST already has only a few layers, we
reduce the number of filters in the convolutional layers.

3. Federated Dropout [112]. Similar to our DISTREAL, it uses dropout to reduce the
computational complexity. However, the rates are determined by the server at the
start of each round. In addition, it uses the same dropout rate for all layers. To have
a fair comparison, we extend the technique to allow for different dropout rates for
different devices according to their resource availability at the beginning of the
round.

4. HeteroFL [109]. It uses a shrinking ratio 0<s<1. The NN is divided into several
levels p = 1, 2, . . ., where level p reduces the width of each hidden channel (i.e.,
number of filters) to a fraction sp–1. Like in Federated Dropout, reducing the model
is done by the server at the beginning of each round. The work in [109] provides
no details on how to set s. We use s = 0.7, as it shows the best performance.

8.7.1 Heterogeneity Across Devices

The first experiments study heterogeneity across devices, i.e., devices have different
resource availability but for now, there are no changes over time. Each device is assigned a
random resource availability that is sampled uniformly from a range with the upper bound
being selected such that training the full NN without dropout is possible. The variability in
the resource availability, i.e., ratio of minimum to maximum possible resource availability,
is reported in Table 8.2. We repeat every experiment three times and report the average
and standard deviations of the test accuracy.

Fig. 8.7 shows the accuracy results. FEMNIST uses a simple network. We observe that
the small network baseline has the lowest convergence speed, while all other techniques
show a similar performance. The varying quantity (see Table 8.2) and distribution of local
training data on the devices make the training noisy, as a different random set of devices
participates in the training in each round. Nevertheless, DISTREAL is not more sensitive to
such non-iid data than other solutions and reaches the same convergence speed and final
accuracy. With CIFAR-10 , DISTREAL achieves a significantly higher convergence speed
than Federated Dropout or HeteroFL and almost reaches the accuracy of the theoretical
baseline with full resource availability after 2,000 rounds. The simple baseline that uses a
smaller network on all devices initially converges faster but then saturates early. Similar
observations can be made with CIFAR-100 . Table 8.3 reports the final accuracy, where we
train with each technique for 7,500 rounds. This ensures that all techniques have fully

130

8.7 Experimental Evaluation

0 1,000
76

78

80

82

84

86

88

A
cc
ur

ac
y
(T

O
P1

)[
%]

0 1,000 2,000

65

70

75

80

85

Round

Full resource availability (upper bound) Small network DISTREAL
HeteroFL [109] Federated Dropout [112]

0 1,000 2,000

40

45

50

55

60

Round

(a) FEMNIST (non-iid) (b) CIFAR-10 (c) CIFAR-100

Figure 8.7:Convergence during FL on heterogeneous devices. DISTREAL improves the convergence speed.

Table 8.3: Final accuracy (after 7,500 rounds). DISTREAL reaches the same or a higher final accuracy than the
state of the art.

FEMNIST CIFAR-10 CIFAR-100

Full resource availability (upper bound) 87.4±0.3 87.8±0.1 65.6±0.5

Small NN 86.4±0.1 82.2±0.6 57.8±0.5
DISTREAL 86.7±0.1 85.7±0.3 65.7±0.5
HeteroFL [109] 87.1±0.4 81.2±0.5 52.2±0.6
Federated Dropout [112] 86.9±0.3 84.2±0.3 65.3±0.5

converged. DISTREAL and Federated Dropout reach the highest final accuracy, similar to
full resource availability, up to 13 % higher than HeteroFL.

As the resources do not change over time, the main contributions of DISTREAL in this
scenario are the application of the DSE, which enables devices to efficiently utilize the
available resources and the fact that DISTREAL applies a probabilistic approach and drops
different filters in different mini-batches, allowing to support a large number of fine-
grained resource levels. Federated Dropout uses the same dropout rates for all layers,
preventing it from efficiently utilize the available resources. HeteroFL supports only a
few resource levels, which prevents it from fully exploiting the resources, and removes
the filters in always the same order. DISTREAL is the only technique to fully utilize the
available resources, and most efficiently use these resources w.r.t. convergence. In addition,
we observe higher relative gains with increasing NN model complexity.

131

8 Resource-Adaptive On-Device Training

8.7.2 Heterogeneity Across Devices and Over Time

This section studies a fully heterogeneous FL system, i.e., the resource availability varies
between devices and for each device over time. This is the main experiment in this chapter.
As discussed in Section 8.1, this is for instance due to shared resource contention between
the learning task and other tasks. As discussed earlier, the available resources for learning
may change at any time, i.e., also in the middle of a round, and may be unpredictable
to the device. We model them as random, with the time between consecutive changes
following an exponential distribution with rate parameter _. Thereby, the number of the
changes in a round follows a Poisson distribution with rate parameter _. The resource
availability levels are sampled from the same range as in the previous section, i.e., also
according to Table 8.3. The average resource availability across all devices and over time
is the same as in the previous section. We study four values of _ ∈ {0.5, 1, 2, 4}, to simulate
a range of slowly to rapidly changing scenarios.

Fig. 8.8 shows the convergence for CIFAR-10 and CIFAR-100 . We also plot the convergence
with constant resources (previous results from Fig. 8.7) for reference. We observe that the
convergence speed with DISTREAL is independent of the rate of resource changes and
almost matches the results of the previous section. In contrast, the convergence speeds
of HeteroFL and Federated Dropout significantly degrade with a higher _. For instance,
DISTREAL consistently reaches 50 % accuracy on CIFAR-100 with _ = 4 after around
1,100 rounds, i.e., around 2.5× faster thanHeteroFL, which requires around 2,700 rounds. In
addition, DISTREAL reaches the highest final accuracy (shown in Table 8.4), independently
of _. The baselines with full resource availability or a small model perform the same as
in Fig. 8.7, independently of _, and are not shown again.

HeteroFL and Federated Dropout both select the trained model subsets per device at the
server at the start of a round. The devices train on the assigned subset for the whole
round and, hence, cannot react to potential changes in the resource availability during a
round. An increase in the resource availability results in underutilization of the available
resources, as the training finishes early and the device is idle until the end of the round. A
decrease in resource availability results in the training not finishing in time (i.e., the device
becomes a straggler), leading to the device being dropped from the round, completely
wasting the available resources on this device in this round. In contrast, DISTREAL
dynamically adjusts the resource requirements of training at run time locally on each
device by selecting a different dropout vector when a change occurs, always finishing the
training in time and fully utilizing the available resources.

These results show the importance of tackling the challenges discussed in Section 8.2, i.e.,
to fully and efficiently utilize available resources on each device. DISTREAL achieves this
by performing dropout at the devices, enabling them to react fast to the changes in a fine-
grained manner. This enables to fully utilize all available resources, making convergence
robust to unpredictable changes in the resource availability. Furthermore, the DSE enables
DISTREAL to efficiently utilize the available resources by finding Pareto-optimal dropout
vectors w.r.t. the resource requirements and the achieved convergence speed. These gains
in convergence speed do not come at the cost of a lower final accuracy.

132

8.7 Experimental Evaluation

0 1,000 2,000

65

70

75

80

85

Round

A
cc
ur

ac
y
(T

O
P1

)[
%]

0 1,000 2,000
Round

Const. res. (reference) DISTREAL HeteroFL [109] Federated Dropout [112]
Changing resources DISTREAL HeteroFL Federated Dropout

0 1,000 2,000
Round

0 1,000 2,000
Round

0 1,000 2,000

40

45

50

55

60

Round

A
cc
ur

ac
y
(T

O
P1

)[
%]

0 1,000 2,000
Round

0 1,000 2,000
Round

0 1,000 2,000
Round

(a) CIFAR-10 _ = 0.5 (b) CIFAR-10 _ = 1 (c) CIFAR-10 _ = 2 (d) CIFAR-10 _ = 4

(e) CIFAR-100 _ = 0.5 (f) CIFAR-100 _ = 1 (g) CIFAR-100 _ = 2 (h) CIFAR-100 _ = 4

Figure 8.8:Convergence with CIFAR-10 and CIFAR-100 on heterogeneous devices where resources availability
changes randomly over the time with varying rate parameter _. DISTREAL achieves a higher convergence speed
than the state of the art, independently of _. Experiments with full resource availability or with a small network
are not repeated as they perform the same as in Fig. 8.7.

Table 8.4: Final accuracy (after 7,500 rounds) for CIFAR-10 and CIFAR-100 with changing resources. DISTREAL
reaches the highest final accuracy.

CIFAR-10 CIFAR-100
_ = 0.5 _ = 1 _ = 2 _ = 4 _ = 0.5 _ = 1 _ = 2 _ = 4

DISTREAL 86.3±0.3 86.0±0.2 85.1±0.3 85.9±0.4 65.4±0.4 65.5±0.9 64.7±0.3 64.7±0.3
HeteroFL [109] 82.6±0.2 81.9±1.3 81.7±0.5 81.3±0.3 57.2±0.4 56.8±1.0 56.5±1.0 56.6±1.0

Fed. Dropout [112] 83.4±0.6 83.2±0.4 82.4±0.4 82.7±0.6 65.0±0.3 64.5±0.2 64.5±0.3 64.5±0.3

133

8 Resource-Adaptive On-Device Training

8.8 Summary
This chapter addressed the problem of training of NNs under dynamic heterogeneous
resource availability. In particular, the training task often needs to share computational
resources with other tasks running on the system. This leads to the available computational
resources for training changing over time. The presented work is the first work to tackle
this problem. Maximizing the convergence speed can only be achieved by fully and
efficiently using the available resources. The proposed technique DISTREAL achieves this
by 1) employing structured dropout to make a fine-grained trade-off between resource
requirements of training and the achieved convergence speed, 2) employing different per-
layer dropout rates and finding the Pareto-optimal vectors w.r.t. resources requirements
and convergence speed with a DSE, and 3) adjusting the dropout rates locally and fast on
each device, without requiring any assistance from the server. DISTREAL is evaluated in
a heterogeneous FL setting, where many devices perform distributed training of an NN.
Thereby, resources vary both between devices and over time. The results show that
DISTREAL significantly improves the convergence speed without compromising on the
final accuracy.

This chapter focused on computational resources and did not take communication lim-
itations into consideration. However, as we do not change the type of data exchanged
between the devices and the server, compared to FedAvg, we can still apply and adopt
techniques that have been proposed to mitigate communication aspects, such as compres-
sion and sketched updates [123]. Besides, DISTREAL is currently tailored towards a CNN.
However, it would also be applicable with minor changes to other NN types, such as
fully-connected networks. Finally, the supported range of resource availability is limited
by the maximum dropout rate. We studied dropout rates up to 0.5, i.e., up to 4× variability
in the resources.

134

9 Conclusion

This dissertation tackles the problem of optimizing the management of limited resources
in computing systems using machine learning (ML). In particular, the main focus of this
dissertation is on system-level resource management, i.e., applyingML to operating system
(OS)-level optimization using application mapping, application migration, and dynamic
voltage and frequency scaling (DVFS) for performance maximization under a thermal
constraint, or temperature minimization under a quality of service (QoS) constraint.

Chapter 4 presents a classical technique (without ML) for application mapping and DVFS
using power budgets to gain a deeper understanding of the involved challenges. It tackles
the problem of performance maximization on thermally-constrained many-core processors
with distributed shared last-level cache (LLC) and presents the first work to exploit the
trade-off between power budget maximization and LLC latency minimization defined
by the application mapping on such platforms. Even though the presented technique
demonstrates improvements over the state of the art, it still has several shortcomings.
The developed classical heuristic for application mapping is suboptimal as it ignores
application characteristics. In addition, it is not applicable to different cooling or thermal
constraints as the underlying trade-off would change. This is as the heuristic ignores parts
of the underlying complexity in applications and the platform. The heuristic power budget
reallocation algorithm is also suboptimal and a higher performance would be achievable
when proactively throttling some applications to boost others. These shortcomings can
not easily be tackled, as the complexity of the heuristics would increase impractically.

ML can tackle some of the main challenges in resource management, i.e., i) coping with
the high complexity of applications and platforms, ii) coping with unseen (not known at
design time) scenarios in the workload and platform configuration, iii) achieving proactive
management, and iv) maintaining a low run-time overhead. Three main patterns have been
identified to employ ML in resource management: 1) predict the impact of a management
action before executing it, 2) estimate hidden properties of applications and platform, and
3) directly learn the resource management policy.

Chapter 5 studies a similar problem as in Chapter 4, addressing its shortcomings. The
presented technique employs application migration, taking into account the application
characteristics and overall workload. Thereby, it finds per each application the mapping
that makes the optimal trade-off between power budget and LLC latency. This is achieved
with a neural network (NN) model to predict the performance impact of a potential
migration before executing it. Only the migration with the best predicted impact is
executed. Proactive management is achieved by executing no migration before predicting
its impact. The model is trained to cope with unseen applications, i.e., not used during

135

9 Conclusion

training, which is achieved by using general performance counters as features, and the
technique generalizes to different thermal constraints. In addition, the model achieves a
better trade-off between accuracy and overhead than analytical modeling based on cycles
per instruction (CPI) stacks, without requiring deep insights into the internals of the
platform. This technique outperforms the classical heuristic management presented in
Chapter 4. However, it still performs DVFS with power budgets, which simplifies the
problem but prevents further optimization.

The technique presented in Chapter 6 further studies the problem of maximizing the
performance under a thermal constraint using DVFS (boosting). A key observation
in this technique is that boosting needs to consider the sensitivities of performance,
power, and temperature on voltage/frequency (V/f) levels, which vary depending on the
application and current mapping. This is tackled with a boostability metric to integrate all
three required factors. The sensitivities of performance and power are not measurable
at run time. Therefore, an NN model is designed, trained, and employed to estimate
these unobservable (hidden) properties of unseen applications at run time. By providing
estimates of hidden properties of applications, employing ML helps tackle the complexity
of the problem. ML-based modeling achieves a higher prediction accuracy than analytical
models, which enables achieving a higher performance but still thermally-safe operation.
Therefore, the presented technique outperforms classical heuristic management and
analytical management.

Chapter 7 tackles the problem of joint application migration and DVFS on heterogeneous
clustered multi-core processors to minimize the temperature under QoS targets. This is
challenging, as a global optimization is required to consider all running applications and
their respective QoS targets, and different applications require different optimal migrations.
The problem is solved with a two-part algorithm that employs NN-based imitation learning
(IL) to decide on application migrations to change their mapping and employs a simple
control loop to determine the V/f levels for the given mapping. IL enables combining the
optimality of oracle demonstrations with a low run-time overhead. The NN generalizes
to unseen applications and even different cooling settings. This technique is also the first
to accelerate the run-time inference of NN-based resource management using a generic,
already existing NN accelerator, a neural processing unit (NPU), to reduce the run-time
overhead. Finally, this chapter shows that IL-based management achieves better and
more stable management than reinforcement learning (RL), and also outperforms classical
heuristic management.

The previous works all perform training at design time. In contrast, Chapter 8 targets run-
time training, which may provide additional adaptability. One of the main observations
in this chapter is that the available resources for training at run time vary over time due
to, e.g., shared resource contention with other applications running on the system. This
requires that the training is dynamically adjustable to varying resources. The presented
solution achieves adjustability by dynamically dropping parts of the NN during training
using structured dropout to save computations. The Pareto-optimal per-layer dropout
rates are determined using a design space exploration (DSE). The proposed technique

136

9.1 Future Work

is evaluated in a distributed training setting using federated learning (FL), where the
available computational resources vary between devices and on every device over time.

In summary, this dissertation and the presented techniques showed that ML is a key
technology to tackle the main challenges in resource management, thereby improving the
overall efficiency, e.g., improving the achievable performance.

9.1 Future Work

This dissertation opens several directions for future research. This section outlines two
promising directions: generalize across platforms and increase the run-time adaptability.

Generalization Across Platforms A major focus in all the resource management tech-
niques developed within this dissertation is the generalization to unseen workloads with
unknown applications and unknown input data, which is essential in open systems. How-
ever, the developed techniques are still specific to a certain hardware platform. While
this dissertation has presented the first steps toward generalization to different platforms,
e.g., by studying variations in the thermal constraint (Chapter 5) and cooling settings
(Chapter 7), more research is needed.

Generalization to different hardware platforms, where, for instance, a model is trained on
a processor of one generation and could still be employed for management of a processor
of the next generation, would greatly enhance the applicability of the techniques. This is
as it would eliminate the requirement to obtain training data on every potential platform.
A first step could be to employ transfer learning [169], where a model is trained on one
platform (requiring a full set of training data), and then re-trained on another platform
using only a small amount of training data. Transfer learning exploits similarities between
problems, and, therefore, only works if platforms have some similarity. The ultimate
goal would be to train a single model that generalizes to various platforms. The main
challenges are finding general features that accurately describe a platform, as well as
acquiring a representative set of training data from various platforms. In addition, this
may come at the cost of requiring a more complex model, adversely affecting the run-time
overhead.

Increase Adaptability through Run-time Learning Generalization to different scenarios
(workloads or even platforms) is necessary if the same ML model is deployed to various
instances that experience different scenarios. Such generalization comes at the cost of
requiring representative training data for various scenarios and potentially increasing
the model complexity. However, a specific instance only needs to cope with the specific
scenarios that occur on it.

This could be achieved through run-time (online) learning, where the employed model
is continuously updated based on observations during run time. However, several chal-
lenges need to be tackled. First, it must be possible to create labels at run time. This
is straightforward when employing ML to predict the impact of management actions,

137

9 Conclusion

where the real impact can be observed after executing the action. This is also possible
with RL. However, it is difficult for instance for IL, which requires oracle demonstrations
for training. Second, Chapter 7 has already demonstrated the importance of run-time
stability, i.e., updating the model should not result in temporary bad management. This
could not be achieved with RL. In addition, there is a trade-off between adapting fast
to changes in the observed scenarios due to concept drift [170], but still achieving good
management for scenarios that have not been observed for a long time but still might
eventually happen again. Finally, the run-time learning comes at the cost of increased
overhead for additional computations and storing not only the model but also training
data. One way to solve this is to perform training only with free resources that are not
used by other applications, applying the technique presented in Chapter 8.

138

List of Figures

1.1 Performance of the big cluster vs. LITTLE cluster on Arm big.LITTLE for
various applications. 3

1.2 Peak power of different PARSEC and SPLASH-2 applications on a homoge-
neous many-core processor with the simmedium/large input data compared
to the simsmall/small input data. 4

1.3 Without proactively considering the impact of upscaling (boosting) V/f levels,
violations of the thermal constraint cannot be avoided. 5

1.4 ML Usage Pattern 1: Employing ML to predict the impact of a potential
management action. 9

1.5 ML Usage Pattern 2: Employing ML to estimate hidden properties of the
platform or applications. 10

1.6 ML Usage Pattern 3: Employing ML to directly select management actions. . 11

3.1 The CPI stack of SPLASH-2 fft clearly shows its execution phases and provides
insights into what causes them. 22

3.2 The 8×8 bus-based homogeneous many-core architecture employed in the
simulation-based setup. 23

3.3 The 8×8 NoC-based many-core architecture with S-NUCA LLC employed in
the simulation-based setup. 24

3.4 The Arm big.LITTLE architecture employed in the physical setup with a
HiKey 970 board. 25

3.5 The HiKey 970 board with (a) and without (b) a fan. 26
3.6 FL-based setup to evaluate techniques for resource-aware ML. 27

4.1 AMD in S-NUCA many-core processors. 30
4.2 Heat conductance across the many-core processor falls off approximately

exponentially. 31
4.3 Trade-off between power budget and LLC latency in S-NUCA many-core

processors. 32
4.4 Impact of mapping on the performance of PARSEC applications on an S-NUCA

many-core processor. 33
4.5 Reallocating the power budget results in a higher performance. 35
4.6 The peak power consumption of a single thread of different PARSEC applica-

tions differs strongly. 36
4.7 Reallocation of unused power budget between heterogeneous applications

increases the performance. 36

139

List of Figures

4.8 PCGov comprises two parts: application mapping and dynamic power budget
reallocation. 40

4.9 Pareto curve of power budgets and maximum AMDs of different mappings of
twelve threads to a 64-core many-core processor. 42

4.10 FSM to track the state of a thread and reallocate power budgets. 43
4.11 Comparison of PCGov with the state of the art. 46
4.12 Average power budgets of the near-Pareto-optimal mapping candidates ob-

tained by PCGov are very close to the Pareto-optimal mappings. 47
4.13 Average overhead per execution for application mapping and dynamic power

budget reallocation depending on the size of the many-core processor. 48
4.14 Impact of varying the hysteresis parameter X on the performance and dynamic

power budget reallocation overhead. 50

5.1 The performances of blackscholes master and slave threads depend differently
on the power budget and AMD due to their different characteristics. 54

5.2 Application migration after a system load change, e.g., due to a terminating
application, improves the performance. 55

5.3 Migration x264 according to its execution phases increases the per-phase
performance by up to 14 %. 56

5.4 Training data generation for the NN-based IPS prediction models. 59
5.5 Comparison of two activation functions sigmoid and fast sigmoid. 60
5.6 Impact of the AMD and V/f level on the CPI stack of the bodytrack master

thread. 61
5.7 PCMig performs run-time application migration using a performance predic-

tion model. 64
5.8 Instructions per second (IPS) of different threads after a migration. 66
5.9 Prediction accuracy with the different models. 67
5.10 Comparison of the different models. 68
5.11 Comparison of training overhead and storage requirements of the models. . 69
5.12 Demonstration of the prediction accuracy of the IPS model for the unseen

bodytrack application. 70
5.13 Performance with PCMig for isolated workloads. 72
5.14 ML-based PCMig improves the average performance with mixed random

workloads over heuristic and state-of-the-art management. 74
5.15 Parallelized run-time overhead of PCMig. 74

6.1 Motivational example for boosting. 78
6.2 V/f sensitivities of performance and power consumption. 79
6.3 Overview of model training for SmartBoost at design time. 84
6.4 Overview of SmartBoost management at run time. 85
6.5 SmartBoost comprehensively considers all the sensitivities. 89
6.6 Overall system performance and temperature with SmartBoost and the state

of the art. 90
6.7 An illustrative example showing the benefits of SmartBoost. 91

140

List of Figures

6.8 Prediction RMSE in the sensitivity of performance and power. 92

7.1 On Arm big.LITTLE, the optimal mapping of applications with QoS targets
varies between applications, and with other parallel applications. 96

7.2 Design-time training data generation for IL-based application migration. . . 101
7.3 Illustrative example of training data generation. 102
7.4 Visualization of the grid search results for the NN topology. 104
7.5 Illustration of TOP-IL at run time. 104
7.6 The impact of periodic migration of an application on its performance is

negligible. 106
7.7 Overview of RL-based application migration. One agent is instantiated per

application. 107
7.8 Illustrative example of the mappings chosen by TOP-IL and Therm-RL. 111
7.9 TOP-IL significantly reduces the temperature, while achieving low QoS viola-

tions. 112
7.10 Distribution of the total CPU time (among all arrival rates and repetitions)

per technique to the clusters and V/f levels 113
7.11 TOP-IL is the only technique to achieve no performance violations, yet low

temperature for all single application workloads. 114
7.12 The run-time overhead of the TOP-IL increases with the number of executed

applications. 116

8.1 Convolutional layers account for the majority of MAC operations in CNNs. 120
8.2 Filter-based structured dropout in a convolutional layer 120
8.3 The building blocks for sparse NN that implement filter-based structured

dropout. 121
8.4 The number of MACs and mini-batch time of training DenseNet-40 on a

Raspberry Pi 4. 123
8.5 Efficient resource-aware training with DISTREAL. 126
8.6 The Pareto-front for DenseNet-40 significantly outperforms setting the same

rate for all layers. 127
8.7 Convergence during FL on heterogeneous devices. DISTREAL improves the

convergence speed. 131
8.8 Convergence with CIFAR-10 and CIFAR-100 on heterogeneous devices where

resources availability changes randomly over the time. 133

141

List of Tables

7.1 The selected features for IL-based migration. 99

8.1 Expected number of MACs of the forward pass of individual layers with
structured dropout. 125

8.2 System configuration for FL. 129
8.3 Final accuracy (after 7,500 rounds). DISTREAL reaches the same or a higher

final accuracy than the state of the art. 131
8.4 Final accuracy (after 7,500 rounds) for CIFAR-10 and CIFAR-100 with changing

resources. DISTREAL reaches the highest final accuracy. 133

143

List of Algorithms

4.1 Find Near-Pareto-Optimal Mapping Candidates 41
4.2 ReallocPower: Reallocate Power Budgets 44

5.1 Performance Prediction using CPI Stacks . 64

6.1 SmartBoost . 86
6.2 Throttle to Avoid Thermal Violations . 86
6.3 Boost to Exploit Thermal Margin . 87
6.4 Throttle an Application to Boost Another Application 88

8.1 Each Selected Device i (Client) in DISREAL 128
8.2 Server in DISREAL . 128

145

List of Abbreviations

AMD Average Manhattan distance

AoI Application of interest

CNN Convolutional neural network

CPI Cycles per instruction

CPU Central processing unit

DRAM Dynamic random access memory

DRL Deep reinforcement learning

DSE Design space exploration

DSP Digital signal processor

DTM Dynamic thermal management

DVFS Dynamic voltage and frequency scaling

EDA Embedded design automation

FL Federated learning

FSM Finite state machine

GTS Global Task Scheduling

IL Imitation learning

ILP Integer linear program

IoT Internet of things

IPC Instructions per cycle

IPS Instructions per second

LLC Last-level cache

LUT Lookup table

MAC Multiply-accumulate

MD Manhattan distance

MDP Markov decision process

ML Machine learning

147

List of Abbreviations

MLP Memory-level parallelism

MSE Mean squared error

NAS Neural architecture search

NN Neural network

NoC Network-on-chip

non-iid Non-independently and identically distributed

NPU Neural processing unit

OS Operating system

QoS Quality of service

RAM Random access memory

RL Reinforcement learning

RMSE Root-mean-square error

S-NUCA Static non-uniform cache access

SoC System-on-chip

TDP Thermal Design Power

TSP Thermal Safe Power

V/f Voltage/frequency

148

Bibliography

[1] Martin Rapp, Heba Khdr, Nikita Krohmer, and Jörg Henkel. “NPU-Accelerated
Imitation Learning for Thermal Optimization of QoS-Constrained Heterogeneous
Multi-Cores”. In: arXiv preprint arXiv:2206.05459 (2022).

[2] Martin Rapp, Nikita Krohmer, Heba Khdr, and Jörg Henkel. “NPU-Accelerated
Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous
Multi-Cores”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2022. doi: 10.23919/DATE54114.2022.9774681.

[3] Martin Rapp, Ramin Khalili, Kilian Pfeiffer, and Jörg Henkel. “DISTREAL: Dis-
tributed Resource-Aware Learning in Heterogeneous Systems”. In: AAAI Confer-
ence on Artificial Intelligence (AAAI). 2022.

[4] Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Pan, Marilyn Wolf, and
Jörg Henkel. “MLCAD: A Survey of Research in Machine Learning for CAD
(Keynote Paper)”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) (2021). doi: 10.1109/TCAD.2021.3124762.

[5] Martin Rapp, Mohammed Bakr Sikal, Heba Khdr, and Jörg Henkel. “SmartBoost:
Lightweight ML-Driven Boosting for Thermally-Constrained Many-Core Pro-
cessors”. In: Design Automation Conference (DAC). 2021. doi: 10.1109/DAC18074.
2021.9586287.

[6] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. “Neural Network-
based Performance Prediction for Task Migration on S-NUCA Many-Cores”. In:
IEEE Transactions on Computers (TC) 70.10 (2021). doi: 10.1109/TC.2020.3023022.

[7] Martin Rapp, Mark Sagi, Anuj Pathania, Andreas Herkersdorf, and Jörg Henkel.
“Power-and Cache-Aware Task Mapping with Dynamic Power Budgeting for
Many-Cores”. In: IEEE Transactions on Computers (TC) 69.1 (2020). doi: 10.1109/
TC.2019.2935446.

[8] Martin Rapp, Anuj Pathania, Tulika Mitra, and Jörg Henkel. “Prediction-Based
Task Migration on S-NUCA Many-Cores”. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2019. doi: 10.23919/DATE.2019.8714974.

[9] Martin Rapp, Anuj Pathania, and Jörg Henkel. “Pareto-Optimal Power- and Cache-
Aware Task Mapping for Many-Cores with Distributed Shared Last-Level Cache”.
In: Int. Symp. on Low Power Electronics and Design (ISLPED). ACM/IEEE. 2018. doi:
10.1145/3218603.3218630.

149

https://doi.org/10.23919/DATE54114.2022.9774681
https://doi.org/10.1109/TCAD.2021.3124762
https://doi.org/10.1109/DAC18074.2021.9586287
https://doi.org/10.1109/DAC18074.2021.9586287
https://doi.org/10.1109/TC.2020.3023022
https://doi.org/10.1109/TC.2019.2935446
https://doi.org/10.1109/TC.2019.2935446
https://doi.org/10.23919/DATE.2019.8714974
https://doi.org/10.1145/3218603.3218630

Bibliography

[10] Martin Rapp, Omar Elfatairy, Marilyn C. Wolf, Jörg Henkel, and Hussam Amrouch.
“Towards NN-based Online Estimation of the Full-Chip Temperature and the Rate
of Temperature Change”. In: Workshop on Machine Learning for CAD (MLCAD).
2020, pp. 95–100. doi: 10.1145/3380446.3430648.

[11] Martin Rapp, Ramin Khalili, and Jörg Henkel. “Distributed Learning on Heteroge-
neous Resource-Constrained Devices”. In: arXiv preprint arXiv:2006.05403 (2020).

[12] Martin Rapp, Sami Salamin, Hussam Amrouch, Girish Pahwa, Yogesh Chauhan,
and Jörg Henkel. “Performance, Power and Cooling Trade-Offs with NCFET-
based Many-Cores”. In: Design Automation Conference (DAC). 2019. doi: 10.1145/
3316781.3317880.

[13] Martin Rapp, Hussam Amrouch, Marilyn C. Wolf, and Jörg Henkel. “Machine
Learning Techniques to Support Many-Core Resource Management: Challenges
and Opportunities”. In: Workshop on Machine Learning for CAD (MLCAD). ACM/
IEEE. 2019. doi: 10.1109/MLCAD48534.2019.9142064.

[14] Lokesh Siddhu, Rajesh Kedia, Shailja Pandey, Martin Rapp, Anuj Pathania, Jörg
Henkel, and Preeti Ranjan Panda. “CoMeT: An Integrated Interval Thermal Sim-
ulation Toolchain for 2D, 2.5 D, and 3D Processor-Memory Systems”. In: ACM
Transactions on Architecture and Code Optimization (TACO) (2022).

[15] Marcel Mettler, Martin Rapp, Heba Khdr, Daniel Müller-Gritschneder, and Jörg
Henkel. “An FPGA-based Approach to Evaluate Thermal and Resource Manage-
ment Strategies of Many-Core Processors”. In: ACM Transactions on Architecture
and Code Optimization (TACO) (2022).

[16] Mohammed Bakr Sikal, Heba Khdr, Martin Rapp, and Jörg Henkel. “Thermal-
and Cache-Aware Resource Management based on ML-Driven Cache Contention
Prediction”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2022.

[17] Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. “CoCo-FL: Commu-
nication- and Computation-Aware Federated Learning via Partial NN Freezing
and Quantization”. In: arXiv preprint arXiv:2203.05468 (2022).

[18] Veera Venkata RamMurali Krishna RaoMuvva, Martin Rapp, Jörg Henkel, Hussam
Amrouch, andMarilyn C.Wolf. “On the Effectiveness of Quantization and Pruning
on the Performance of FPGAs-based NN Temperature Estimation”. In: Workshop
on Machine Learning for CAD (MLCAD). 2021.

[19] Mark Sagi, Martin Rapp, Heba Khdr, Yizhe Zhang, Nael Fasfous, Nguyen Anh Vu
Doan, Thomas Wild, Jörg Henkel, and Andreas Herkersdorf. “Long Short-Term
Memory Neural Network-based Power Forecasting of Multi-Core Processors”. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2021,
pp. 1685–1690.

150

https://doi.org/10.1145/3380446.3430648
https://doi.org/10.1145/3316781.3317880
https://doi.org/10.1145/3316781.3317880
https://doi.org/10.1109/MLCAD48534.2019.9142064

Bibliography

[20] Sami Salamin, Victor M Van Santen, Martin Rapp, Jörg Henkel, and Hussam
Amrouch. “Minimizing Excess Timing Guard Banding Under Transistor Self-
Heating Through Biasing at Zero-Temperature Coefficient”. In: IEEE Access 9
(2021), pp. 30687–30697.

[21] Hussam Amrouch, Martin Rapp, Sami Salamin, and Jörg Henkel. “Impact of
Negative Capacitance Field-Effect Transistor (NCFET) on Many-Core Systems”.
In: A Journey of Embedded and Cyber-Physical Systems. Springer, 2021, pp. 107–
123.

[22] Mark Sagi, Nguyen Anh Vu Doan, Martin Rapp, Thomas Wild, Jörg Henkel,
and Andreas Herkersdorf. “A Lightweight Nonlinear Methodology to Accurately
Model Multi-Core Processor Power”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 39.11 (2020), pp. 3152–3164.

[23] Sami Salamin, Martin Rapp, Jörg Henkel, Andreas Gerstlauer, and Hussam Am-
rouch. “Dynamic Power and Energy Management for NCFET-Based Processors”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 39.11 (2020), pp. 3361–3372.

[24] Behnaz Pourmohseni, Michael Glaß, Jörg Henkel, Heba Khdr, Martin Rapp, Va-
lentina Richthammer, Tobias Schwarzer, Fedor Smirnov, Jan Spieck, Jürgen Teich,
Andreas Weichslgartner, and Stefan Wildermann. “Hybrid Application Mapping
for Composable Many-Core Systems: Overview and Future Perspective”. In: Jour-
nal of Low Power Electronics and Applications (JLPEA) 10.4 (2020).

[25] Sami Salamin, Martin Rapp, Anuj Pathania, Arka Maity, Jörg Henkel, Tulika Mitra,
and Hussam Amrouch. “Power-Efficient Heterogeneous Many-Core Design with
NCFET Technology”. In: IEEE Transactions on Computers (TC) 70.9 (2020), pp. 1484–
1497.

[26] Sami Salamin, Martin Rapp, Hussam Amrouch, Andreas Gerstlauer, and Jörg
Henkel. “EnergyOptimization inNCFET-based Processors”. In:Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE. 2020, pp. 630–633.

[27] Marvin Damschen, Martin Rapp, Lars Bauer, and Jörg Henkel. “i-Core: A Runtime-
Reconfigurable Processor Platform for Cyber-Physical Systems”. In: Embedded,
Cyber-Physical, and IoT Systems. Springer, 2020.

[28] Jörg Henkel, Hussam Amrouch, Martin Rapp, Sami Salamin, Dayane Reis, Di Gao,
Xunzhao Yin, Michael Niemier, Cheng Zhuo, X Sharon Hu, Hsiang-Yun Cheng,
and Chia-Lin Yang. “The Impact of Emerging Technologies on Architectures
and System-level Management”. In: International Conference on Computer-Aided
Design (ICCAD). IEEE. 2019.

[29] Sami Salamin, Martin Rapp, Hussam Amrouch, Girish Pahwa, Yogesh Chauhan,
and Jörg Henkel. “NCFET-aware Voltage Scaling”. In: International Symposium on
Low Power Electronics and Design (ISLPED). IEEE. 2019.

151

Bibliography

[30] Jörg Henkel, Heba Khdr, and Martin Rapp. “Smart Thermal Management for
Heterogeneous Multicores”. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2019, pp. 132–137.

[31] Jörg Henkel, Andreas Herkersdorf, Lars Bauer, Thomas Wild, Michael Hübner,
Ravi Kumar Pujari, Artjom Grudnitsky, Jan Heisswolf, Aurang Zaib, Benjamin
Vogel, Vahid Lari, and Sebastian Kobbe. “Invasive Manycore Architectures”. In:
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE. 2012,
pp. 193–200.

[32] Peter Marwedel. Embedded System Design: Embedded Systems Foundations of
Cyber-Physical Systems, and the Internet of Things. Springer Nature, 2021.

[33] Jörg Henkel, Heba Khdr, Santiago Pagani, and Muhammad Shafique. “New Trends
in Dark Silicon”. In: Design Automation Conference (DAC). IEEE. 2015.

[34] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. “Dark Silicon and the End of Multicore Scaling”. In: International
Symposium on Computer Architecture (ISCA). IEEE. 2011, pp. 365–376.

[35] Mohssen Mohammed, Muhammad Badruddin Khan, and Eihab Bashier Mo-
hammed Bashier. Machine Learning: Algorithms and Applications. CRC Press,
2016.

[36] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In:
Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics (NAACL). 2018.

[37] Boyi Liu, Lujia Wang, and Ming Liu. “Lifelong Federated Reinforcement Learning:
A Learning Architecture for Navigation in Cloud Robotic Systems”. In: IEEE
Robotics and Automation Letters 4.4 (2019), pp. 4555–4562.

[38] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
Large-Scale Hierarchical Image Database”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE. 2009, pp. 248–255.

[39] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek
Khailany, and David Z Pan. “DREAMPlace: Deep Learning Toolkit-Enabled GPU
Acceleration for Modern VLSI Placement”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 40.4 (2020), pp. 748–761.

[40] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans Kaashoek,
Robert Morris, et al. “Corey: An Operating System for Many Cores”. In: Symp.
Operating System Design and Implementation (OSDI). 2008.

[41] Cortex-A73 MPCore Processor Technical Reference Manual. Revision r1p0. Arm
Limited. 2018.

[42] Cortex-A53 MPCore Processor Technical Reference Manual. Revision r0p4. Arm
Limited. 2018.

152

Bibliography

[43] Changkyu Kim, Doug Burger, and StephenWKeckler. “AnAdaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches”. In: Int. Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS).
ACM. 2002, pp. 211–222. doi: 10.1145/635508.605420.

[44] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik Sankaranarayanan,
Kevin Skadron, and Mircea R Stan. “HotSpot: A Compact Thermal Modeling
Methodology for Early-Stage VLSI Design”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 14.5 (2006), pp. 501–513. doi: 10.1109/TVLSI.
2006.876103.

[45] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. “Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions”. In: IEEE Journal of Solid-State Circuits (JSSC) 9.5
(1974), pp. 256–268.

[46] Michael R Garey and David S. Johnson. “Complexity Results for Multiprocessor
Scheduling under Resource Constraints”. In: SIAM Journal on Computing (1975).

[47] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. “The PARSEC
Benchmark Suite: Characterization and Architectural Implications”. In: Int. Conf.
on Parallel Architectures and Compilation Techniques (PACT). ACM. 2008, pp. 72–81.
doi: 10.1145/1454115.1454128.

[48] Dror G Feitelson and Larry Rudolph. “Metrics and Benchmarking for Parallel
Job Scheduling”. In: Workshop on Job Scheduling Strategies for Parallel Processing.
Springer. 1998.

[49] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. “The SPLASH-2 Programs: Characterization and Methodological
Considerations”. In: Int. Symp. Computer Architecture (ISCA) (1995).

[50] Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Pa-
heding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and
Vijayan K Asari. “The History began from AlexNet: A Comprehensive Survey on
Deep Learning Approaches”. In: arXiv preprint arXiv:1803.01164 (2018).

[51] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: a Simple Way to Prevent Neural Networks from Over-
fitting”. In: Journal of Machine Learning Research (JMLR) 15.1 (2014), pp. 1929–
1958.

[52] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. “Human-Level Control through Deep Reinforcement Learning”.
In: Nature 518.7540 (2015), pp. 529–533.

[53] Ayse Kivilcim Coskun, Tajana Simunic Rosing, Keith A Whisnant, and Kenny
C Gross. “Temperature-Aware MPSoC Scheduling for Reducing Hot Spots and
Gradients”. In: Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE Computer Society. 2008, pp. 49–54.

153

https://doi.org/10.1145/635508.605420
https://doi.org/10.1109/TVLSI.2006.876103
https://doi.org/10.1109/TVLSI.2006.876103
https://doi.org/10.1145/1454115.1454128

Bibliography

[54] Heba Khdr, Santiago Pagani, Muhammad Shafique, and Jörg Henkel. “Thermal
Constrained Resource Management for Mixed ILP-TLP Workloads in Dark Silicon
Chips”. In: Design Automation Conference (DAC). ACM. 2015.

[55] Daniel Olsen and Iraklis Anagnostopoulos. “Performance-Aware Resource Man-
agement of Multi-Threaded Applications on Many-Core Systems”. In: Great Lakes
Symposium on VLSI (GLSVLSI). 2017, pp. 119–124.

[56] Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based Pro-
cessors. Intel Corporation. 2008.

[57] Brian Jeff. “big.LITTLE Technology Moves Towards Fully Heterogeneous Global
Task Scheduling”. In: ARM white paper (2013).

[58] Venkatesh Pallipadi and Alexey Starikovskiy. “The ondemand Governor”. In:
Proceedings of the Linux Symposium. Vol. 2. 00216. 2006, pp. 215–230.

[59] Shi Sha, Wujie Wen, Shaolei Ren, and Gang Quan. “M-Oscillating: Performance
Maximization on Temperature-ConstrainedMulti-Core Processors”. In: IEEE Trans.
Parallel and Distributed Systems (TPDS) 29.11 (2018), pp. 2528–2539.

[60] Anuj Pathania and Jörg Henkel. “Task Scheduling for Many-Cores with S-NUCA
Caches”. In: Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2018, pp. 557–562. doi: 10.23919/DATE.2018.8342069.

[61] Anil Kanduri, Mohammad-Hashem Haghbayan, Amir M Rahmani, Muhammad
Shafique, Axel Jantsch, and Pasi Liljeberg. “adBoost: Thermal Aware Performance
Boosting through Dark Silicon Patterning”. In: IEEE Transactions on Computers
(TC) 1 (2018).

[62] Jim Ng, Xiaohang Wang, Amit Kumar Singh, and Terrence Mak. “Defragmen-
tation for Efficient Runtime Resource Management in NoC-Based Many-Core
Systems”. In: Transactions on Very Large Scale Integration (VLSI) Systems 24.11
(2016), pp. 3359–3372.

[63] Di Zhu, Lizhong Chen, Timothy M Pinkston, and Massoud Pedram. “TAPP: Tem-
perature-Aware Application Mapping for NoC-Based Many-Core Processors”.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE). EDA
Consortium. 2015, pp. 1241–1244.

[64] Xiaohang Wang, Amit Kumar Singh, Bing Li, Yang Yang, Hong Li, and Terrence
Mak. “Bubble Budgeting: Throughput Optimization for Dynamic Workloads by
Exploiting Dark Cores in Many Core Systems”. In: IEEE Transactions on Computers
(TC) 67.2 (2018), pp. 178–192.

[65] Xiaohang Wang, Baoxin Zhao, Ling Wang, Terrence Mak, Mei Yang, Yingtao
Jiang, and Masoud Daneshtalab. “A Pareto-Optimal Runtime Power Budgeting
Scheme for Many-Core Systems”. In: Microprocessors and Microsystems 46 (2016),
pp. 136–148.

[66] Heba Khdr, Hussam Amrouch, and Jörg Henkel. “Aging-Constrained Performance
Optimization for Multi Cores”. In: Design Automation Conference (DAC). IEEE.
2018.

154

https://doi.org/10.23919/DATE.2018.8342069

Bibliography

[67] Guangshuo Liu, Jinpyo Park, and Diana Marculescu. “Procrustes 1: Power Con-
strained Performance Improvement using Extended Maximize-then-Swap Algo-
rithm”. In: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. (TCAD) 34.10
(2015), pp. 1664–1676.

[68] Can Hankendi and Ayse Kivilcim Coskun. “Scale & Cap: Scaling-Aware Resource
Management for Consolidated Multi-Threaded Applications”. In: ACM Trans.
Design Automation of Electronic Systems (TODAES) 22.2 (2017).

[69] Hai Wang, Wei Li, Wenjie Qi, Diya Tang, Letian Huang, and He Tang. “Runtime
Performance Optimization of 3-D Microprocessors in Dark Silicon”. In: IEEE Trans.
Computers (TC) (2020).

[70] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. “Scheduling Heterogeneous Multi-Cores Through Performance Impact
Estimation (PIE)”. In: SIGARCH Computer Architecture News. Vol. 40. 3. IEEE
Computer Society. 2012, pp. 213–224. doi: 10.1145/2366231.2337184.

[71] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkatara-
mani, Tulika Mitra, and Sanjay Vishin. “Power-Performance Modeling on Asym-
metric Multi-Cores”. In: Int. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems (CASES). IEEE. 2013. doi: 10.1109/CASES.2013.6662519.

[72] Ganapati Bhat, Gaurav Singla, Ali K Unver, and Umit Y Ogras. “Algorithmic
Optimization of Thermal and Power Management for Heterogeneous Mobile
Platforms”. In: IEEE Trans. Very Large Scale Integration (VLSI) Systems 26.3 (2017),
pp. 544–557.

[73] Santiago Pagani, Sai Manoj PD, Axel Jantsch, and Jörg Henkel. “Machine Learning
for Power, Energy, and ThermalManagement onMulti-Core Processors: A Survey”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) (2018). doi: 10.1109/TCAD.2018.2878168.

[74] Anup Das, Rishad A Shafik, Geoff V Merrett, Bashir M Al-Hashimi, Akash Ku-
mar, and Bharadwaj Veeravalli. “Reinforcement Learning-based Inter-and Intra-
Application Thermal Optimization for Lifetime Improvement of Multicore Sys-
tems”. In: Design Automation Conference (DAC). 2014.

[75] Rishad A Shafik, Sheng Yang, Anup Das, Luis A Maeda-Nunez, Geoff V Merrett,
and Bashir M Al-Hashimi. “Learning Transfer-Based Adaptive Energy Minimiza-
tion in Embedded Systems”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 35.6 (2015), pp. 877–890.

[76] Sai Manoj Pudukotai Dinakarrao, Arun Joseph, Anand Haridass, Muhammad
Shafique, Jörg Henkel, and Houman Homayoun. “Application and Thermal-Relia-
bility-Aware Reinforcement Learning based Multi-Core Power Management”. In:
ACM Jrnl. on Emerging Tech. in Computing Systems (JETC) 15.4 (2019).

155

https://doi.org/10.1145/2366231.2337184
https://doi.org/10.1109/CASES.2013.6662519
https://doi.org/10.1109/TCAD.2018.2878168

Bibliography

[77] Eunji Kwon, Sodam Han, Yoonho Park, Jongho Yoon, and Seokhyeong Kang.
“Reinforcement Learning-Based Power Management Policy for Mobile Device
Systems”. In: IEEE Transactions on Circuits and Systems I: Regular Papers (TCAS-I)
(2021).

[78] Di Liu, Shi-Gui Yang, Zhenli He, Mingxiong Zhao, and Weichen Liu. “CARTAD:
Compiler-Assisted Reinforcement Learning for Thermal-Aware Task Scheduling
and DVFS on Multicores”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) (2021).

[79] Shiting Lu, Russell Tessier, and Wayne Burleson. “Reinforcement Learning for
Thermal-Aware Many-Core Task Allocation”. In: Great Lakes Symp. on VLSI
(GLSVLI). 2015, pp. 379–384.

[80] Ujjwal Gupta, Sumit K Mandal, Manqing Mao, Chaitali Chakrabarti, and Umit Y
Ogras. “A Deep Q-Learning Approach for Dynamic Management of Heteroge-
neous Processors”. In: Computer Architecture Letters (CAL) 18.1 (2019), pp. 14–
17.

[81] Shi-Gui Yang, Yuan-Yuan Wang, Di Liu, Xu Jiang, Hui Fang, Yu Yang, and Mingx-
iong Zhao. “ReLeTa: Reinforcement Learning for Thermal-Aware Task Allocation
on Multicore”. In: arXiv preprint arXiv:1912.00189 (2019).

[82] Zhuo Chen, Dimitrios Stamoulis, Student Member, and Diana Marculescu. “Profit:
Priority and Power / Performance Optimization for Many-Core Systems”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.10
(2018), pp. 2064–2075.

[83] Bryan Donyanavard, Armin Sadighi, Florian Maurer, Tiago Mück, Amir Rah-
mani, Andreas Herkersdorf, and Nikil Dutt. “SOSA: Self-optimizing Learning
with Self-adaptive Control for Hierarchical SoC Management”. In: Int. Symp. on
Microarchitecture (MICRO) (2019).

[84] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. “Concrete Problems in AI Safety”. In: arXiv preprint arXiv:1606.06565
(2016).

[85] Ujjwal Gupta, Chetan Arvind Patil, Ganapati Bhat, Prabhat Mishra, and Umit Y
Ogras. “DyPO: Dynamic Pareto-Optimal Configuration Selection for Heteroge-
neous MPSoCs”. In: ACM Transactions on Embedded Computing Systems (TECS)
16.5s (2017).

[86] Ryan Gary Kim, Wonje Choi, Zhuo Chen, Janardhan Rao Doppa, Partha Pratim
Pande, Diana Marculescu, and Radu Marculescu. “Imitation Learning for Dynamic
VFI Control in Large-Scale Manycore Systems”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25.9 (2017), pp. 2458–2471. issn: 10638210.
doi: 10.1109/TVLSI.2017.2700726.

156

https://doi.org/10.1109/TVLSI.2017.2700726

Bibliography

[87] Sumit K. Mandal, Ganapati Bhat, Chetan Arvind Patil, Janardhan Rao Doppa,
Partha Pratim Pande, and Umit Y. Ogras. “Dynamic Resource Management of
Heterogeneous Mobile Platforms via Imitation Learning”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 27.12 (2019), pp. 2842–2854. doi:
10.1109/TVLSI.2019.2926106.

[88] Anderson L Sartor, Anish Krishnakumar, Samet E Arda, Umit Y Ogras, and Radu
Marculescu. “Hilite: Hierarchical and Lightweight Imitation Learning for Power
Management of Embedded SoCs”. In: IEEE Computer Architecture Letters (CAL)
19.1 (2020), pp. 63–67.

[89] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[90] William Lloyd Bircher, Madhavi Valluri, Jason Law, and Lizy K John. “Runtime
Identification of Microprocessor Energy Saving Opportunities”. In: International
Symposium on Low Power Electronics and Design (ISLPED). IEEE. 2005, pp. 275–280.

[91] Sheriff Sadiqbatcha, Hengyang Zhao, Hussam Amrouch, Jörg Henkel, and Sheldon
X-DTan. “Hot Spot Identification and System Parameterized ThermalModeling for
Multi-Core Processors Through Infrared Thermal Imaging”. In:Design, Automation
& Test in Europe (DATE). IEEE. 2019, pp. 48–53.

[92] Ujjwal Gupta, Manoj Babu, Raid Ayoub, Michael Kishinevsky, Francesco Paterna,
and Umit Y Ogras. “STAFF: Online Learning with Stabilized Adaptive Forgetting
Factor and Feature Selection Algorithm”. In: Design Automation Conference (DAC).
IEEE. 2018.

[93] Matthew J Walker, Stephan Diestelhorst, Andreas Hansson, Anup K Das, Sheng
Yang, Bashir M Al-Hashimi, and Geoff V Merrett. “Accurate and Stable Run-Time
Power Modeling for Mobile and Embedded CPUs”. In: IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst. (TCAD) 36.1 (2016), pp. 106–119.

[94] Kaicheng Zhang, Akhil Guliani, Seda Ogrenci-Memik, Gokhan Memik, Kazu-
tomo Yoshii, Rajesh Sankaran, and Pete Beckman. “Machine Learning-Based
Temperature Prediction for Runtime Thermal Management Across System Com-
ponents”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS) 29.2
(2017), pp. 405–419.

[95] Yang Ge, Qinru Qiu, and Qing Wu. “A Multi-agent Framework for Thermal Aware
Task Migration in Many-Core Systems”. In: Transactions on Very Large Scale
Integration (VLSI) Systems 20.10 (2011), pp. 1758–1771.

[96] Yeseong Kim, Pietro Mercati, Ankit More, Emily Shriver, and Tajana Rosing. “P4:
Phase-Based Power/Performance Prediction of Heterogeneous Systems via Neural
Networks”. In: International Conference on Computer-Aided Design (ICCAD). IEEE.
2017, pp. 683–690.

157

https://doi.org/10.1109/TVLSI.2019.2926106

Bibliography

[97] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C Gross. “Utilizing
Predictors for Efficient Thermal Management in Multiprocessor SoCs”. In: Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 28.10
(2009), pp. 1503–1516.

[98] Javad Mohebbi Najm Abad and Ali Soleimani. “Novel Feature Selection Algorithm
for Thermal PredictionModel”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 26.10 (2018), pp. 1831–1844.

[99] Hokchhay Tann, Soheil Hashemi, R Iris Bahar, and Sherief Reda. “Runtime Con-
figurable Deep Neural Networks for Energy-Accuracy Trade-Off”. In: Int. Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). IEEE. 2016.

[100] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. “Slimmable
Neural Networks”. In: International Conference on Learning Representations (ICLR)
(2018).

[101] Maral Amir and Tony Givargis. “Priority Neuron: A Resource-Aware Neural
Network for Cyber-Physical Systems”. In: Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 37.11 (2018), pp. 2732–2742.

[102] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smith. “Federated Optimization in Heterogeneous Networks”. In:Machine
Learning and Systems (MLSys). Vol. 2. 2020.

[103] Junjie Shi, Jiang Bian, Jakob Richter, Kuan-Hsun Chen, Jörg Rahnenführer, Haoyi
Xiong, and Jian-Jia Chen. “MODES: Model-Based Optimization on Distributed
Embedded Systems”. In: Machine Learning 110.6 (2021), pp. 1527–1547.

[104] Daliang Li and JunpuWang. “FedMD: Heterogenous Federated Learning viaModel
Distillation”. In: Conference on Neural Information Processing Systems (NeurIPS)
Workshop on Federated Learning for Data Privacy and Confidentiality. 2019.

[105] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. “Cronus:
Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge
Transfer”. In: arXiv preprint arXiv:1912.11279 (2019).

[106] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. “Ensemble Distilla-
tion for Robust Model Fusion in Federated Learning”. In: Conference on Neural
Information Processing Systems (NeurIPS). 2020.

[107] Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I
Venieris, and Nicholas D Lane. “FjORD: Fair and Accurate Federated Learning
under heterogeneous targets with Ordered Dropout”. In: Conference on Neural
Information Processing Systems (NeurIPS). 2021.

[108] Rong Yu and Peichun Li. “Toward Resource-Efficient Federated Learning in Mobile
Edge Computing”. In: IEEE Network 35.1 (2021), pp. 148–155.

[109] Enmao Diao, Jie Ding, and Vahid Tarokh. “HeteroFL: Computation and Communi-
cation Efficient Federated Learning for Heterogeneous Clients”. In: International
Conference on Learning Representations (ICLR). IEEE. 2021.

158

Bibliography

[110] Zirui Xu, Fuxun Yu, Jinjun Xiong, and Xiang Chen. “HELIOS: Heterogeneity-
Aware Federated Learning with Dynamically Balanced Collaboration”. In: Design
Automation Conference (DAC). IEEE. 2021, pp. 997–1002.

[111] BenGraham, JeremyReizenstein, and Leigh Robinson. “Efficient Batchwise Dropout
Training using Submatrices”. In: arXiv preprint arXiv:1502.02478 (2015).

[112] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar.
“Expanding the Reach of Federated Learning by Reducing Client Resource Re-
quirements”. In: arXiv preprint arXiv:1812.07210 (2018).

[113] Anuj Pathania and Jörg Henkel. “HotSniper: Sniper-Based Toolchain for Many-
Core Thermal Simulations in Open Systems”. In: IEEE Embedded Systems Letters
(ESL) (2018). doi: 10.1109/LES.2018.2866594.

[114] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulation”.
In: Int. Conf. for High Performance Computing, Networking, Storage and Analysis
(SC). ACM. 2011. doi: 10.1145/2063384.2063454.

[115] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. “The McPAT Framework for Multicore and Manycore
Architectures: Simultaneously Modeling Power, Area, and Timing”. In: ACM
Transactions on Architecture and Code Optimization (TACO) 10.1 (2013). doi: 10.
1145/2445572.2445577.

[116] Gabriel Southern and Jose Renau. “Analysis of PARSEC Workload Scalability”. In:
International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE. 2016, pp. 133–142.

[117] Wim Heirman, Trevor E Carlson, Shuai Che, Kevin Skadron, and Lieven Eeckhout.
“Using Cycle Stacks to Understand Scaling Bottlenecks in Multi-Threaded Work-
loads”. In: Int. Symp. on Workload Characterization (IISWC). IEEE. 2011, pp. 38–49.
doi: 10.1109/IISWC.2011.6114195.

[118] Santiago Pagani, Jian-Jia Chen, Muhammad Shafique, and Jörg Henkel. “MatEx:
Efficient Transient and Peak Temperature Computation for Compact Thermal
Models”. In: Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2015, pp. 1515–1520.

[119] Ankireddy Nalamalpu, Nasser Kurd, Anant Deval, Chris Mozak, Jonathan Douglas,
Ashish Khanna, Fabrice Paillet, Gerhard Schrom, and Boyd Phelps. “Broadwell:
A family of IA 14nm processors”. In: Symposium on VLSI Circuits (VLSI Circuits).
IEEE. 2015.

[120] Carl Ramey. “Tile-Gx100 Manycore Processor: Acceleration Interfaces and Ar-
chitecture”. In: Hot Chips Symposium (HCS). IEEE. 2011. doi: 10.1109/HOTCHIPS.
2011.7477491.

[121] Linaro 96Boards. HiKey970. https://96boards.org/product/hikey970/.

159

https://doi.org/10.1109/LES.2018.2866594
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1109/IISWC.2011.6114195
https://doi.org/10.1109/HOTCHIPS.2011.7477491
https://doi.org/10.1109/HOTCHIPS.2011.7477491

Bibliography

[122] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. “Com-
munication-Efficient Learning of Deep Networks from Decentralized Data”. In:
International Conference on Artificial Intelligence and Statistics (AISTATS). 2017.

[123] Yuanming Shi, Kai Yang, Tao Jiang, Jun Zhang, and Khaled B Letaief. “Commu-
nication-Efficient Edge AI: Algorithms and Systems”. In: IEEE Communications
Surveys & Tutorials 22.4 (2020).

[124] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. “A Survey of
Accelerator Architectures for Deep Neural Networks”. In: Engineering 6.3 (2020),
pp. 264–274.

[125] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet Classification
with Deep Convolutional Neural Networks”. In: Neural Information Processing
Systems (NIPS). 2012, pp. 1097–1105.

[126] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sun-
daram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. “Knights
Landing: Second-Generation Intel Xeon Phi Product”. In: IEEE MICRO 36.2 (2016),
pp. 34–46.

[127] Jack Dongarra, Stanimire Tomov, Piotr Luszczek, Jakub Kurzak, Mark Gates, Ichi-
taro Yamazaki, Hartwig Anzt, Azzam Haidar, and Ahmad Abdelfattah. “With
Extreme Computing, the Rules have Changed”. In: Computing in Science & Engi-
neering 19.3 (2017), pp. 52–62.

[128] Santiago Pagani, Heba Khdr, Jian-Jia Chen, Muhammad Shafique, Minming Li,
and Jörg Henkel. “Thermal Safe Power (TSP): Efficient Power Budgeting for
Heterogeneous Manycore Systems in Dark Silicon”. In: IEEE Transactions on
Computers (TC) 66.1 (2017), pp. 147–162. doi: 10.1109/TC.2016.2564969.

[129] Sai Manoj PD, Hao Yu, and KanwenWang. “3D Many-Core Microprocessor Power
Management by Space-Time Multiplexing Based Demand-Supply Matching”. In:
IEEE Transactions on Computers (TC) 64.11 (2015), pp. 3022–3036.

[130] Stijn Eyerman, Kristof Du Bois, and Lieven Eeckhout. “Speedup Stacks: Identifying
Scaling Bottlenecks in Multi-Threaded Applications”. In: International Symposium
on Performance Analysis of Systems & Software (ISPASS). IEEE. 2012, pp. 145–155.

[131] Alaa R Alameldeen and David A Wood. “IPC Considered Harmful for Multipro-
cessor Workloads”. In: IEEE Micro 26.4 (2006), pp. 8–17.

[132] Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and
Anant Agarwal. “Application Heartbeats: A Generic Interface for Specifying
Program Performance and Goals in Autonomous Computing Environments”. In:
International Conference on Autonomic Computing (ICAC). 2010, pp. 79–88.

[133] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[134] Rem Gensh, Ali Aalsaud, Ashur Rafiev, Fei Xia, Alexei Iliasov, Alexander Ro-
manovsky, and Alex Yakovlev. “Experiments with Odroid-XU3 Board”. In: School
of Computing Science Technical Report Series (2015).

160

https://doi.org/10.1109/TC.2016.2564969

Bibliography

[135] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. url: https://www.tensorflow.org/.

[136] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. “Quantization and Training
of Neural Networks for Efficient Integer-Arithmetic-Only Inference”. In: Computer
Vision and Pattern Recognition (CVPR). IEEE. 2018, pp. 2704–2713.

[137] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, DanielMolka, Joseph Schuchart,
and Robin Geyer. “An Energy Efficiency Feature Survey of the Intel Haswell Pro-
cessor”. In: Int. Parallel and Distributed Processing Symp. Workshop (IPDPSW). IEEE.
2015, pp. 896–904.

[138] Sebastian Ruder. “An Overview of Multi-Task Learning in Deep Neural Networks”.
In: arXiv preprint arXiv:1706.05098 (2017).

[139] Begum Egilmez, Gokhan Memik, Seda Ogrenci-Memik, and Oguz Ergin. “User-
Specific Skin Temperature-Aware DVFS for Smartphones”. In: Design, Automation
& Test in Europe Conf. & Exhibition (DATE). 2015.

[140] Anuj Pathania, Heba Khdr, Muhammad Shafique, Tulika Mitra, and Jörg Henkel.
“QoS-aware Stochastic Power Management for Many-Cores”. In: Design Automa-
tion Conf. (DAC). 2018.

[141] Tomofumi Yuki and Louis-Noël Pouchet. Polybench 4.0. 2015.
[142] Quintin Fettes, Mark Clark, Razvan Bunescu, Avinash Karanth, and Ahmed Louri.

“Dynamic Voltage and Frequency Scaling in NoCs with Supervised and Reinforce-
ment Learning Techniques”. In: IEEE Transactions on Computers (TC) 68.3 (2019),
pp. 375–389.

[143] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
and Luc Van Gool. “AI Benchmark: Running Deep Neural Networks on Android
Smartphones”. In: European Conference on Computer Vision (ECCV). 2018.

[144] Rahul Jain, Preeti Ranjan Panda, and Sreenivas Subramoney. “Cooperative Multi-
Agent Reinforcement Learning-based Co-Optimization of Cores, Caches, and
On-Chip Network”. In: ACM Tran. on Architecture and Code Optimization (TACO)
14.4 (2017).

161

https://www.tensorflow.org/

Bibliography

[145] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex In-
german, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. “Towards Federated Learning at Scale: System Design”. In:
SysML Conference. 2019.

[146] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. “FedHealth:
A Federated Transfer Learning Framework for Wearable Healthcare”. In: IEEE
Intelligent Systems 35.4 (2020), pp. 83–93.

[147] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. “Im-
ageNet Training in Minutes”. In: International Conference on Parallel Processing
(ICPP). 2018.

[148] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mo-
hak Shah. “On-device Machine Learning: An Algorithms and Learning Theory
Perspective”. In: arXiv preprint arXiv:1911.00623 (2019).

[149] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. “Real-Time Video
Analytics: The Killer App for Edge Computing”. In: Computer 50.10 (2017), pp. 58–
67.

[150] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing”.
In: Proceedings of the IEEE 107.8 (2019), pp. 1738–1762.

[151] Haoyu Zhang, GaneshAnanthanarayanan, Peter Bodik,Matthai Philipose, Paramvir
Bahl, and Michael J Freedman. “Live Video Analytics at Scale With Approximation
and Delay-Tolerance”. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2017, pp. 377–392.

[152] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. “Applied Federated Learning: Im-
proving Google Keyboard Query Suggestions”. In: arXiv preprint arXiv:1812.02903
(Dec. 7, 2018).

[153] Chia-Heng Tu, Hui-Hsin Hsu, Jen-Hao Chen, Chun-Han Chen, and Shih-Hao
Hung. “Performance and Power Profiling for Emulated Android Systems”. In:ACM
Transactions on Design Automation of Electronic Systems (TODAES) 19.2 (2014).

[154] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. “Federated
Learning: Challenges, Methods, and Future Directions”. In: IEEE Signal Processing
Magazine 37.3 (2020), pp. 50–60.

[155] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini.
“Federated Learning for Resource-Constrained IoT Devices: Panoramas and State-
of-the-art”. In: arXiv preprint arXiv:2002.10610 (2020).

162

Bibliography

[156] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Neural Information Processing Systems (NeurIPS). 2019, pp. 8024–8035.

[157] Zhuoran Song, Ru Wang, Dongyu Ru, Zhenghao Peng, Hongru Huang, Hai Zhao,
Xiaoyao Liang, and Li Jiang. “Approximate Random Dropout for DNN Training
Acceleration in GPGPU”. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2019.

[158] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
“Densely Connected Convolutional Networks”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2017.

[159] Dario Amodei, Danny Hernandez, Girish Sastry, Jack Clark, Greg Brockman, and
Ilya Sutskever. AI and Compute. 2018. url: https://openai.com/blog/ai-and-
compute/.

[160] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,
Qixuan Yu, Yue Wang, and Yingyan Lin. “HW-NAS-Bench: Hardware-Aware
Neural Architecture Search Benchmark”. In: International Conference on Learning
Representations (ICLR) (2021).

[161] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. “Deep
Networks with Stochastic Depth”. In: European Conference on Computer Vision
(ECCV). Springer. 2016.

[162] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. “Accelerating
Neural Architecture Search using Performance Prediction”. In: arXiv preprint
arXiv:1705.10823 (2017).

[163] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural Architecture
Search: A Survey”. In: Journal of Machine Learning Research (JMLR) 20 (2019).

[164] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. “A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II”. In: IEEE Transactions on
Evolutionary Computation 6.2 (2002), pp. 182–197.

[165] Francesco Biscani and Dario Izzo. “A Parallel Global Multiobjective Framework
for Optimization: pagmo”. In: Journal of Open Source Software 5.53 (2020). doi:
10.21105/joss.02338. url: https://doi.org/10.21105/joss.02338.

[166] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. “EMNIST:
Extending MNIST to Handwritten Letters”. In: International Joint Conference on
Neural Networks (IJCNN). IEEE. 2017, pp. 2921–2926.

[167] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. “LEAF: A Benchmark
for Federated Settings”. In: Conference on Neural Information Processing Systems
(NeurIPS). 2019.

163

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338

Bibliography

[168] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from
Tiny Images. 2009.

[169] Lisa Torrey and Jude Shavlik. “Transfer Learning”. In: Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques.
IGI Global, 2010, pp. 242–264.

[170] Jakob Richter, Junjie Shi, Jian-Jia Chen, Jörg Rahnenführer, and Michel Lang.
“Model-Based Optimization with Concept Drifts”. In: Genetic and Evolutionary
Computation Conference (GECCO). 2020, pp. 877–885.

164

	Abstract
	Zusammenfassung
	List of Publications
	Research at the Chair for Embedded Systems
	Introduction
	Constrained Resources in Computing Systems
	Challenges in Resource Management
	Machine Learning for Resource Management
	Patterns how to Apply ML to Resource Management
	Predict Impact of Resource Management Actions
	Estimate Hidden Properties of the Platform or Applications
	Directly Learn Resource Management Policy

	Dissertation Contributions
	Dissertation Outline

	Related Work
	Classical Resource Management
	Resource Management with Design-Time Optimization
	Resource Management with Simple Heuristics
	Analytical Modeling

	Learning-Based Resource Management
	Learn Management Policy with Reinforcement Learning
	Learn Management Policy with Imitation learning
	Learn Properties of the Platform or Applications

	Resource-Aware Learning

	Experimental Framework
	Simulation-Based Setup
	Homogeneous Many-Core Processor
	S-NUCA Many-Core Processor

	Physical Setup with Real Hardware
	Federated Learning Setup

	Classical Heuristic Resource Management
	Analysis of the S-NUCA Many-Core Architecture
	Last-Level Cache Access Latency
	Thermal Aspects
	Trade-off Between Last-Level Cache Latency and Power Budget

	Motivational Examples
	Novel Contributions
	Problem Definition
	Pareto-Optimal Application Mapping
	Run-Time Application Mapping Algorithm
	Find Near-Pareto-Optimal Mappings
	Select One of the Near-Pareto-Optimal Mappings

	Run-Time Dynamic Power Budget Reallocation
	Experimental Evaluation
	Comparison to the State of the Art
	Evaluation of the Mapping Candidates of PCGov
	Run-Time Overhead
	Impact of the Hysteresis Parameter

	Summary

	Prediction-Based Application Migration
	Motivational Examples
	Challenges and Novel Contributions
	Problem Definition
	Neural Network-based Prediction Model
	Feature Selection
	Training Data Generation
	Neural Network Topology

	Analytical Prediction Model
	Impact of the Last-Level Cache Access Latency
	Impact of the Voltage/Frequency Level
	Power Model
	Algorithm for Analytical Performance Prediction

	Run-Time Application Migration Algorithm
	Experimental Evaluation
	Comparison of the ML-based and Analytical Prediction Models
	Illustrative Example for Performance Prediction
	Comparison to Classical Heuristics and to the State of the Art
	Run-Time Overhead

	Summary

	Smart Boosting by Estimating Hidden Application Properties
	Motivational Examples
	Challenges and Novel Contributions
	Problem Definition
	Boosting Metric: Boostability
	Boostability of Single Threads
	Boostability of Multi-Threaded Applications

	Neural Network Model for Sensitivity Prediction
	Feature Selection
	Training Data Generation
	Neural Network Topology

	Smart Boosting Algorithm
	Experimental Evaluation
	Comparison to the State of the Art
	Illustrative Example
	Prediction Accuracy of our Sensitivity Model
	Run-time Overhead

	Summary

	Learning Optimal Management with Imitation Learning
	Motivational Examples
	Challenges and Novel Contributions
	Problem Definition
	Imitation Learning-Based Application Migration
	Feature Selection
	Oracle Demonstrations (Training Data)
	IL Model Creation and Training

	Run-Time Temperature and QoS Management
	Application Migration with NPU-Accelerated IL
	Control Loop for Per-Cluster DVFS

	Reinforcement Learning-Based Application Migration
	Experimental Evaluation
	Illustrative Example
	Parallel Mixed Workload
	Single-Application Workloads
	Model Evaluation
	Run-Time Overhead

	Summary

	Resource-Adaptive On-Device Training
	Motivational Examples
	Challenges and Novel Contributions
	Problem Definition
	Dropout to Reduce Computations In Training
	Filter-based Structured Dropout
	Efficient Implementation of Structured Dropout

	Design-Time: Find Pareto-Optimal Dropout Vectors
	Calculate the Resource Requirements
	Measure the Convergence Speed
	Evolutionary Design Space Exploration

	Run Time: Resource-Aware Training of Neural Networks
	Experimental Evaluation
	Heterogeneity Across Devices
	Heterogeneity Across Devices and Over Time

	Summary

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Bibliography

